The present disclosure is directed to cable or wiring and, more particularly, to a tri-shield coaxial drop cable with a layer of foil bonded to the outer jacket to stop moisture migration.
Conventional coaxial drop cable is installed in outdoor aerial application where one end of the drop cable is attached to a telephone pole while the other end is attached to a customer's building. The cable is exposed to the abrasive effects of rubbing against tress, buildings, and obstructions, and rodent chew that cross the natural path of the cable installation.
The cable that is attached to the telephone pole is typically at a higher elevation than the end of the cable that is at the customer's building. The arrangement allows a natural flow of water to drain down the cable from the higher point to the lower point of the cable, externally and internally. If the jacket has an opening caused by rodent chew, abrasions, or other methods or causes, moisture will enter into the cable and flow or wick down the braid to the lowest point of the installation creating a reservoir of water that enters the connectors/equipment, thereby causing damage to corrosion and/or shorting out the coaxial circuit.
It may be desirable to provide a coaxial cable that prevents moisture that enters the outer jacket from passing through the outer conductive foil layer thereby preventing damage such as corrosion and/or shorting-out a coaxial circuit for the coaxial cable.
A coaxial cable for providing enhanced protection from moisture leaks includes an inner conductor, a dielectric, an inner conductive foil layer, a braided shield layer, and an outer jacket. The inner conductor may be configured to extend along a longitudinal axis. The dielectric may be configured to coaxially surround the center conductor. The inner conductive foil layer may be configured to coaxially surround the dielectric. The braided shield layer may be configured to coaxially surround the inner conductive foil layer. The outer jacket may be configured to coaxially surround the outer conductive foil layer. The outer conductive foil layer may be bonded to the outer jacket. The outer conductive foil layer includes a first longitudinal edge and a mating region that overlap to form a sealed joint in a region (“overlapping region”) where the first longitudinal edge and the mating region overlap each other.
The first longitudinal edge and the mating region are configured to be joined together by a sealant along a length of the first longitudinal edge such that moisture that enters the outer jacket is prevented from passing through the outer conductive foil layer thereby preventing damage such as corrosion and shorting out a coaxial circuit for the coaxial cable. The aforementioned coaxial cable may further include an inner braided shield layer that is adjacent to and encircled by the braided shield layer. The inner conductor may be an elongated center conductor and the dielectric may be an insulator.
In yet another example, a coaxial cable of the present disclosure may alternatively include a braided shield portion, an outer jacket portion, and a sealed outer conductive foil portion. The braided shield portion may be configured to encircle an inner conductive foil portion. The sealed outer conductive foil portion may be bonded to the outer jacket portion and configured to encircle the braided shield portion. The outer jacket portion may be configured to encircle the outer conductive foil portion. The sealed outer conductive foil portion may further include a sealant for joining the first lateral region and the second lateral region of the sealed outer conductive foil to form a sealed joint that prevents external moisture from reaching the braided shield portion thereby preventing damage such as corrosion to the coaxial cable and/or shorting out a coaxial circuit for the coaxial cable. The aforementioned coaxial cable may further include an elongated center conductor, an insulator portion, and an inner braided shield portion wherein the inner braided shield portion may be adjacent to and is encircled by the braided shield portion.
The inner braided foil portion may be an inner conductive foil layer configured to coaxially surround an insulator portion. The insulator portion is configured to surround an inner conductor portion. The inner conductor portion may be an elongated center conductor that extends along a longitudinal axis. The inner braided shield portion may be an inner braided shield layer configured to coaxially surround the inner conductive foil portion. The outer braided shield portion is an outer braided shield layer configured to coaxially surround the inner braided shield portion. The outer conductive foil portion may be an outer conductive foil layer configured to coaxially surround the outer braided shield portion.
A coaxial cable of the present disclosure may alternatively include a braided shield layer, a sealed outer conductive foil layer, and a sealed outer conductive foil portion. The braided shield layer may be configured to encircle an inner conductive foil layer portion. The sealed outer conductive foil portion may be bonded to an outer jacket and configured to encircle the braided shield layer. The sealed outer conductive foil layer may include a sealed joint wherein the sealed outer conductive foil layer to prevent external moisture from reaching the braided shield layer thereby preventing damage such as corrosion and shorting out a coaxial circuit for the coaxial cable. The aforementioned coaxial cable may also include an inner conductive foil layer configured to coaxially surround an insulator. The insulator is configured to surround an inner conductor. The aforementioned coaxial cable may also include an outer jacket that is configured to encircle the outer conductive foil layer.
The inner braided shield portion is an inner braided shield layer configured to coaxially surround the inner conductive foil portion. The outer braided shield portion may be an outer braided shield layer configured to coaxially surround the inner braided shield portion. The outer conductive foil portion may be an outer conductive foil layer configured to coaxially surround the outer braided shield portion. The inner conductor portion comprises an elongated center conductor that extends along a longitudinal axis.
Exemplary embodiments include a coaxial cable for providing enhanced protection from moisture leaks, the coaxial cable including: an inner conductor configured to extend along a longitudinal axis; a dielectric insulator configured to coaxially surround the inner conductor; an inner conductive foil layer configured to coaxially surround the dielectric insulator; an inner braided shield layer configured to coaxially surround the inner conductive foil layer; an outer jacket configured to coaxially surround the outer conductive foil layer; wherein the outer conductive foil layer is bonded to the outer jacket; wherein the outer conductive foil layer includes a first lateral region, a second lateral region and a sealant; and wherein the first lateral region and the second lateral region are configured to overlap each other; wherein the sealant is configured to be disposed between the first lateral region and the second lateral region to form a sealed joint; and wherein the outer conductive foil layer and the sealed joint are configured to prevent moisture that enters the outer jacket from passing the outer conductive foil layer and migrating along the coaxial cable so as to prevent signal loss or damage to a connector that terminates the coaxial cable.
In embodiments, the inner conductor comprises a center conductor.
In embodiments, the inner braided shield comprises an inner braided shield layer.
In embodiments, the coaxial cable further includes an outer braided shield.
In embodiments, the outer conductive foil layer includes an overlapping region wherein the first lateral region and the second lateral region portions overlap each other.
Exemplary embodiments include a coaxial cable providing enhanced protection from moisture leaks, the coaxial cable including: a braided shield portion configured to encircle an inner conductive foil portion; an outer jacket portion; a sealed outer conductive foil portion bonded to the outer jacket and configured to encircle the braided shield portion; wherein the outer jacket portion is configured to encircle the outer conductive foil portion; and wherein the sealed outer conductive foil portion further includes a sealant joining a first lateral region and a second lateral region of the outer conductive foil portion to prevent moisture that enters the outer jacket portion from passing the outer conductive foil portion and migrating along the coaxial cable so as to prevent signal loss or damage to a connector that terminates the coaxial cable.
In embodiments, the inner conductive foil portion comprises an inner conductive foil layer configured to coaxially surround an insulator portion.
In embodiments, the insulator portion is configured to surround an inner conductor portion.
In embodiments, the inner conductor portion comprises a center conductor that extends along a longitudinal axis of the coaxial cable.
In embodiments, the coaxial cable further includes inner braided shield portion configured to coaxially surround the inner conductive foil portion.
In embodiments, the braided shield portion comprises an outer braided shield layer configured to coaxially surround the inner braided shield portion.
In embodiments, the first lateral region and the second lateral region of the outer conductive foil portion are configured to overlap each other in an overlapping region such that the first lateral region and the second lateral region form a sealed joint when the sealant is disposed between the first lateral region and the second lateral region.
Exemplary embodiments include a coaxial cable providing enhanced protection from moisture leaks, the coaxial cable including: a braided shield portion configured to encircle an inner conductive foil portion; a sealed outer conductive foil portion configured to encircle the braided shield portion; and wherein the sealed outer conductive foil portion includes a sealed joint configured to prevent moisture that enters an outer jacket portion from passing the outer conductive foil portion and migrating along the coaxial cable so as to prevent signal loss or damage to a connector that terminates the coaxial cable.
In embodiments, the coaxial cable further comprises the inner conductive foil layer, wherein the inner conductive foil layer is configured to coaxially surround an insulator.
In embodiments, the insulator is configured to surround an inner conductor portion.
In embodiments, the coaxial cable further includes the outer jacket portion, wherein the outer jacket portion is configured to encircle the outer conductive foil portion.
In embodiments, the coaxial cable further includes an inner braided shield layer adjacent to the braided shield layer and encircled by the braided shield layer.
In embodiments, the braided shield layer is configured to coaxially surround the inner conductive foil layer.
In embodiments, the sealed joint of the sealed outer conductive foil portion is configured to include a sealant, a first lateral region of the sealed outer conductive foil portion, and a second lateral region of the sealed outer conductive foil portion wherein the sealant is disposed between the first and second lateral regions of the sealed outer conductive foil portion.
In embodiments, the inner conductor portion comprises a center conductor that extends along a longitudinal axis of the coaxial cable.
Further advantages and features of the present disclosure will become apparent from the following description and the accompanying drawings, to which reference is made.
Reference will now be made in detail to presently preferred embodiments and methods of the present disclosure, which constitute the best modes of practicing the present disclosure presently known to the inventors. However, it is to be understood that the disclosed embodiments are merely exemplary of the present disclosure that may be embodied in various and alternative forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for any aspect of the present disclosure and/or as a representative basis for teaching one skilled in the art to variously employ the present disclosure.
It is also to be understood that this present disclosure is not limited to the specific embodiments and methods described below, as specific components and/or conditions may, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present disclosure and is not intended to be limiting in any way.
A conventional coaxial cable has a center conductor, a dielectric insulator with a single aluminum foil cover, one braided shield layer surrounding the foil covered dielectric insulator, and a plastic insulating jacket covering the braided shield. Additionally, “tri-shield” and “quad-shield” versions of conventional coaxial cable are being increasingly used due to their improved performance.
Referring to
In one distribution method, the data service provider operates a headend facility or headend system 26 coupled to a plurality of optical node facilities or node systems, such as node system 28. The data service provider operates the node systems as well as the headend system 26. The headend system 26 multiplexes the TV channels, producing light beam pulses which travel through optical fiber trunklines. The optical fiber trunklines extend to optical node facilities in local communities, such as node system 28. The node system 28 translates the light pulse signals to RF electrical signals.
In one embodiment, a drop line coaxial cable (coaxial drop cable) or weather-protected or weatherized coaxial cable 110 is connected to the headend facility 26 or node facility 28 of the service provider. In the example shown, the weatherized coaxial cable 110 is routed to a standing structure, such as utility pole 31.
A splitter or entry junction device 33 is mounted to, or hung from, the utility pole 31. In the illustrated example, the entry junction device 33 includes an input data port or input tap for receiving a hardline connector or pin-type connector 3. The entry junction box device 33 also includes a plurality of output data ports within its weatherized housing. It should be appreciated that such a junction device can include any suitable number of input data ports and output data ports.
The end of the weatherized coaxial cable 35 is attached to a hardline connector or pin-type connector 3, which has a protruding pin insertable into a female interface data port of the junction device 33. The ends of the weatherized coaxial cables 37 and 39 are each attached to one of the connectors 2 described below. In this way, the connectors 2 and 3 electrically couple the cables 35, 37 and 39 to the junction device 33.
In one embodiment, the pin-type connector 3 has a male shape which is insertable into the applicable female input tap or female input data port of the junction device 33. The two female output ports of the junction device 33 are female-shaped in that they define a central hole configured to receive, and connect to, the inner conductors of the connectors 2.
In one embodiment, each input tap or input data port of the entry junction device 33 has an internally threaded wall configured to be threadably engaged with one of the pin-type connectors 3. The network 5 is operable to distribute signals through the weatherized coaxial cable 35 to the junction device 33, and then through the pin-type connector 3. The junction device 33 splits the signals to the pin-type connectors 2, weatherized by an entry box enclosure, to transmit the signals through the cables 37 and 39, down to the distribution box 32 described below.
In another distribution method, the data service provider operates a series of satellites. The service provider installs an outdoor antenna or satellite dish at the environment 6. The data service provider connects a coaxial cable to the satellite dish. The coaxial cable distributes the RF signals or channels of data into the environment 6.
In one embodiment, the multichannel data network 5 includes a telecommunications, cable/satellite TV (“CATV”) network operable to process and distribute different RF signals or channels of signals for a variety of services, including, but not limited to, TV, Internet and voice communication by phone. For TV service, each unique radio frequency or channel is associated with a different TV channel. The set-top unit 22 converts the radio frequencies to a digital format for delivery to the TV. Through the data network 5, the service provider can distribute a variety of types of data, including, but not limited to, TV programs including on-demand videos, Internet service including wireless or WiFi Internet service, voice data distributed through digital phone service or Voice Over Internet Protocol (VoIP) phone service, Internet Protocol TV (“IPTV”) data streams, multimedia content, audio data, music, radio and other types of data.
In one embodiment, the multichannel data network 5 is operatively coupled to a multimedia home entertainment network serving the environment 6. In one example, such multimedia home entertainment network is the Multimedia over Coax Alliance (“MoCA”) network. The MoCA network increases the freedom of access to the data network 5 at various rooms and locations within the environment 6. The MoCA network, in one embodiment, operates on cables 110 within the environment 6 at frequencies in the range 1125 MHz to 1675 MHz. MoCA compatible devices can form a private network inside the environment 6.
In one embodiment, the MoCA network includes a plurality of network-connected devices, including, but not limited to: (a) passive devices, such as the PoE filter 8, internal filters, diplexers, traps, line conditioners and signal splitters; and (b) active devices, such as amplifiers. The PoE filter 8 provides security against the unauthorized leakage of a user's signal or network service to an unauthorized party or non-serviced environment. Other devices, such as line conditioners, are operable to adjust the incoming signals for better quality of service. For example, if the signal levels sent to the set-top box 22 do not meet designated flatness requirements, a line conditioner can adjust the signal level to meet such requirement.
In one embodiment, the modem 16 includes a monitoring module. The monitoring module continuously or periodically monitors the signals within the MoCA network. Based on this monitoring, the modem 16 can report data or information back to the headend system 26. Depending upon the embodiment, the reported information can relate to network problems, device problems, service usage or other events.
At different points in the network 5, cables 110 can be located indoors, outdoors, underground, within conduits, above ground mounted to poles, on the sides of buildings and within enclosures of various types and configurations. Cables 110 can also be mounted to, or installed within, mobile environments, such as land, air and sea vehicles.
As described above, the data service provider uses coaxial cables 110 (
In one embodiment, each of the female interface ports 14 includes a stud or jack, such as the cylindrical stud 34 illustrated in
In some embodiments, stud 34 is shaped and sized to be compatible with the F-type coaxial connection standard. It should be understood that, depending upon the embodiment, stud 34 could have a smooth outer surface. The stud 34 can be operatively coupled to, or incorporated into, a device 40 which can include, for example, a cable splitter of a distribution box 32, outdoor cable junction box 10 or service panel 12; a set-top unit 22; a TV 24; a wall plate; a modem 16; a router 18; or the junction device 33.
During installation, the installer couples a cable 110 to an interface port 14 by screwing or pushing the connector 2 onto the female interface port 34. Once installed, the connector 2 receives the female interface port 34. The connector 2 establishes an electrical connection between the cable 110 and the electrical contact of the female interface port 34. The connector 2, shown in
Referring to
Depending upon the embodiment, the components of the cable 110 can be constructed of various materials which have some degree of elasticity or flexibility. The elasticity enables the cable 110 to flex or bend in accordance with broadband communications standards, installation methods or installation equipment. Also, the radial thicknesses of the cable 110, outer jacket 122, outer conductive foil layer 120, braided shield layer 118, inner foil layer 116 can vary based upon parameters corresponding to broadband communication standards or installation equipment.
With reference to
According to the disclosure, the aforementioned connectors 2 may be configured as coaxial cable connector 2. When the connector 2 is installed on an interface port 14 (see
Referring back to
The center conductor 102 may be a 18AWG Copper Conductor. The dielectric insulator 14 may be a PVC Dielectric. As shown in
The outer jacket 122 coaxially surrounds the outer conductive foil layer 120 that has been sealed using the sealant 136 as further described herein. The outer jacket 122 generally includes a protective characteristic, guarding the cable's internal components from damage. The outer jacket 122 may also has an electrical insulation characteristic. The outer jacket 122 may constructed of a suitable, flexible material such as polyvinyl chloride (PVC) or rubber. The outer jacket 122 may optionally have a lead-free formulation including black-colored PVC and a sunlight resistant additive or sunlight resistant chemical structure. However, the outer jacket 122 may be scratched or punctured due to environmental debris, animals, or other external forces thereby creating an undesirable opening (not shown) in the outer jacket 122. As a result of such an undesirable opening at the outer jacket 122, external moisture from the environment may pass through the opening created in the outer jacket 122.
Known coaxial cables of the prior art are configured such that the external moisture could cause undesirable corrosion to the internal components of the coaxial cable 110, such as the center conductor 112, the dielectric insulator 114, the inner conductive foil layer 116, the braided shield layer 118. However, the coaxial cable of the present disclosure provides a sealed outer conductive foil layer 120 as described herein.
As previously noted, the outer conductive foil layer 120 may be bonded to the outer jacket 122 wherein the outer conductive foil layer 120 coaxially surrounds the braided shield layer 118. In order to prevent external moisture from passing the outer conductive foil layer 120 (towards the braided shield layer 118, inner conductive foil layer 116, the dielectric insulator 114 and the center conductor 112), the outer conductive foil layer 120 may be sealed using a sealant 136 that is provided along the length of first lateral region 128 as shown in
With respect to the present disclosure, it is understood that a coaxial cable according to the present disclosure may further include an inner braided shield layer 117 may be disposed adjacent to the braided shield layer 118 wherein the braided shield layer surrounds the inner braided shield layer 117. (See
While the outer conductive foil layer 120 may be bonded to the outer jacket as shown in
Absent the sealant 136 and the sealed joint 129 in the outer conductive foil layer 120 (shown in
The foregoing arrangement, therefore, prevents moisture from the external environment from seeping through the outer conductive foil layer 120 and into contact with the braided layer 118, inner foil layer 116, dielectric insulator 114, and/or center conductor 112. It is understood that the sealant 136 may be formed from a polymeric material or the like, and is configured to adhere the first lateral region 128 of the outer conductive foil layer 120 to the second lateral region 130 of the outer conductive foil layer 120 thereby forming the sealed joint 129 so as to block any moisture from seeping past the outer conductive foil layer 120 towards the braided layer 118, inner foil layer 116, dielectric insulator 114 and/or center conductor 112.
Referring now to
As shown in
As shown in
Referring now to
It should be appreciated that, the present disclosure is directed to any type of coaxial cable, such as but not limited to a tri-shield coaxial cable 110 and/or a quad-shield coaxial cable 110 (See
In the various embodiments of the present disclosure, it is understood that the inner conductor 112 or center conductor 112 is operable to carry data signals to and from a data network. Depending upon the embodiment, the inner conductor 112 can be a strand, a solid wire, or a hollow, tubular wire. As previously noted, the inner conductor 112 may be a conductive material suitable for data transmission, such as a metal or alloy including copper, including, but not limited, to copper-clad aluminum (“CCA”), copper-clad steel (“CCS”) or silver-coated copper-clad steel (“SCCCS”).
Also, in the various embodiments of the present disclosure, the elongated dielectric insulator 114, may have a tubular shape. The elongated dielectric insulator 114 may be radially flexible, and the elongated dielectric insulator 114 may also be axially flexible along the longitudinal axis 200 (see
Also, in the various embodiments of the present disclosure, the braided layer 118 and/or the inner braided layer 117 (117 shown in
With respect to the present disclosure, it is also understood that the inner and outer conductive foil layers 116, 120 may be tubular conductors that provide additional shielding of the magnetic fields. The inner and outer conductive foil layers 116, 120 may be a flexible foil tape or laminate. The inner conductive foil layer 116 may be flexible foil tape or laminate adhered to the elongated dielectric insulator 114, thus assuming the tubular shape of the insulator 204. As noted, the outer conductive foil layer 120 of the present disclosure contemplates that the foil layer 120 may optionally be bonded to the inner surface 123 of the outer jacket 122. The outer conductive foil layer 120 may include a flexible foil tape or laminate adhered to the inner surface 123 of the outer jacket 122, thus assuming the tubular shape of the outer jacket 122.
With respect to the present disclosure, the combination of the inner and outer conductive foil layers 116, 120 and the braided layer 118 (and the optional inner braided layer 117 in
Also, with respect to the various embodiments of the present disclosure, the components of the cable 110 can be constructed of various materials which have some degree of elasticity or flexibility. The elasticity enables the cable 110 to flex or bend in accordance with broadband communications standards, installation methods or installation equipment. Also, the radial thicknesses of the cable 110, the inner conductor 112, the insulator 114, the inner and outer conductive foil layers 116, 120, the braided layer 118, and the jacket 122 can vary based upon parameters corresponding to broadband communication standards or installation equipment.
Additional embodiments include any one of the embodiments described above, where one or more of its components, functionalities or structures is interchanged with, replaced by or augmented by one or more of the components, functionalities or structures of a different embodiment described above.
It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Although several embodiments of the disclosure have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the disclosure will come to mind to which the disclosure pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the disclosure is not limited to the specific embodiments disclosed herein above, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the present disclosure, nor the claims which follow.
This application claims the benefit of U.S. Provisional Application No. 63/234,769, filed Aug. 19, 2021, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3394400 | Lamons | Jul 1968 | A |
3643007 | Roberts | Feb 1972 | A |
3662090 | Grey | May 1972 | A |
4117260 | Wilkenloh | Sep 1978 | A |
4376920 | Smith | Mar 1983 | A |
4477693 | Krabec | Oct 1984 | A |
4595431 | Bohannon, Jr. | Jun 1986 | A |
4701575 | Gupta | Oct 1987 | A |
6246006 | Hardin | Jun 2001 | B1 |
6384337 | Drum | May 2002 | B1 |
10332654 | Lawrence | Jun 2019 | B2 |
10573980 | Mathews | Feb 2020 | B2 |
20150348678 | Montena | Dec 2015 | A1 |
20180025811 | Lawrence | Jan 2018 | A1 |
20210142930 | Lawrence | May 2021 | A1 |
Number | Date | Country |
---|---|---|
209525954 | Oct 2019 | CN |
WO 2019028087 | Feb 2019 | WO |
Entry |
---|
International Search Report and Written Opinion dated Nov. 10, 2022 in corresponding International Application No. PCT/US2022/040945, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20230057567 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63234769 | Aug 2021 | US |