The present invention generally relates to watercraft, such as paddleboards, suitable for use in water sports or other activities. One or more aspects of example embodiments may also find application in watercraft such as, but not limited to, kayaks, sailboats, surfboards, paipo boards, boards for wind surfers, kneeboards, wakeboards, and bodyboards, examples of which include boards referred to as boogie boards.
The size and/or shape of some types of watercraft can make them awkward to handle and transport when they are not in use. Accordingly, such watercraft can be equipped with some type of handle or handhold to better facilitate handling and transportation. Depending upon the nature of the construction of the watercraft however, the manufacturing of such handles or handholds can be problematic.
For example, some types of watercraft, such as paddleboards and kayaks, for example, have a blow molded construction. The blow molded construction may be desirable because it produces a light and strong structure. However, some blow-molding processes are unable to create an undercut configuration that a user can readily grasp and hold. Instead, the blow-molding process may only form a recess or indentation that lacks an undercut for a user to grip.
Thus, while a blow-molding process can form a grip that a user can grasp in an attempt to handle and transport the watercraft, that grip is not particularly effective. Moreover, the effectiveness of the grip is likely to be reduced further when the watercraft is wet since the grip can tend to slip out of the hand of the user. This undesirable result is particularly likely where the watercraft is relatively heavy and/or has an unwieldy shape.
Accordingly, what is needed is a grip that includes an undercut structure that can enable a user to readily grasp and hold the watercraft, or other structure, where the grip is employed. The grip may be particularly useful when employed in connection with blow-molded or other structures where formation of an undercut is difficult, or impossible.
Various disclosed embodiments are concerned with various types of watercraft, examples of which include, but are not limited to, kayaks, sailboats, surfboards, paipo boards, boards for wind surfers, kneeboards, wakeboards, and bodyboards, examples of which include boards referred to as boogie boards. Other embodiments are directed more generally to any blow-molded structure that may benefit from the inclusion of one or more grips such as are disclosed herein, where such blow-molded structures may include, for example, panels and tables.
The embodiments disclosed herein do not constitute an exhaustive summary of all possible embodiments, nor does this summary constitute an exhaustive list of all aspects of any particular embodiment(s). Rather, this summary simply presents selected aspects of some example embodiments. It should be noted that nothing herein should be construed as constituting an essential or indispensable element of any invention or embodiment. Rather, and as the person of ordinary skill in the art will readily appreciate, various aspects of the disclosed embodiments may be combined in a variety of ways so as to define yet further embodiments. Such further embodiments are considered as being within the scope of this disclosure. As well, none of the embodiments embraced within the scope of this disclosure should be construed as resolving, or being limited to the resolution of, any particular problem(s). Nor should such embodiments be construed to implement, or be limited to implementation of, any particular effect(s).
In particular, example embodiments within the scope of this disclosure may include one or more of the following elements, in any combination: a blow-molded element having a unitary-one piece structure that is substantially hollow; a watercraft hull including a portion that is blow-molded, where the blow-molded portion is in the form of a unitary, one-piece structure that is substantially hollow; a blow-molded watercraft hull in the form of a unitary, one-piece structure that is substantially hollow; a blow-molded hull portion in the form of a unitary, one-piece structure that is substantially hollow, where the blow-molded hull portion defines a recess; an insert configured to be disposed with respect to a recess such that the insert and recess cooperatively define an undercut that can be gripped by a user; an insert comprising one or more of plastic, rubber, or metal; an insert configured to be received within a recess defined in a structure that may be blow-molded; an insert configured to be received with a recess so that an upper surface of the insert is substantially flush with the surrounding structure in which the recess is defined; an insert that defines an opening configured to communicate with a recess defined by a structure when the insert is positioned proximate the recess; and, an insert that is removably attachable to a structure.
Any embodiment of a watercraft that includes a hull which is constructed at least partly of blow-molded plastic may have an interior that is partly, or completely, hollow. Such embodiments may also include, disposed in the interior, one or more depressions, sometimes referred to as “tack-offs.” In such embodiments, these tack-offs may be integrally formed as part of a unitary, one-piece structure during the blow-molding process. The depressions may extend from a first surface, such as a first interior surface of the hull, towards a second surface, such as a second interior surface of the hull. The ends of one or more depressions may contact or engage the second surface, or the ends of one or more of the depressions may be spaced apart from the second surface by a distance. In some instances, one or more depressions on a first interior surface may be substantially aligned with corresponding depressions on a second interior surface, and one or more depressions on the first interior surface may contact one or more corresponding depressions on the second interior surface or, alternatively, one or more depressions on the first interior surface may be spaced apart from corresponding depressions on the second interior surface. In still other instances, depression that contact each other and depressions that are spaced apart from each other may both be present in a watercraft. The depressions may be sized and configured to strengthen and/or reinforce the blow-molded plastic hull of the watercraft. Following is a brief listing of some example embodiments. Finally, and more generally, such tack-offs can be included in any other blow-molded structure.
In a first example embodiment, a blow-molded element is provided that has a unitary-one piece structure that is substantially hollow, and a grip for the blow-molded element is provided that includes an undercut that is defined in part by the blow-molded element.
In a second example embodiment, a blow-molded element is provided that has a unitary-one piece structure that is substantially hollow, and a grip is provided that includes an undercut that is cooperatively defined by a recess in the blow-molded element and an insert disposed proximate the recess.
In a third example embodiment, a watercraft comprises a hull that is in the form of a blow-molded structure having a unitary-one piece construction that is substantially hollow, and a grip is provided that includes both an insert as well as a recess defined by the unitary-one piece structure, and the recess cooperates with the insert to define an undercut that can be gripped by a user.
In a fourth example embodiment, a watercraft comprises a hull which is in the form of a blow-molded element with a unitary-one piece structure that is substantially hollow. A grip is provided that includes an insert, and also includes a recess defined by the unitary-one piece structure. The recess cooperates with an opening in the insert to define an undercut that can be gripped by a user.
In a fifth example embodiment, a watercraft comprises a hull which is in the form of a blow-molded element with a unitary-one piece structure that is substantially hollow. A grip is provided that includes an insert, and also includes a recess defined by the unitary-one piece structure. The insert is received in a portion of the recess so that an upper surface of the insert is substantially flush with the surrounding structure that defines the recess, and the recess cooperates with an opening in the insert to define an undercut that can be gripped by a user.
In a sixth example embodiment, a method of making a watercraft is performed, where the method includes forming a plastic hull using a blow-molding process, where forming the hull includes forming a recess in the hull. The method also includes attaching an insert to the plastic hull of the watercraft so that an opening defined in the insert communicates with an interior of the recess, and the insert cooperates with the recess to define an undercut that is sized and arranged to accommodate part of a hand of a user.
In a seventh example embodiment, the method performed in the sixth example embodiment forms a recess that is free of any undercuts.
In an eighth example embodiment, the method performed in the sixth example embodiment forms the recess as part of a tack-off.
In a ninth example embodiment, the method performed in the sixth example embodiment forms the plastic hull as a substantially hollow structure.
In a tenth example embodiment, the method performed in the sixth example embodiment further includes forming the insert.
The appended drawings contain figures of example embodiments to further illustrate and clarify the above and other aspects, advantages and features of the present invention. It will be appreciated that these drawings depict only example embodiments of the invention and are not intended to limit its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Embodiments of the invention generally relate to watercraft, such as paddleboards, for example, suitable for use in water sports or other activities. One or more aspects of example embodiments may also find application in watercraft, such as, but not limited to, kayaks, sailboats, surfboards, paipo boards, boards for wind surfers, kneeboards, wakeboards, and bodyboards, examples of which include boards referred to as boogie boards. In one particular example, one or more embodiments take the form of a sit-on-top kayak or watercraft, and yet other embodiments take the form of a sit-inside kayak or watercraft.
More generally still, embodiments of the invention can extend to any blow-molded structure where a grip may be useful, and the scope of the invention is not limited to watercraft. Such other blow-molded structures include, but are not limited to, blow-molded panels, blow-molded tables, and/or any other blow-molded structures where one or more grips within the scope of this disclosure may be useful.
A. Aspects of Various Example Watercraft
With particular reference first to
The hull 200 may be any size and/or shape desired, and the Figures provided herewith simply disclose example configurations. In the example of
Embodiments of the watercraft 100 may also have one, two, or more, seats 208. In the particular example of
Some embodiments of the watercraft 100 may include one or more internal storage areas 210 in the interior of the body 200 and accessible by way of a removable cover 210a, which may be threaded or otherwise configured to releasably engage corresponding structure of the body 200. Moreover, embodiments of the watercraft 100 may include one or more stowage areas 212 where cargo can be secured, for example, by way of retention devices 214 such as elastic cords or other elements releasably connected to attachment points 216. At least some embodiments of the watercraft 100 may include a handle 218 to enable a user to pull and otherwise maneuver the watercraft 100. Finally, embodiments of the watercraft 100 can include one or more scuppers 219, which can be formed as a tack-off, and which may enable collection and removal of water that enters the watercraft 100.
Turning briefly now to
In general, the embodiment of
Turning now to
The hull 152 may be any size and/or shape desired, and the Figures provided herewith simply disclose one example configuration. In the example of
In another example of a surface treatment, portions of the watercraft 150, including the deck 156, may have one or more surfaces with a chemically etched textured portion that provides traction and may allow for elastomeric sheathing to be adhered. In still further examples, one or more surfaces of the watercraft 150 are textured, and the sheathing or other covering may be omitted. It should be noted that one, some, or all of the aforementioned surface treatments can also be employed with any of the surfaces of a kayak, such as the example kayaks of
With continued reference to
Finally, the example watercraft 150 can include one or more grips 300. In the example of
B. Aspects of Some Example Grip Arrangements
With continued reference now to
As indicated in
In at least some embodiments, one or more grips 300 may be located inside the hull 200 and/or on the outside of the hull 200, near a fore and aft center of gravity (“CG”) so that a user employing the grip 300 can readily find a point of balance, in the fore and aft direction, and thus avoid the problem of dragging either the bow 202a or stern 202b when the user is carrying the watercraft 100. It can be difficult in some circumstances to precisely determine the point of balance during manufacturing, however, so the grip 300 may be located such that respective opposite ends of the grip 300 are located on either side, that is, fore and aft, of the fore and aft CG.
As a result of this configuration, a user can simply move his hand longitudinally within the grip 300 until the point of balance is found. To this end, at least some embodiments of the grip 300 may be relatively long, such as from about 6 inches long to about 12 inches long, and one particular embodiment of the grip 300 is about 9 inches long. Of course, other dimensions can alternatively be used.
With continued reference to
C. Aspects of Some Example Grips
With reference now first to
Where the example recess 402 has a generally elongate form, as indicated in
The recess 402 can be configured in a variety of ways to receive and support the insert 404. As shown in the detail views of
With continued reference to the Figures, the recess 402 may be configured, as noted above, so that a depth of the recess 402 varies. As shown in
Directing continued attention to
The insert 404 includes an opening 404b arranged to communicate with the interior 402a of the recess 402 when the insert 404 is positioned as shown in
As well, the opening 404b is sized and arranged to be generally smaller in length and/or width than the recess 402. Consequently, and as best shown in
D. Recess and Tack-Offs
As noted elsewhere herein, a recess, such as recess 402, for example, may take the form of a tack-off produced by a molding process, such as blow-molding. With reference now to
E. Aspects of an Example Method
Turning, finally, to
The recess formed in the hull during the molding process may be free of any substantial undercuts. As well, the recess may comprise, or be formed as part of, a tack-off in the hull.
Next, an insert is formed 604 that includes an opening. The insert can be formed before, during, or after formation of the hull. A variety of processes can be used to form the insert, one example of which is injection molding, although that is not required.
After the insert has been formed 604, the insert is then attached 606 to the hull proximate the recess so that the insert cooperates with the recess to define 608 an undercut. More particularly, the opening in the insert communicates with an interior of the recess. In general, the undercut is sized and configured to accommodate a portion of a hand of a user. The undercut can have a generally elongate form, but that is not required. The insert can be attached to the hull permanently, by the use of an adhesive, for example. Alternatively, the insert can be removably attached to the hull by use of one or more fasteners.
Although this disclosure has been described in terms of certain embodiments, other embodiments apparent to those of ordinary skill in the art are also within the scope of this disclosure. Accordingly, the scope of the disclosure is intended to be defined only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
4090756 | Frey et al. | May 1978 | A |
4699076 | Curtis et al. | Oct 1987 | A |
5397525 | Niemier | Mar 1995 | A |
6073574 | King | Jun 2000 | A |
6349662 | Limansky et al. | Feb 2002 | B1 |
6401648 | Abbenhouse | Jun 2002 | B1 |
6932011 | Nagata et al. | Aug 2005 | B2 |
6990920 | Hamilton et al. | Jan 2006 | B2 |
7032531 | Caples | Apr 2006 | B1 |
7121225 | Caples | Oct 2006 | B1 |
7320291 | Eckert | Jan 2008 | B2 |
7735442 | Richter | Jun 2010 | B2 |
8082869 | Beaty | Dec 2011 | B2 |
8616142 | Eckert et al. | Dec 2013 | B2 |
8777683 | Friedman | Jul 2014 | B2 |
8800468 | VanNimwegen et al. | Aug 2014 | B2 |
9120218 | Stehlik | Sep 2015 | B1 |
20020166493 | Sorensen | Nov 2002 | A1 |
20080105189 | Richter | May 2008 | A1 |
20120122357 | Eckert et al. | May 2012 | A1 |
20130017743 | Green et al. | Jan 2013 | A1 |
20130048821 | Leet et al. | Feb 2013 | A1 |
20130074760 | VanNimwegen et al. | Mar 2013 | A1 |
20130130578 | Friedman | May 2013 | A1 |
Number | Date | Country |
---|---|---|
103552656 | Feb 2014 | CN |
20311223 | Nov 2014 | DE |
6263150 | Sep 1994 | JP |
Entry |
---|
Frontenac Outfitters Canoe and Kayak Centre, Kayak Parts and Terminology, frontenac-outfitters.com, http://frontenac-outfitters.com/kayaks-2/kayak-parts-terminology, Ontario, accessed on Aug. 2014. |
Douglas Wilcox, Malin Gometra sea kayak long term test and comparative review, Oct. 14, 2013, playak.com, http://playak.com/news.php?idd=2666561627522, accessed on Aug. 2014. |
Jupiter Kite/Paddle/Wake, Lift SUP Retractable Paddleboard Handle, www.jupiterkiteboarding.com, http://www.jupiterkiteboarding.com/store/lift-retractable-paddleboard-handle-p-3068.html, accessed on Aug. 2014. |
Kayarchy, Sea kayaks vs. other kayaks and canoes, www.kayarchy.co.uk, http://www.kayarchy.co.uk/html/01equipment/010otherkayaks.htm, accessed on Aug. 2014. |
Sherri Mertz, Everything You Need to Know About End Toggles, But Never Knew to Ask (Part I), Apr. 16, 2012, www.sherrikayaks.com, http://www.sherrikayaks.com/2012/04/16/everything-you-need-to-know-about-end-toggles-but-never-knew-to-ask-part-i/, accessed on Aug. 2014. |
Vincent S. Rinando Jr., Product Review: Necky Vector 13, Jan. 4, 2011, www.austinkayak.com, http://www.austinkayak.com/blog/2011/01/product-review-necky-vector-13/, accessed on Aug. 2014. |
Teksport, Kayak Handle (Stainless Steel-Plastic Style), www.teksport.co.uk, http://www.teksport.co.uk/Kayak+Handle+(stainless+steel+plastic+style/0—CAAA002/PRAA003.htm, accessed on Aug. 2014. |
International Search Report and Written Opinion of PCT/US2015/046577, dated Nov. 30, 2015, filed Aug. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20160152306 A1 | Jun 2016 | US |