This creation relates to a watering device; to be more concrete, as an integral structure for outputting a directing stream or a wide-angle swirl stream and watering purposes.
The conventional structure of rotor nozzle as claimed in U.S. Pat. No. 9,931,652 disclosed a housing (2) having a conical chamber (3) as an accommodation for a rotor (12), the rotor (12) having one end deployed with a water outlet (14) connecting to the outlet opening (6 of the spray gun, and the intermediate element (25) having a spherical surface against inner wall of the conical chamber (3) for the rotor (12) in an eccentric arrangement to the longitudinal axis of the conical chamber (3). In this way, the fluid flowed into the chamber (3) by its lateral current rotating the rotor (12) then turned into a wide-angle swirling steam, 360 degrees, running out of the outlet opening (6).
For outputting a directing stream or a wide-angle swirl stream from the integral structure of rotor nozzle, patent TW1611846 generates a swirl stream (6c) by its lateral sides of the swirling tunnel (6c), and the opening (6b) for producing the lateral current was deployed beside the opening (6a) for generating a direct stream.
This creation aims to provide a rotor nozzle having a chamber deployed with a rotor connecting to a water outlet and an adjusting element, wherein the rotor nozzle structure is equipped with a unitary water outlet for providing a direct stream or a swirl stream, and the adjusting element is switchable by rotation means securing the rotor in rotation or non-rotation status in the chamber.
Furthermore, the chamber possesses a guide annulus and a distributor deployed on the water inlet, and an adjusting element roughly in T shape having a rear area and an insertion extending from the center part, the rear area withstanding the guide annulus and resting against the distributor enabling the insertion to stop or to form a ring track of the water inlet in the rotor.
Furthermore, the distributor provides an aperture having an indented side wall forming an orifice, the rear area of the adjusting element has an axle anchored on the orifice enabling the insertion to swing in the aperture. The rear area of the adjusting element has at least one of the wings relied against the guide annulus and the distributor in order to change the swing angle of the insertion. Besides, the insertion is deployed on the bias comparing to the axle of the rear area. The distributor has an axle in vertical direction to the axle of the adjusting element.
Moreover, by rotating the distributor, the adjusting element embedded between the guide annulus and the distributor deflects and change the swing angle of the insertion. Meanwhile, the insertion of the adjusting element and a part of the distributor mutually form the inner rampart of the ring track, or the adjusting element has the insertion extending to the ring track securing the water inlet of the rotor in a non-rotation status. Because the structure of the rotor nozzle is capable of outputting a direct stream or a swirl stream from a unitary water outlet, the water tunnel inside the rotor nozzle may be devised with a streamline structure.
This invention further provides a watering device equipped with a spray unit composed of a sheath and a base, both of them mutually defining a chamber, wherein the spray unit has a unitary water outlet for outputting a direct stream or a swirl stream, and the adjusting element embedded in the chamber can be rotated to switch the water types from a direct stream to a swirl stream.
This invention further provides a watering device equipped with a spray unit composed of a sheath and a base, both of them mutually defining a chamber, wherein the adjusting element is deployed in partition to the housing and the sheath in order to stop or form the ring track of the water inlet in the chamber.
Hereinafter to elaborate more specifically of the embodiment of this creation, the narration sets forth from the water outlet of the watering device for a better understanding by the technicians skillful in the arts.
The guide annulus 40 has a circular base 41, a center base 45 in partition to the circular base 41, a plurality of guide vanes 43 connecting to the circular base 41 and the center base 45. The guide annulus 40 further has a plurality of gears 47 protruding toward the water inlet 102 from the circular base 41 and engaged on the position end 12 of the sheath 11 in such a way that the guide annulus 40 is deployed in partition to the water inlet 102, shown as in
The circular base 41 has an indented outer wall arranged with a curve groove defining two notches 421, 422. The center base 45 of the guide annulus 40 forms a circular groove 451 having a center plane 465 uplifted from the center of the circular groove 451, a lower plane 461 at the same height as the bottom of the center plane 465, a higher plane 462 at the same height as the top of the center plane 465, and two tilt planes 463 at the height between the lower plane 461 and the higher plane 462. Therefore, the lower plane 461, the higher plane 462 and two tile planes 463 form continuous planes around the center plane 465.
The distributor 50 possesses a collar 51 having an outer wall longitudinally equipped with a guide groove 52 enabling the distributor 50 to locate on the guide joint 16 deployed at the back opening of the housing 15 for making a synchronizing rotation accordingly. In assembly, the housing 15 has its back opening rested against the outer ring of the guide annulus 40 in such a way that the guide joint 16 engages to either one of the notches 421, 422 and the guide annulus 40 and the distributor 50 come closer to the water inlet of the chamber 17. The distributor 50 further has the center basis 55 aligned in partition to the collar 51, and a plurality of guide vanes 53 protruding to the collar 51 and each of the guide blades 53 respectively forms a predetermine angle to the center basis 55 in help of generating a swirl stream when the water current passing through the distributor 50. The central basis 55 of the distributor 50 possesses an axis protruding a central rode 54 toward the water outlet 101, a circle bevel 57 bulging toward the water inlet 102, and an aperture 56 penetrating the circle bevel 57 in an eccentric manner comparing to the axis of the central basis 55. The circle bevel 57 has an outer wall 571 coupled to the inner wall of the circular groove 451 of the center base 45, and a rectangular recess 572 deployed inwardly on the circle bevel 57 comparing to the longitudinal direction of the circle bevel 57, and two ditches 575 arranged on the circle bevel 57 at relative position comparing to the rectangular recess 572. In this embodiment, the central rode 54 of the distributor 50 and the collar 51 mutually define a ring track, a portion of the side wall of the central rode 54 indented in exchange for a portion of aperture 56. The aperture 56 communicates to the rectangular recess 572 in such a way that the rectangular recess 572 forms a bottom in asymmetrical shape and frames two fences 573, 574 deployed in partition to each other, shown as in
The rotor 20 is tubular in shape having water outlet connected to the front opening of the housing 15, and the water outlet is deployed with a plurality of stoppers 28 coupling to the inner wall of the housing 15, the rotor 20 has its water inlet deployed with a pole 25, the pole 25 of the rotor 20 is received in the ring track of the distributor 50. Therefore, the rotor 20 is deployed eccentrically comparing to the direction of water outlet, leaning backwardly and outwardly. Water current comes from the water inlet 102 of the sheath 11 transporting through the guide vanes 43 of the guide annulus 40, producing a swirl stream as passing through the guide blades 53 of the distributor 50 and spinning without rotating the rotor 20 on its own axis, then the water current entering into the water inlet of the rotor 20 and ejecting out from the front opening of the housing 15.
The adjusting element 60 is roughly in T shape having a rear area 62 and an insertion 63 extending from nearly the center of the rear area 62, the rear area 62 providing a pair of wings 651, 652 in V shape on one end away from the insertion 63, and a couple of ridges 661, 662 stretching toward the circular cavity 451 from the opposite end of the rear area 62. The rear area 62 has an axle 61 deployed on the posterior between the wings 651, 652 and the insertion is located on the bias comparing to the axle 61 of the rear area 62. The adjusting element 60 has the insertion 63 penetrated through the aperture 56 enabling rear area 62 to locate in the rectangular recess 572, the axis 61 pivoted in the ditches 575, the V-shape wings 651, 652 have their either ends relied against the center plane 465 of the guide annulus 40, and either of the ridges 661, 662 rested against the higher planes 462 of the guide annulus 40. As the aperture 56 is bigger than the insertion 63 which enables the adjusting element 60 to swing around the axis 61.
When the guide joint 16 of the housing 15 shifts from notch 422 to notch 421, the ridge 661 of the adjusting element 60 slides from the tilt plane 463 of the center base 45 to the partition created by lower plane 461, and the ridge 662 of the adjusting element 60 uplifts to the higher plane 462 as shown in
In this embodiment, when the adjusting element 60 is fully located inside of the housing 15 and the interior of the sheath 11, the adjusting element 60 is therefore swinging through a relative rotation between the guide annulus 40 and the distributor 50, which enables the insertion 63 of the adjusting element 60 to stop or form the ring track of the water inlet of the rotor 20. Hence, water current flows in the spray unit 100 to be ejected a direct stream or a swirl stream at alternation from a unitary water outlet 101 and the water tunnel inside the rotor nozzle may be devised with a streamline structure.
In this embodiment, the rotor 20 has a plurality of stoppers 28 disposed on the water outlet against corresponding slots of the housing 15 in order to prevent the rotation of the rotor 20 and generate a direct stream from the water outlet 101. However, the rotor 20 may has the water outlet rested against the water out side 101 facilitating the rotation of the rotor 20 for producing a conical stream from the water outlet.
In this embodiment, the adjusting element 60 has the outer curb 641 and the inner curb 642 of the insertion 63 respectively deployed on the outer wall and the inner wall of the aperture 56. The side between the rear area 62 and the insertion 63 is engaged to the fences 573, 574 of the rectangular recess 572, and either end of the V-shape wings 651, 652 of the rear area 62 is located on the center plane 465 of the guide annulus 40. The ridges 661, 662 of the rear area 62 are respectively landed on the higher plane 462 of the center base 45 in order to prevent the adjusting element 60 from swinging. In other embodiment, however, either two of the four methods as aforementioned may be utilized to offset the rotational torque of the adjusting element 60 enabling the insertion 63 of the adjusting element 60, enabling the insertion 63 of the adjusting element 60 to stop or form the ring track of the water inlet for the rotor 20. Moreover, the heights of the higher plane 462 and of the center plane 465 may be different.
In the other embodiment, the distributor 50 may be equipped with no central rode 54, the aperture 56 extends from the axis of the center base 55 of the distributor 50. The adjusting element 60 has the rear area 62 connected the circle bevel 57, and the insertion 63 penetrates and swings through the aperture 56. Therefore, the insertion 63 forms an inner rampart or locates in the ring track.
This application is a Divisional of co-pending application Ser. No. 16/785,112, filed on Feb. 7, 2020, for which priority is claimed under 35 U.S.C. § 120; the entire contents of all of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16785112 | Feb 2020 | US |
Child | 17828720 | US |