The present technology relates to systems and methods for coupling cables. More specifically, but not by way of limitation, the present technology relates to waterproof apparatuses for cables and cable interfaces.
In general, the installation of a data transmission cable requires the use of connectors that are coupled with terminal ends of the transmission cable. The cable and connectors cooperate to couple two or more data transmission terminals together. Due to cable size variability and connector interface type, technicians fabricate or “re-terminate” cables with connectors in the field. Exemplary cables include Category (CAT) 5E, Category 6, Category 7, Category 7 Direct Burial, and so forth. Exemplary connector interfaces include RJ45 through GG45. Connector housings that hold the cable and the connector interface may interface with a connector bulkhead, which typically includes a male or female connector interface that is complimentary to the connector interfaces that are coupled with the cable.
According to some embodiments, the present technology is directed to an apparatus, comprising a coupler body that includes a first end configured to releaseably couple with a connector bulkhead and a second end having an opening that is sized to receive a sealing gland, a cavity for receiving the sealing gland, the sealing gland comprising an outer peripheral surface configured to sealingly engage with an inner surface of the cavity, the sealing gland comprising an aperture that is configured to receive a cable.
According to some embodiments, the present technology is directed to a method for waterproofing a pre-terminated cable and connector. The method comprises: (a) threading the pre-terminated cable and connector through a coupler cap having an angled inner sidewall; (b) placing a sealing gland around the pre-terminated cable in such a way that the sealing gland encircles a section of the pre-terminated cable to form a waterproof seal between the sealing gland and the cable; (c) threading the pre-terminated cable and connector into a coupler body that includes a first end configured to releaseably couple with a connector bulkhead and a second end having a plurality of tabs that form a recess; (d) disposing the sealing gland within the recess; and (e) engaging the coupler cap with the second end of the coupler body such that the plurality of tabs are compressed against the sealing gland by the angled inner sidewall of the coupler cap.
Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
In particular, the present system and method provides a secure method for waterproof coupling of connectors of different sizes that provides strain relief. The present technology provides a plastic gland that weatherizes and provides strain relief to a pre-terminated Ethernet cable attached to a bulkhead connector.
Conventional waterproof couplers often require parts that are specific to the type of cable being connected. This may create a large increase in the number of parts required on-hand by an installing technician. Additionally, waterproof connections often require re-termination of the cable. Re-terminating a cable in the field can cause contamination of the cable leading to reduced transmission capabilities, as well as being time-consuming and tedious. High speed data connections require bigger cables, which leads to even a greater number of parts using conventional waterproof connectors specifically adapted to a specific cable size. A larger range for waterproof connectors is advantageous for accommodating the current wide range of cable sizes, as well as future cables having larger sizes. For example, RJ45 is not a weatherproof connector, and may require waterproofing in various installations. The RJ45 connector, while ubiquitous for data communications applications, is not designed for extended outdoor use.
The present technology provides a waterproof cover that attaches over the top of the RJ45 connection and makes it waterproof. The present technology accommodates pre-terminated cables, thereby avoiding re-termination of cables in the field. Additionally, the present technology works with various cable sizes including CAT 5E, CAT 6, CAT 7, CAT 7 Direct Burial, and various connector and coupler sizes including RJ45 through GG45.
Prior art cable connectors require sliding cable through a rubber grommet, which typically do not have a large dynamic range. The present technology provides a split grommet having a large dynamic range, for instance closed cell foam. The split grommet is put over the cable, and then a piece on the back is screwed to tighten and seal the coupling between the grommet and the cable. Pressure is applied to and carried by the housing over the seal. The split enables the plastic gland provided herein to be used with a pre-terminated cable, since the connector need not fit through the grommet, but instead the grommet is slid over the cable using the split.
A lock is formed using a bayonet arrangement that does not need to be waterproof. The lock is thereby reduced to two pieces, compared with a three piece lock in prior art, since there is no requirement of weather proofing on the lock. The lock bayonet thereby reduces the number of parts. A hole in the side of the enclosure for accessing the lock does not impair the weather proofing of the cable connection.
An advantage of the present technology includes a reduced part count, as well as a bulkhead enclosure that provides secure weather proofing. One grommet may be used, which may be split and made of closed cell foam (having a durometer, for example, of approximately 40), rather than hard rubber (which may have a durometer, for example, of approximately 80). The exemplary grommet provided herein may therefore accommodate a wide dynamic range, including CAT 5E, CAT 6, CAT 7, CAT 7 Direct Burial.
The waterproof plastic gland provided herein may also reduce strain on the connector by carrying the load from one cable to the next without relying on the strength of the connector. Strain relief of the connector is a significant additional benefit when the cable is hanging, for instance hanging off the side of a building or house.
Referring now to the drawings, and more particularly to
According to some embodiments, the coupler body 105 comprises a first end 125 and a second end 130 that are spaced apart from one another to define a tubular passage. The first end 125 may comprise an interface, such as a bayonet lock 135 that is configured to lockingly engage with a complementary groove of the connector bulkhead 120. Although a bayonet lock has been described, one of ordinary skill in the art will appreciate that other mechanisms for coupling and/or locking the first end 125 and the connector bulkhead 120 are likewise contemplated for use in accordance with the present technology.
To create a waterproof seal between the first end 125 and the connector bulkhead 120, a sealing gasket 140 (see
The second end 130 of the coupler body 105 may comprise a plurality of tabs 155 that extend from the second end 130. In some embodiments, the plurality of tabs 155 are each substantially arcuate in shape and collectively form a ring that extends from the second end 130. This ring comprised of the plurality of tabs 155 forms a cavity or recess 160 that is configured to receive the sealing gland 110. In some embodiments, the second end 130 may not include the plurality of tabs 155, such that the sealing gland 110 is inserted directly into a cavity of the second end 130.
According to some embodiments, the coupler cap 115 is configured to couple with the second end 130 and enclose the second end 130 to retain the sealing gland 110 therein. In some instances, the coupler cap 115 is configured to engage with the plurality of tabs 155 of the second end 130 to secure the sealing gland 110. More specifically, the coupler cap 115 may be substantially dome-shaped, having an angled inner sidewall 165. In some embodiments, the inner sidewall 165 is substantially frusto-conical shaped. When the coupler cap 115 is threadably engaged with the second end 130, the plurality of tabs 155 engage with the inner sidewall 165 of the coupler cap 115 and are compressed by the inner sidewall 165, against the sealing gland 110. This compression of the sealing gland 110 by the plurality of tabs 155 creates a waterproof seal between the sealing gland 110 and an inner surface 170 of the second end 130. As will be discussed in greater detail below, the compression of the sealing gland 110 by the plurality of tabs 155 also causes the sealing gland 110 to compress an outer peripheral surface 175 of a section of the cable 150 that has been associated with the sealing gland 110.
In some embodiments, the sealing gland 110 comprises a section of compressible, foam-like material that is fabricated from a waterproof, water resistant, or water repellant material. The sealing gland 110 may be advantageously fabricated from a closed cell foam, although one of ordinary skill in the art will appreciate that the sealing gland may be fabricated from any number of materials, so long as the material is compressible and capable of forming a waterproof seal between the inner sidewall of a coupler body and the outer sidewall of a cable.
In accordance with the present disclosure, the sealing gland 110 may comprise an annular ring of a closed cell foam, where the sealing gland 110 comprises a given thickness that varies according to design requirements. The sealing gland 110 includes a hole or aperture 185 that is sized to receive a section of a cable, such as the pre-terminated cable 150. The sealing gland 110 also includes a slit 190 that allows the sealing gland 110 to be pressed over the cable 150, where the cable 150 travels through the slit 190 such that the cable 150 is received within the aperture 185. The sealing gland 110 comprises a first surface 190A and a second surface 190B formed by the slit 190.
Advantageously, the sealing gland 110 encircles the section of the cable 150 and forms a waterproof interface therebetween. Because the sealing gland 110 is made from a foam material that is waterproof, the aperture 185 of the sealing gland 110 is capable of receiving cables of varying diameter. Cables of larger diameter are readily compressed by the sealing gland 110, while cables of relatively smaller diameter may require compression of the sealing gland 110 by the coupler cap 115.
Additionally, because the sealing gland 110 is fabricated from a resilient material, the first and second surfaces 190A and 190B are contiguous (e.g., touching) after the cable 150 to passes through the slit 190.
Moreover, sealing gland 110 is free to slide along the cable 150, which is advantageous when assembling the apparatus 100, as will be described in greater detail below.
In some embodiments, the coupler cap 115 may comprise an open end 195 that is sized to receive a pre-terminated cable 150. That is, the open end 195 may be sized to receive not only the cable 150, but also the connector 145 that has been associated with the cable 150. Even though the coupler cap 115 includes the open end 195, the sealing gland 110 prevents water or other contaminates from contaminating the coupler body 105, the connector 145, or the connector bulkhead 120.
In operation, the pre-terminated cable 150 is threaded through the open end 195 of the coupler cap 115. The sealing gland 110 is associated with a section of the cable 150 by aligning the slit 190 of the sealing gland 110 with the section and pressing the sealing gland 110 onto the cable 150 until the cable 150 is received within the aperture 185 of the sealing gland 110. Next, the connector 145 may be joined with the connector bulkhead 120. It is noteworthy that in some instances, a sealing gasket 140 may be disposed between the first end 125 the connector bulkhead 120, before the first end 125 of the coupler body 105 is coupled to the connector bulkhead 120.
The sealing gland 110 is positioned within the cavity 160 formed by the plurality of tabs 155. To secure the sealing gland 110 and create a waterproof seal between the second end 130, the sealing gland 110, and the cable 150, the coupler cap 115 is coupled with the second end 130. Again, coupling the coupler cap 115 with the second end 130 causes the angled inner sidewall 165 of the coupler cap 115 to engage with the ends of the plurality of tabs 155, compressing the plurality of tabs 155 inwardly towards the cable 150, while also compressing the sealing gland 110 against the cable 150.
Other methods for compressing the sealing gland 110 may include a band or clip that is configured to cinch down against the plurality of tabs 155. As mentioned above, the sealing gland 110 may not include the plurality of tabs 155. The sealing gland 110 may be deformed or compressed by the user and inserted into the second end 130. The resiliency of the material of the sealing gland 110 will cause the sealing gland 110 to expand and fill the second end 130, creating the waterproof interface.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
This non-provisional utility patent application is a continuation application of, and claims the benefit of U.S. patent application Ser. No. 15/246,118, filed on Aug. 26, 2016 and issued Oct. 9, 2018 as U.S. Pat. No. 10,096,933, entitled “Waterproof Apparatus for Cables and Cable Interfaces”, which is a continuation application of, and claims the benefit of U.S. patent application Ser. No. 14/802,829, filed on Jul. 17, 2015 and issued Dec. 27, 2016 as U.S. Pat. No. 9,531,114, entitled “Waterproof Apparatus for Cables and Cable Interfaces”, which is a continuation application of, and claims the benefit of U.S. patent application Ser. No. 13/925,566, filed on Jun. 24, 2013 and issued Sep. 8, 2015 as U.S. Pat. No. 9,130,305, entitled “Waterproof Apparatus for Cables and Cable Interfaces”, which claims the priority benefit of U.S. Provisional Application Ser. No. 61/773,636, filed on Mar. 6, 2013, entitled “Plastic Gland for Weatherproof Ethernet Connectivity”. All of the aforementioned disclosures are hereby incorporated by reference herein in their entireties including all references and appendices cited therein.
Number | Name | Date | Kind |
---|---|---|---|
2735993 | Humphrey | Feb 1956 | A |
3182129 | Clark et al. | May 1965 | A |
D227476 | Kennedy | Jun 1973 | S |
4188633 | Frazita | Feb 1980 | A |
4402566 | Powell | Sep 1983 | A |
D273111 | Hirata et al. | Mar 1984 | S |
4543579 | Teshirogi | Sep 1985 | A |
4562416 | Sedivec | Dec 1985 | A |
4626863 | Knop et al. | Dec 1986 | A |
4835538 | McKenna et al. | May 1989 | A |
4866451 | Chen | Sep 1989 | A |
4893288 | Maier et al. | Jan 1990 | A |
4903033 | Tsao et al. | Feb 1990 | A |
4986764 | Eaby | Jan 1991 | A |
5015195 | Piriz | May 1991 | A |
5087920 | Tsurumaru et al. | Feb 1992 | A |
5226837 | Cinibulk | Jul 1993 | A |
5231406 | Sreenivas | Jul 1993 | A |
D346598 | McCay et al. | May 1994 | S |
D355416 | McCay et al. | Feb 1995 | S |
5389941 | Yu | Feb 1995 | A |
5491833 | Hamabe | Feb 1996 | A |
5513380 | Ivanov et al. | Apr 1996 | A |
5539361 | Davidovitz | Jul 1996 | A |
5561434 | Yamazaki | Oct 1996 | A |
D375501 | Lee et al. | Nov 1996 | S |
5580264 | Aoyama | Dec 1996 | A |
5684495 | Dyott et al. | Nov 1997 | A |
D389575 | Grasfield et al. | Jan 1998 | S |
5724666 | Dent | Mar 1998 | A |
5742911 | Dumbrill et al. | Apr 1998 | A |
5746611 | Brown et al. | May 1998 | A |
5764696 | Barnes et al. | Jun 1998 | A |
5797083 | Anderson | Aug 1998 | A |
5831582 | Muhlhauser et al. | Nov 1998 | A |
5966102 | Runyon | Oct 1999 | A |
5995063 | Somoza et al. | Nov 1999 | A |
6014372 | Kent et al. | Jan 2000 | A |
6067053 | Runyon et al. | May 2000 | A |
6137449 | Kildal | Oct 2000 | A |
6140962 | Groenenboom | Oct 2000 | A |
6176739 | Denlinger | Jan 2001 | B1 |
6216266 | Eastman et al. | Apr 2001 | B1 |
6271802 | Clark et al. | Aug 2001 | B1 |
6304762 | Myers et al. | Oct 2001 | B1 |
D455735 | Winslow | Apr 2002 | S |
6421538 | Byrne | Jul 2002 | B1 |
6716063 | Bryant | Apr 2004 | B1 |
6754511 | Halford et al. | Jun 2004 | B1 |
6847653 | Smiroldo | Jan 2005 | B1 |
D501848 | Uehara et al. | Feb 2005 | S |
6853336 | Asano et al. | Feb 2005 | B2 |
6864837 | Runyon et al. | Mar 2005 | B2 |
6877277 | Kussel | Apr 2005 | B2 |
6962445 | Zimmel | Nov 2005 | B2 |
7075492 | Chen et al. | Jul 2006 | B1 |
D533899 | Ohashi et al. | Dec 2006 | S |
7173570 | Wensink et al. | Feb 2007 | B1 |
7187328 | Tanaka et al. | Mar 2007 | B2 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7212162 | Jung et al. | May 2007 | B2 |
7212163 | Huang et al. | May 2007 | B2 |
7245265 | Kienzle et al. | Jul 2007 | B2 |
7253783 | Chiang et al. | Aug 2007 | B2 |
7264494 | Kennedy | Sep 2007 | B2 |
7281856 | Grzegorzewska | Oct 2007 | B2 |
7292198 | Shtrom et al. | Nov 2007 | B2 |
7306485 | Masuzaki | Dec 2007 | B2 |
7316583 | Mistarz | Jan 2008 | B1 |
7324057 | Argaman et al. | Jan 2008 | B2 |
D566698 | Choi et al. | Apr 2008 | S |
7362236 | Hoiness | Apr 2008 | B2 |
7369095 | Hirtzlin et al. | May 2008 | B2 |
7380984 | Wuester | Jun 2008 | B2 |
7431602 | Corona | Oct 2008 | B2 |
7498896 | Shi | Mar 2009 | B2 |
7498996 | Shtrom et al. | Mar 2009 | B2 |
7507105 | Peters et al. | Mar 2009 | B1 |
7522095 | Wasiewicz et al. | Apr 2009 | B1 |
7542717 | Green, Sr. et al. | Jun 2009 | B2 |
7581976 | Liepold | Sep 2009 | B2 |
7586891 | Masciulli | Sep 2009 | B1 |
7616959 | Spenik et al. | Nov 2009 | B2 |
7646343 | Shtrom et al. | Jan 2010 | B2 |
7675473 | Kienzle et al. | Mar 2010 | B2 |
7675474 | Shtrom et al. | Mar 2010 | B2 |
7726997 | Kennedy | Jun 2010 | B2 |
7778226 | Rayzman et al. | Aug 2010 | B2 |
7857523 | Masuzaki | Dec 2010 | B2 |
7929914 | Tegreene | Apr 2011 | B2 |
RE42522 | Zimmel | Jul 2011 | E |
8009646 | Lastinger et al. | Aug 2011 | B2 |
8069465 | Bartholomay et al. | Nov 2011 | B1 |
8111678 | Lastinger et al. | Feb 2012 | B2 |
8254844 | Kuffner et al. | Aug 2012 | B2 |
8270383 | Lastinger et al. | Sep 2012 | B2 |
8275265 | Kobyakov et al. | Sep 2012 | B2 |
8325695 | Lastinger et al. | Dec 2012 | B2 |
D674787 | Tsuda et al. | Jan 2013 | S |
8345651 | Lastinger et al. | Jan 2013 | B2 |
8385305 | Negus et al. | Feb 2013 | B1 |
8425260 | Seefried | Apr 2013 | B2 |
8482478 | Hartenstein | Jul 2013 | B2 |
8515434 | Narendran et al. | Aug 2013 | B1 |
8515495 | Shang et al. | Aug 2013 | B2 |
D694740 | Apostolakis | Dec 2013 | S |
8777660 | Chiarelli | Jul 2014 | B2 |
8792759 | Benton | Jul 2014 | B2 |
8827729 | Gunreben | Sep 2014 | B2 |
8836601 | Sanford et al. | Sep 2014 | B2 |
8848389 | Kawamura et al. | Sep 2014 | B2 |
8870069 | Bellows | Oct 2014 | B2 |
8935122 | Stisser | Jan 2015 | B2 |
9001689 | Hinman et al. | Apr 2015 | B1 |
9019874 | Choudhury et al. | Apr 2015 | B2 |
9077071 | Shtrom et al. | Jul 2015 | B2 |
9107134 | Belser et al. | Aug 2015 | B1 |
9130305 | Ramos et al. | Sep 2015 | B2 |
9161387 | Fink et al. | Oct 2015 | B2 |
9179336 | Fink et al. | Nov 2015 | B2 |
9191081 | Hinman et al. | Nov 2015 | B2 |
D752566 | Hinman et al. | Mar 2016 | S |
9295103 | Fink et al. | Mar 2016 | B2 |
9362629 | Hinman et al. | Jun 2016 | B2 |
9391375 | Bales et al. | Jul 2016 | B1 |
9407012 | Shtrom et al. | Aug 2016 | B2 |
9431702 | Hartenstein | Aug 2016 | B2 |
9504049 | Hinman et al. | Nov 2016 | B2 |
9531114 | Ramos et al. | Dec 2016 | B2 |
9537204 | Cheng et al. | Jan 2017 | B2 |
9577340 | Fakharzadeh et al. | Feb 2017 | B2 |
9693388 | Fink et al. | Jun 2017 | B2 |
9780892 | Hinman et al. | Oct 2017 | B2 |
9843940 | Hinman et al. | Dec 2017 | B2 |
9871302 | Hinman et al. | Jan 2018 | B2 |
9888485 | Hinman et al. | Feb 2018 | B2 |
9930592 | Hinman | Mar 2018 | B2 |
9949147 | Hinman et al. | Apr 2018 | B2 |
9986565 | Fink et al. | May 2018 | B2 |
9998246 | Hinman et al. | Jun 2018 | B2 |
10028154 | Elson | Jul 2018 | B2 |
10090943 | Hinman et al. | Oct 2018 | B2 |
10096933 | Ramos et al. | Oct 2018 | B2 |
10117114 | Hinman et al. | Oct 2018 | B2 |
10186786 | Hinman et al. | Jan 2019 | B2 |
10200925 | Hinman | Feb 2019 | B2 |
10257722 | Hinman et al. | Apr 2019 | B2 |
10425944 | Fink et al. | Sep 2019 | B2 |
10447417 | Hinman et al. | Oct 2019 | B2 |
10511074 | Eberhardt et al. | Dec 2019 | B2 |
10595253 | Hinman | Mar 2020 | B2 |
10616903 | Hinman et al. | Apr 2020 | B2 |
10714805 | Eberhardt et al. | Jul 2020 | B2 |
10742275 | Hinman | Aug 2020 | B2 |
10749263 | Eberhardt et al. | Aug 2020 | B2 |
20010033600 | Yang et al. | Oct 2001 | A1 |
20020102948 | Stanwood et al. | Aug 2002 | A1 |
20020159434 | Gosior et al. | Oct 2002 | A1 |
20030013452 | Hunt et al. | Jan 2003 | A1 |
20030027577 | Brown et al. | Feb 2003 | A1 |
20030169763 | Choi | Sep 2003 | A1 |
20030222831 | Dunlap | Dec 2003 | A1 |
20030224741 | Sugar et al. | Dec 2003 | A1 |
20040002357 | Benveniste | Jan 2004 | A1 |
20040029549 | Fikart | Feb 2004 | A1 |
20040110469 | Judd et al. | Jun 2004 | A1 |
20040120277 | Holur et al. | Jun 2004 | A1 |
20040155819 | Martin et al. | Aug 2004 | A1 |
20040196812 | Barber | Oct 2004 | A1 |
20040196813 | Ofek et al. | Oct 2004 | A1 |
20040240376 | Wang et al. | Dec 2004 | A1 |
20040242274 | Corbett et al. | Dec 2004 | A1 |
20050012665 | Runyon et al. | Jan 2005 | A1 |
20050032479 | Miller et al. | Feb 2005 | A1 |
20050058111 | Hung et al. | Mar 2005 | A1 |
20050124294 | Wentink | Jun 2005 | A1 |
20050143014 | Li et al. | Jun 2005 | A1 |
20050152323 | Bonnassieux et al. | Jul 2005 | A1 |
20050195758 | Chitrapu | Sep 2005 | A1 |
20050227625 | Diener | Oct 2005 | A1 |
20050254442 | Proctor, Jr. et al. | Nov 2005 | A1 |
20050271056 | Kaneko | Dec 2005 | A1 |
20050275527 | Kates | Dec 2005 | A1 |
20060025072 | Pan | Feb 2006 | A1 |
20060072518 | Pan et al. | Apr 2006 | A1 |
20060098592 | Proctor, Jr. et al. | May 2006 | A1 |
20060099940 | Pfleging et al. | May 2006 | A1 |
20060132359 | Chang et al. | Jun 2006 | A1 |
20060132602 | Muto et al. | Jun 2006 | A1 |
20060172578 | Parsons | Aug 2006 | A1 |
20060187952 | Kappes et al. | Aug 2006 | A1 |
20060211430 | Persico | Sep 2006 | A1 |
20060276073 | McMurray | Dec 2006 | A1 |
20070001910 | Yamanaka et al. | Jan 2007 | A1 |
20070019664 | Benveniste | Jan 2007 | A1 |
20070035463 | Hirabayashi | Feb 2007 | A1 |
20070060158 | Medepalli et al. | Mar 2007 | A1 |
20070132643 | Durham et al. | Jun 2007 | A1 |
20070173199 | Sinha | Jul 2007 | A1 |
20070173260 | Love et al. | Jul 2007 | A1 |
20070202809 | Lastinger et al. | Aug 2007 | A1 |
20070210974 | Chiang | Sep 2007 | A1 |
20070223701 | Emeott et al. | Sep 2007 | A1 |
20070238482 | Rayzman et al. | Oct 2007 | A1 |
20070255797 | Dunn et al. | Nov 2007 | A1 |
20070268848 | Khandekar et al. | Nov 2007 | A1 |
20080109051 | Splinter et al. | May 2008 | A1 |
20080112380 | Fischer | May 2008 | A1 |
20080192707 | Xhafa et al. | Aug 2008 | A1 |
20080218418 | Gillette | Sep 2008 | A1 |
20080231541 | Teshirogi et al. | Sep 2008 | A1 |
20080242342 | Rofougaran | Oct 2008 | A1 |
20090046673 | Kaidar | Feb 2009 | A1 |
20090051597 | Wen et al. | Feb 2009 | A1 |
20090052362 | Meier et al. | Feb 2009 | A1 |
20090059794 | Frei | Mar 2009 | A1 |
20090075606 | Shtrom et al. | Mar 2009 | A1 |
20090096699 | Chiu et al. | Apr 2009 | A1 |
20090232026 | Lu | Sep 2009 | A1 |
20090233475 | Mildon et al. | Sep 2009 | A1 |
20090291690 | Guvenc et al. | Nov 2009 | A1 |
20090315792 | Miyashita et al. | Dec 2009 | A1 |
20100029282 | Stamoulis et al. | Feb 2010 | A1 |
20100039340 | Brown | Feb 2010 | A1 |
20100046650 | Jongren et al. | Feb 2010 | A1 |
20100067505 | Fein et al. | Mar 2010 | A1 |
20100085950 | Sekiya | Apr 2010 | A1 |
20100091818 | Sen et al. | Apr 2010 | A1 |
20100103065 | Shtrom et al. | Apr 2010 | A1 |
20100103066 | Shtrom et al. | Apr 2010 | A1 |
20100136978 | Cho et al. | Jun 2010 | A1 |
20100151877 | Lee et al. | Jun 2010 | A1 |
20100167719 | Sun | Jul 2010 | A1 |
20100171665 | Nogami | Jul 2010 | A1 |
20100171675 | Borja et al. | Jul 2010 | A1 |
20100177660 | Essinger et al. | Jul 2010 | A1 |
20100189005 | Bertani et al. | Jul 2010 | A1 |
20100202613 | Ray et al. | Aug 2010 | A1 |
20100210147 | Hauser | Aug 2010 | A1 |
20100216412 | Rofougaran | Aug 2010 | A1 |
20100225529 | Landreth et al. | Sep 2010 | A1 |
20100238083 | Malasani | Sep 2010 | A1 |
20100304680 | Kuffner et al. | Dec 2010 | A1 |
20100311321 | Norin | Dec 2010 | A1 |
20100315307 | Syed et al. | Dec 2010 | A1 |
20100322219 | Fischer et al. | Dec 2010 | A1 |
20110006956 | McCown | Jan 2011 | A1 |
20110028097 | Memik et al. | Feb 2011 | A1 |
20110032159 | Wu et al. | Feb 2011 | A1 |
20110044186 | Jung et al. | Feb 2011 | A1 |
20110090129 | Weily et al. | Apr 2011 | A1 |
20110103309 | Wang et al. | May 2011 | A1 |
20110111715 | Buer et al. | May 2011 | A1 |
20110112717 | Resner | May 2011 | A1 |
20110133996 | Alapuranen | Jun 2011 | A1 |
20110170424 | Safavi | Jul 2011 | A1 |
20110172916 | Pakzad et al. | Jul 2011 | A1 |
20110182260 | Sivakumar et al. | Jul 2011 | A1 |
20110182277 | Shapira | Jul 2011 | A1 |
20110194644 | Liu et al. | Aug 2011 | A1 |
20110206012 | Youn et al. | Aug 2011 | A1 |
20110241969 | Zhang et al. | Oct 2011 | A1 |
20110243291 | McAllister et al. | Oct 2011 | A1 |
20110256874 | Hayama et al. | Oct 2011 | A1 |
20110291914 | Lewry et al. | Dec 2011 | A1 |
20120008542 | Koleszar et al. | Jan 2012 | A1 |
20120040700 | Gomes et al. | Feb 2012 | A1 |
20120057533 | Junell et al. | Mar 2012 | A1 |
20120093091 | Kang et al. | Apr 2012 | A1 |
20120115487 | Josso | May 2012 | A1 |
20120134280 | Rotvold et al. | May 2012 | A1 |
20120140651 | Nicoara et al. | Jun 2012 | A1 |
20120200449 | Bielas | Aug 2012 | A1 |
20120238201 | Du et al. | Sep 2012 | A1 |
20120263145 | Marinier et al. | Oct 2012 | A1 |
20120282868 | Hahn | Nov 2012 | A1 |
20120299789 | Orban et al. | Nov 2012 | A1 |
20120314634 | Sekhar | Dec 2012 | A1 |
20130003645 | Shapira et al. | Jan 2013 | A1 |
20130005350 | Campos et al. | Jan 2013 | A1 |
20130023216 | Moscibroda et al. | Jan 2013 | A1 |
20130044028 | Lea et al. | Feb 2013 | A1 |
20130064161 | Hedayat et al. | Mar 2013 | A1 |
20130082899 | Gomi | Apr 2013 | A1 |
20130095747 | Moshfeghi | Apr 2013 | A1 |
20130128858 | Zou et al. | May 2013 | A1 |
20130176902 | Wentink et al. | Jul 2013 | A1 |
20130182652 | Tong et al. | Jul 2013 | A1 |
20130195081 | Merlin et al. | Aug 2013 | A1 |
20130210457 | Kummetz | Aug 2013 | A1 |
20130223398 | Li et al. | Aug 2013 | A1 |
20130234898 | Leung et al. | Sep 2013 | A1 |
20130271319 | Trerise | Oct 2013 | A1 |
20130286950 | Pu | Oct 2013 | A1 |
20130286959 | Lou et al. | Oct 2013 | A1 |
20130288735 | Guo | Oct 2013 | A1 |
20130301438 | Li et al. | Nov 2013 | A1 |
20130322276 | Pelletier et al. | Dec 2013 | A1 |
20130322413 | Pelletier et al. | Dec 2013 | A1 |
20140024328 | Balbien et al. | Jan 2014 | A1 |
20140051357 | Steer et al. | Feb 2014 | A1 |
20140098748 | Chan et al. | Apr 2014 | A1 |
20140113676 | Hamalainen et al. | Apr 2014 | A1 |
20140145890 | Ramberg et al. | May 2014 | A1 |
20140154895 | Poulsen | Jun 2014 | A1 |
20140185494 | Yang et al. | Jul 2014 | A1 |
20140191918 | Cheng et al. | Jul 2014 | A1 |
20140198867 | Sturkovich et al. | Jul 2014 | A1 |
20140206322 | Dimou et al. | Jul 2014 | A1 |
20140225788 | Schulz et al. | Aug 2014 | A1 |
20140233613 | Fink et al. | Aug 2014 | A1 |
20140235244 | Hinman | Aug 2014 | A1 |
20140253378 | Hinman | Sep 2014 | A1 |
20140253402 | Hinman et al. | Sep 2014 | A1 |
20140254700 | Hinman et al. | Sep 2014 | A1 |
20140256166 | Ramos et al. | Sep 2014 | A1 |
20140320306 | Winter | Oct 2014 | A1 |
20140320377 | Cheng et al. | Oct 2014 | A1 |
20140328238 | Seok et al. | Nov 2014 | A1 |
20140355578 | Fink et al. | Dec 2014 | A1 |
20140355584 | Fink et al. | Dec 2014 | A1 |
20150002335 | Hinman et al. | Jan 2015 | A1 |
20150002354 | Knowles | Jan 2015 | A1 |
20150015435 | Shen et al. | Jan 2015 | A1 |
20150116177 | Powell et al. | Apr 2015 | A1 |
20150156642 | Sobczak et al. | Jun 2015 | A1 |
20150215952 | Hinman et al. | Jul 2015 | A1 |
20150256275 | Hinman et al. | Sep 2015 | A1 |
20150263816 | Hinman et al. | Sep 2015 | A1 |
20150319584 | Fink et al. | Nov 2015 | A1 |
20150321017 | Perryman et al. | Nov 2015 | A1 |
20150325945 | Ramos et al. | Nov 2015 | A1 |
20150327272 | Fink et al. | Nov 2015 | A1 |
20150365866 | Hinman et al. | Dec 2015 | A1 |
20160119018 | Lindgren et al. | Apr 2016 | A1 |
20160149634 | Kalkunte et al. | May 2016 | A1 |
20160149635 | Hinman et al. | May 2016 | A1 |
20160211583 | Lee et al. | Jul 2016 | A1 |
20160240929 | Hinman et al. | Aug 2016 | A1 |
20160338076 | Hinman et al. | Nov 2016 | A1 |
20160365666 | Ramos et al. | Dec 2016 | A1 |
20160366601 | Hinman et al. | Dec 2016 | A1 |
20170048647 | Jung et al. | Feb 2017 | A1 |
20170201028 | Eberhardt et al. | Jul 2017 | A1 |
20170238151 | Fink et al. | Aug 2017 | A1 |
20170294975 | Hinman et al. | Oct 2017 | A1 |
20170353245 | Vardarajan et al. | Dec 2017 | A1 |
20180034166 | Hinman | Feb 2018 | A1 |
20180035317 | Hinman et al. | Feb 2018 | A1 |
20180083365 | Hinman et al. | Mar 2018 | A1 |
20180084563 | Hinman et al. | Mar 2018 | A1 |
20180160353 | Hinman | Jun 2018 | A1 |
20180192305 | Hinman et al. | Jul 2018 | A1 |
20180199345 | Fink et al. | Jul 2018 | A1 |
20180241491 | Hinman et al. | Aug 2018 | A1 |
20190182686 | Hinman et al. | Jun 2019 | A1 |
20190214699 | Eberhardt et al. | Jul 2019 | A1 |
20190215745 | Hinman | Jul 2019 | A1 |
20190273326 | Sanford et al. | Sep 2019 | A1 |
20200015231 | Fink et al. | Jan 2020 | A1 |
20200036465 | Hinman et al. | Jan 2020 | A1 |
20200067164 | Eberhardt et al. | Feb 2020 | A1 |
20200083614 | Sanford et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
104335654 | Feb 2015 | CN |
303453662 | Nov 2015 | CN |
105191204 | Dec 2015 | CN |
105191204 | May 2019 | CN |
002640177 | Feb 2015 | EM |
1384285B1 | Jun 2007 | EP |
3491697 | Jun 2019 | EP |
WO2014137370 | Sep 2014 | WO |
WO2014138292 | Sep 2014 | WO |
WO2014193394 | Dec 2014 | WO |
WO2015112627 | Jul 2015 | WO |
WO2017123558 | Jul 2017 | WO |
WO2018022526 | Feb 2018 | WO |
WO2019136257 | Jul 2019 | WO |
WO2019168800 | Sep 2019 | WO |
Entry |
---|
“International Search Report” and “Written Opinion of the International Search Authority,” dated Nov. 26, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/047406, filed Jun. 24, 2013, 9 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Aug. 9, 2013 in Cooperation Treaty Application No. PCT/US2013/043436, filed May 30, 2013, 13 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Jul. 1, 2014 in Patent Treaty Application No. PCT/US2014/020880, filed Mar. 5, 2014, 14 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Jun. 29, 2015 in Cooperation Treaty Application No. PCT/US2015/012285, filed Jan. 21, 2015, 15 pages. |
Hinman et al., U.S. Appl. No. 61/774,632, filed Mar. 7, 2013, 23 pages. |
Office Action dated Jun. 15, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015, 1 page. |
Notice of Allowance dated Sep. 8, 2015 in Chinese Design Patent Application 201530058063.8, filed Mar. 11, 2015, 3 pages. |
Weisstein, Eric, “Electric Polarization”, Wolfram Reasearch [online], Retrieved from the Internet [retrieved Mar. 23, 2017]<URL:http://scienceworld.wolfram.com/physics/ElectricPolarization.html>, 2007, 1 page. |
Liu, Lingjia et al., “Downlink MIMO in LTE-Advanced: SU-MIMO vs. MU-MIMO,” IEEE Communications Magazine, Feb. 2012, pp. 140-147. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/012884, dated Apr. 6, 2017, 9 pages. |
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Nov. 3, 2017, 5 pages [10 pages including translation]. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/043560, dated Nov. 16, 2017, 11 pages. |
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Jul. 30, 2018, 5 pages [11 pages including translation]. |
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Oct. 31, 2018, 3 pages [6 pages including translation]. |
“Notice of Allowance,” Chinese Patent Application No. 201580000078.6, dated Feb. 11, 2019, 2 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Mar. 22, 2019 in Patent Cooperation Treaty Application No. PCT/US2019/012358, filed Jan. 4, 2019, 9 pages. |
FCC Regulations, 47 CFR § 15.407, 63 FR 40836, Jul. 31, 1998, as amended at 69 FR 2687, Jan. 20, 2004; 69 FR 54036, Sep. 7, 2004; pp. 843-846. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated May 23, 2019 in Patent Cooperation Treaty Application No. PCT/US2019/019462, filed Feb. 25, 2019, 8 pages. |
Teshirogi, Tasuku et al., “Wideband Circularly Polarized Array Antenna with Sequential Rotations and Phase Shift of Elements,” Proceedings of the International Symposium on Antennas and Propagation, 1985, pp. 117-120. |
“Sector Antennas,” Radiowaves.com, [online], [retrieved Oct. 10, 2019], Retrieved from the Internet: <URL:https://www.radiowaves.com/en/products/sector-antennas>, 4 pages. |
KP Performance Antennas Search Results for Antennas, Sector, Single, [online], KPPerformance.com [retrieved Oct. 10, 2019], Retrieved from the Internet: <URL:https://www.kpperformance.com/search?Category=Antennas&Rfpsan99design=Sector&Rfpsan99option=Single&view_type=grid>, 6 pages. |
“Partial Supplemental European Search Report,” European Patent Application No. 17835073.2, dated Feb. 13, 2020, 17 pages. |
“Wireless Access Point,” Wikipedia.org, Jan. 6, 2020 [retrieved on Feb. 3, 2020], Retrieved from the Internet:<https://en.wikipedia.org/wiki/Wireless_access_point>, 5 pages. |
“Extended European Search Report”, European Patent Application No. 17835073.2, dated Jun. 30, 2020, 15 pages. |
Haupt, R.T., “Antenna Arrays: A Computational Approach”, Chapter 5: Non-Planar Arrays; Wiley-IEEE Press (2010), pp. 287-338. |
Number | Date | Country | |
---|---|---|---|
20190006789 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61773636 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15246118 | Aug 2016 | US |
Child | 16107820 | US | |
Parent | 14802829 | Jul 2015 | US |
Child | 15246118 | US | |
Parent | 13925566 | Jun 2013 | US |
Child | 14802829 | US |