1. Field of the Invention
The invention relates to an electrical connector and, more particularly, to a sealed set screw electrical connector.
2. Brief Description of Prior Developments
U.S. Pat. Nos. 6,764,354 B2 and 7,090,532 B1 disclose waterproof set screw electrical connectors. Existing set screw electrical connectors which are sealed, such as for underground use, suffer from two problems. First, during installation it is possible for the last seal being installed to pressurize the connector body such that the last seal or some other seal will not stay engaged in the connector body. Second, when the connector heats up, gases inside the sealed connector body expand forcing sealing caps and/or conductor seals to be forced out of the connector body. This allows water to leak into the connector. There is a desire to provided a sealed electrical connector which overcomes this problem.
In accordance with one aspect of the invention, an electrical connector is provided including a connector body having a plurality of conductor receiving areas; a plurality of set screws connected to the connector body for clamping conductors against the connector body in the conductor receiving areas; a seal casing on the connector body; and a valve on the connector body and in communication with at least one of the conductor receiving areas. The valve is configured to allow gas from inside the at least one conductor receiving area to vent out of the electrical connector.
In accordance with another aspect of the invention, an electrical connector is provided comprising a connector body comprised of electrically conductive material, a plurality of set screws, a seal casing on the connector body, a valve, and a plurality of caps. The connector body comprises a plurality of conductor receiving areas and at least one gas conduit connecting at least two of the conductor receiving areas to each other. The set screws are connected to the connector body for clamping conductors against the connector body in the conductor receiving areas. The valve is on the connector body and in communication with at least one of the conductor receiving areas. The valve is configured to allow gas from inside the at least one conductor receiving area to vent out of the electrical connector. The caps are configured to be inserted into set screw holes in the seal casing. The caps each comprise a valve configured to allow gas from inside the seal casing to vent out of the electrical connector.
In accordance with another aspect of the invention, a method of manufacturing an electrical connector is provided comprising providing a connector body comprised of electrically conductive material, wherein the connector body comprises a plurality of conductor receiving areas and at least one gas conduit connecting at least two of the conductor receiving areas to each other; connecting set screws to the connector body, wherein the set screws are configured to clamp conductors against the connector body in the conductor receiving areas; connecting a seal casing on the connector body; and connecting a gas vent to the connector body, wherein the gas vent is configured to vent gases from inside the connector body to outside the electrical connector.
The foregoing aspects and other features of the invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
Referring to
The connector 10 is shown in
Referring also to
The seal casing 22 is comprised of a plastic or polymer material. The seal casing 22 surrounds the outside of the connector body 18. The seal casing 22 includes conductor entrances 38 aligned at each of the conductor entrances to the conductor receiving areas 24, set screw entrances 40 aligned at each of the set screw holes 28, and a vent hole 42 aligned with the conduit 34. The connector 10 also includes sealing members 26. As seen in
The connector 10 also includes seal caps 44. The seal caps 44 are connected to the set screw entrances 40 of the seal casing 22 after the set screws 20 securely clamp the conductors 12. The seal caps 44 prevent water from entering the connector 10 through the entrances 40. In this embodiment, the caps 44 comprise check valves 46. In particular, the caps 44 are made of elastomeric material and the cap check valves comprise duck bill valves. However, in alternate embodiments, any suitable check valve could be provided. In one type of alternate embodiment, the caps might not comprise check valves, such as if a gas path is provided from the areas 48 to the conductor receiving areas 24 or the conduit 34. The cap check valves 46 allow gas to exit the connector from area 48, but prevent water from entering the connector 10 through the set screw entrances 40.
Referring also to
The present invention can provide an underground or sealed electrical connector with a vent or check valve feature that will allow expanding gases, such as which are generated when the connector 10 becomes heated, to escape but nonetheless prevent water from entering into the sealed connector.
It should be understood that the foregoing description is only illustrative of the invention.
Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. For example, features recited in the various dependent claims could be combined with each other in any suitable combination(s). Accordingly, the invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.