The present invention relates to a flashlight or illumination device and in particular to such a device which is of a waterproof construction and thus of applicability for use by scuba divers and the like.
The use of flashlights and related illumination equipment to provide underwater lighting is well known. With the inclusion of a portable power supply, such as a battery pack, a diver is able to carry with him a safe, stable illumination source to provide visibility in the dark and murky depths. Conventional underwater lighting has long utilized incandescent bulbs as a light source. Such bulbs can be driven directly by a battery pack and thus provide minimal difficulties in being installed in a watertight housing.
Incandescent bulbs, however, have shortcomings. The light normally generated is of a yellow, rather than white, character, and is often of relatively poor intensity. In addition, such bulbs are inefficient light generators. To combat such deficiencies, miniature high-intensity discharge (HID) bulbs are replacing incandescent bulbs for use in underwater flashlights. The use of such HID devices, however, is not without its own shortcomings. In particular, while such bulbs have improved light output and energy efficiency, they require a ballast and drive circuitry to properly condition and regulate the voltage source.
Many HID underwater lights are of a two-piece construction, having the lamp and drive circuitry in a first, hand-held housing, and a battery power supply in a second housing. Electrical connections between the two housings and the enclosed components are through a cable. While such two-piece construction allows the lamp heads to be of relatively small dimensions, the presence of a connecting cable can be an impediment to use. In addition, the diver must still tether the battery pack in some manner.
It is accordingly a purpose of the present invention to provide a new and improved waterproof flashlight construction utilizing HID lighting in which the light source and power supply are in a single unit.
It is a further purpose of the present invention to provide such a flashlight which is of a compact construction.
Yet a further purpose of the present invention is to provide such a portable flashlight having the capability of convenient battery exchange and replacement.
In accordance with the foregoing and other objects and purposes, an underwater flashlight of the present invention comprises a main housing portion having an inner compartment or cavity. An illumination source located at a first end of the cavity with a clear lens forming a waterproof first end seal thereat, while the drive cavity and a replaceable battery power supply are located behind the illumination source. The rear end of the cavity is sealed by a removable rear cap which provides access to the batteries and contains a main electrical switch for the flashlight. When the cover is in place, the switch is electrically connected to the batteries and drive circuitry.
To maintain the waterproof nature of the flashlight, the switch is preferably of the type in which external mechanical switching action is transferred in a non-contact manner to the switch's electrical contacts. In a particularly preferred embodiment the switch comprises a magnet, an electrical reed switch, and an electronic switch element capable of carrying the relatively high currents required by the drive circuitry while keeping the current flow through the reed switch, which is a low current capacity device, to acceptable levels.
To provide a compact construction for the flashlight, the battery power supply may comprise a plurality of individual batteries arranged in co-linear adjacent stacks within the body cavity. Continuity between the battery stacks is accomplished through a commutator assembly, which allows electrical contact to be developed and maintained between switch circuitry and the batteries irrespective of the precise orientation of the rear cap with respect to the main body. Transversely-mounted circuit boards both carry electrical components and provide interconnections between the components and the batteries.
A fuller understanding of the present invention will be obtained upon review of the following, detailed description of a preferred but nonetheless illustrative embodiment thereof, when reviewed in conjunction with a the annexed drawings, wherein:
With initial reference to
Rear cap 36, which may similarly be of anodized aluminum, includes externally-threaded, generally cylindrical side wall 46 which threadedly engages a complimentary threaded inner surface portion 48 of the housing 12 which defines the rear cavity 34. A pair of O-rings 50 mounted on the cap side wall 46 establish a watertight seal between the rear cap and the housing. The rear cap 36 carries the main power switch for the flashlight while maintaining a watertight seal for the housing interior cavity. As shown, rotatable main switch 52, which includes rearwardly-extending operating knob 54, is rotatively mounted on the exterior of the rear cap about central hub 56. The switch is rotatable about an arc of approximately 50 degrees, as shown in
With reference to
Electrical power for the ballast and bulb is derived from batteries 20a-f. Three stacks of two cells each are wired in a series arrangement. The batteries are preferably 2.5-volt rechargeable nickel-cadmium cell units, providing a total nominal output voltage of 15 volts. Voltage regulator 68 is used to provide a stable input voltage to the ballast and bulb. The voltage regulator may be, for example, a 14.5 volt output unit. Input and output side capacitors 70 and 72, respectively and bias resistors 74 and 76 are chosen as known in the art. Thermal cut-out switch 78, in series with the positive voltage input to the regulator, is provided to cut power in the event of overheating. It may, for example, be of bimetallic design having a cut-out temperature of approximately 40° C., thereby assuring that the body of the light remains safe to touch. In this regard, it is to be noted that the exterior surface 80 of the forward end of housing 12 may be of a ribbed or fin-like configuration to provide increased surface area and thus improve heat transfer and dissipation to the surrounding atmosphere. The voltage regulator 68 and the associated components are mounted upon drive electronics board 18.
The three stacks of the batteries 20 are positioned between drive electronics board 18 and rear contact board 82. Electrical continuity between the negative or ground end of the full battery stack and the drive circuitry is established by line 86, while continuity between the positive end and the drive circuitry is established through the flashlight housing. Bolt 44 provides the link to the housing from main board 18, while a spring-loaded contact 88, inserted into a mating bore in the body and contacting a corresponding circuit trace on rear board 82, couples the high end of the batteries to the body. The contact 88 is retained in the bore by bolt 90 overlying a peripheral flange of the contact.
As magnetic reed switch 62 must of necessity be of small physical size, its contacts are unable to withstand the total current drawn by the regulator 68 and supplied to the ballast and bulb. Accordingly, the present invention includes a semiconductor switch or relay that operates in conjunction with the reed switch to perform main switching of the batteries and control in the load current. As may be seen in
Because reed switch 62, transistor 92 and pull-down resistor 94 are mounted to the transverse wall portion 66 of the rear cap, and the rear cap is threadedly mounted to the housing, it is necessary to provide means to establish and maintain electrical contact between the switch circuitry and the battery stacks, irrespective of the final radial orientation of the rear cap with respect to the body when the rear cap is installed. This is performed by the commutator assembly detailed in
With reference to
To afford convenient access to the batteries 20 when the rear cap is removed, contact board 82 is not permanently mounted to the main body. Rather, it is provided with a central orientation bore 106 and peripheral orientation bores 108, as seen in
With the batteries installed and contact board 82 placed on the guide pins 110, rear cap 36 is screwed into the housing, the O-rings 50 maintaining a waterproof seal between the body and cap. The precise angular orientation of the cap with respect to the housing is not critical, as the contacts 100 create electrical continuity between the switch circuitry in the cap and the contact board and batteries, irrespective of their relative orientations. With the rear cap in place, operation of the flashlight is controlled by the angular position of switch piece 52.
The rotating action of the switch piece 52 allows the flashlight to be operated, even if a diver is encumbered with diving gloves. Yet, as HID lamps are capable of generating a fair amount of heat, it is important that safeguards be provided to prevent inadvertent activation of the light, such as when it is packed away for storage. Thus, in addition to the use of thermal overload switch 78, the flashlight may include a mechanical locking mechanism to maintain the power switch in the “off” orientation as desired. With reference to
Modifications and adaptations of the invention as specifically described herein will be apparent to those skilled in the art. Accordingly, the scope of the present invention is to be determined upon reference to the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
1875956 | Thiel | Sep 1932 | A |
2444107 | Montgomery | Jun 1948 | A |
3162376 | Syoichi | Dec 1964 | A |
3535506 | Moore et al. | Oct 1970 | A |
3790912 | Murphy | Feb 1974 | A |
3794825 | Krupansky | Feb 1974 | A |
4152755 | Trosper et al. | May 1979 | A |
4171534 | Strowe | Oct 1979 | A |
4458299 | Stephens et al. | Jul 1984 | A |
4678450 | Scolari et al. | Jul 1987 | A |
5806964 | Maglica | Sep 1998 | A |
6239555 | Rachwal | May 2001 | B1 |
6388390 | Rachwal | May 2002 | B2 |
6547414 | Steger | Apr 2003 | B2 |
6802621 | Adeler | Oct 2004 | B2 |
6841941 | Kim et al. | Jan 2005 | B2 |
7101057 | Parker et al. | Sep 2006 | B2 |
Number | Date | Country |
---|---|---|
2161024 | Jan 1986 | GB |