The present invention relates to a waterproof structure for a connector.
In the related art, a waterproof connector which connects wires is mounted in an automobile and the like. For example, a connector is known which includes a female connector, which has a cylindrical inner housing in which a cavity capable of accommodating a female terminal is formed and a cylindrical outer housing which surrounds the inner housing, and a male connector, which has a cylindrical male housing in which a cavity capable of accommodating a male terminal is formed. The connector is formed by fitting both the female and the male connectors.
In such a kind of connector, an annular rubber packing is mounted in an outer circumferential surface of the inner housing of the female connector. When the both connectors are fitted with each other, the male housing is inserted into a gap between the inner housing and the outer housing of the female connector, and the packing is brought into close contact with each of the outer circumferential surface of the inner housing and the inner circumferential surface of the male housing. Thus, it is prevented that water is infiltrated into the gap between the cavities.
However, such a kind of waterproof structure has a problem that the outer diameter dimension of the connector is enlarged since a space for mounting the packing is necessary inside the female connector. With regard to this, for example, as a waterproof structure which does not use a packing, a structure is known in which a resin seal plate having an elasticity is provided in an inner surface of the depth side of a female housing, and a cylinder tip of a male housing in a fitting direction abuts on the seal plate of the female housing over the entire circumference which has an annular shape when both connectors are fitted, thereby preventing the infiltration of water (for example, see Patent Literature 1).
[Patent Literature 1]: JP-A-2013-229168
However, in the waterproof structure of Patent Literature 1, when the male housing abuts on the seal plate, an excessive load may occur at least in one of both housings. For example, in a case where a predetermined dimension difference or more occurs in one housing, or in a case where a foreign matter or the like adheres to the gap between the male housing and the seal plate, there is a concern that the male housing is plastically deformed over an elastic limit when the male housing is pushed to the seal plate, whereby a waterproof performance is deteriorated.
The invention has been made in view of the above-described problem and an object thereof is to provide a waterproof structure for a connector which achieves improvement for a waterproof performance at the time of fitting housings and enables the connector to be miniaturized.
In order to achieve the above-described object, a waterproof structure for a connector according to the invention is characterized by following (1) to (7).
(1)
A waterproof structure for a connector which prevents that water is infiltrated into openings of terminal accommodating cavities which are respectively formed in a pair of housings fitted to each other, in which
the pair of housings include annular members protruding in a fitting direction to surround the opening, the annular member of one housing being inserted into an annulus of the annular member of the other housing at a time of fitting, and
the at least one annular member includes a protrusion part which is an annular protrusion part protruding toward the other annular member and has a top part which is pressed by a surface of the other annular member at the time of fitting.
(2)
The waterproof structure for a connector according to the above-described (1), in which
the protrusion part is formed such that a sectional shape of the top part in a cross section orthogonal to a circumferential direction of the annular member is an arc shape.
(3)
The waterproof structure for a connector according to the above-described (1) or (2), in which
the protrusion part includes a tilted surface which is tilted from the top part toward a protruding end of the annular member.
(4)
The waterproof structure for a connector according to any one of the above-described (1) to (3), in which
an inner circumferential surface of one annular member is formed with an annular first protrusion part which protrudes to contact an outer circumferential surface of the other annular member,
the outer circumferential surface of the other annular member is formed with an annular second protrusion part which protrudes to contact the inner circumferential surface of the one annular member, and
the first protrusion part and the second protrusion part are arranged to be deviated from each other at the time of fitting.
(5)
The waterproof structure for a connector according to the above-described (4), in which
any one of the first protrusion part and the second protrusion part has a shape which regulates movement of the other in a fitting release direction at the time of fitting.
(6)
The waterproof structure for a connector according to the above-described (4) or (5), in which
any one of the first protrusion part and the second protrusion part has a sectional shape which has a plurality of crest parts in a cross section orthogonal to a circumferential direction thereof, and
the other of the first protrusion part and the second protrusion part is positioned in a valley part between the adjacent crest parts at the time of fitting.
(7)
The waterproof structure for a connector according to any one of the above-described (4) to (6), in which
any one of the first protrusion part and the second protrusion part is formed in a connecting end of the annular member with a main body of the housing, and
the other of the first protrusion part and the second protrusion part presses the surface of the annular member between the connecting end and the protruding end of the annular member.
According to the waterproof structure for a connector configured as the above-described (1), in a case where the pair of housings are fitted, the annular members formed respectively in the housings are overlapped with each other with the protrusion part interposed therebetween, and the any one annular member is pressed by the other annular member. When the pair of annular members are pushed to each other under a limit of an elastic deformation, a plastic deformation does not occur in the annular members. Accordingly, it is possible to prevent that water is infiltrated into the opening, and to improve the waterproof property of the connector. In addition, since the annular members directly contact each other, a space for providing the rubber packing is not necessary in the connector, and thus it is possible to miniaturize the connector.
Incidentally, when one annular member is inserted into the annulus of the other annular member, or the insertion is performed in a state where the inner circumferential surface and the outer circumferential surface of the pair of annular members directly contact each other, a large frictional force may occur between the inner circumferential surface and the outer circumferential surface, and a force (insertion load) necessary for the insertion becomes large. In the invention, the annular protrusion part is formed in the annular member, and thus an area where the annular members contact each other is limited to the top part of the protrusion part. Accordingly, it is possible to reduce the insertion load, and to improve the assembly operability of the connector.
According to the waterproof structure for a connector configured as the above-described (2), the contact area of the annular members can be small, and thus the insertion load can be small further.
According to the waterproof structure for a connector configured as the above-described (3), when the pair of housings are fitted, one annular member is placed on the protrusion part along the tilted surface of the protrusion part of the other annular member, and thus it is possible to reliably prevent the plastic deformation or the breakage caused by the contact between the annular members.
According to the waterproof structure for a connector configured as the above-described (4), the first protrusion part and the second protrusion part are formed in the inner circumferential surface of one annular member and the outer circumferential surface of the other annular member, and the waterproof structure can be formed in the gap between the annular members. In addition, the first protrusion part and the second protrusion part are provided to be deviated in position from each other, and thus it is possible to lengthen the depth length of the waterproof structure. Accordingly, it is possible to prevent that water is infiltrated into the openings through the gap between the annular members.
In the first protrusion part and the second protrusion part, preferably, at least one is set to have such a height that pushes the inner circumferential surface or the outer circumferential surface of the other annular member. With such a setting, for example, one annular member pushed to the other annular member to be deformed elastically, and presses the other annular member by the restoring force of the elastic deformation at that time. If the annular members are pushed to each other under an elastic limit, the plastic deformation does not occur in the annular members. Accordingly, it is possible to prevent that water is infiltrated between the annular members, and to improve the waterproof performance of the connector.
According to the waterproof structure for a connector configured as the above-described (5), a state where the annular members are overlapped with each other can be maintained, and unintended release of fitting can be prevented. Thus, it is possible to improve and maintain the waterproof property between the annular members.
According to the waterproof structure for a connector configured as the above-described (6), the first protrusion part can be engaged with the second protrusion part. Thus, for example, even in a case where the connector vibrates, the pair of annular members are expanded and contracted integrally, so that it is possible to prevent the deterioration of the waterproof property between the annular members.
According to the waterproof structure for a connector configured as the above-described (7), when the annular members are overlapped with each other, it is prevented that the other annular member gets over one annular member. Thus, it is possible to reduce the fitting load (insertion load) at the time of fitting the pair of housings.
In the invention, the waterproof structure for a connector can be provided which achieves improvement of the waterproof performance at the time of fitting the housings to each other, and enables the connector to be miniaturized.
Hereinafter, a first embodiment of a waterproof structure for a connector to which the invention is applied will be described with reference to
As illustrated in
The male connector 13 includes the male housing 17 which is formed of an insulating synthetic resin in a cylindrical shape, and the male terminal 21 accommodated from a rear side by the male housing 17. As illustrated in
As illustrated in
The male terminal accommodating chamber 29 accommodates two male terminals 21 partitioned by a partition wall (not illustrated), and holds the male terminals 21 in a setting position by engaging a lance (not illustrated) extending in the male terminal accommodating chamber 29 in each of the male terminals 21. As illustrated in
As illustrated in
In the lock arm 53, the front end part of the arm part 61 is replaceable upward from a horizontal direction with the base end part 59 as a fulcrum. As illustrated in FIG. 6, a locking part 63 which protrudes downward is provided in the lower portion of the front end of the arm part 61. As illustrated in
As illustrated in
On the other hand, as illustrated in
As illustrated in
As illustrated in
As illustrated in
Next, the description will be given about a specific configuration of this embodiment. In this embodiment, the female-side annular member 81 is fitted into the male-side annular member 51 at the time of fitting the male housing 17 and the female housing 19.
The male-side annular member 51 is a resin member which extends in a cylindrical shape from the circumferential edge of the opening 47 of the base part 31 of the male housing 17, and has a higher elasticity than the female-side annular member 81. The male-side annular member 51 is formed in an elliptical cylindrical shape in which a cross section orthogonal to the axial direction of the male housing 17 has a longitudinal side in the width direction, has an inner circumferential surface 95 and an outer circumferential surface 97 which extend in parallel to the axis of the male housing 17, and has a uniform thickness in the axial direction. A tilted surface 99 which is tilted in a separating direction from the facing female-side annular member 81 to be widened forward is formed in the tip inner circumferential surface of the male-side annular member 51. The tilted surface 99 guides the female-side annular member 81 to the inside of the male-side annular member 51.
The female-side annular member 81 is a resin member which extends in a cylindrical shape from the circumferential edge of the opening 77 of the base part 71 of the female housing 19, and has a higher rigidity than the male-side annular member 51. The female-side annular member 81 has an inner circumferential surface 101 and an outer circumferential surface 103 which extend in parallel to the axis of the female housing 19, and an annular protrusion part 105 which protrudes over the entire circumference on the way from the front end (tip) of the outer circumferential surface 103 to the depth side. In the protrusion part 105, the cross section orthogonal to a circumferential direction is formed in an arc shape centered on a top part 107 abutting on the inner circumferential surface 95 of the male-side annular member 51 over the entire circumference. Incidentally, a protruding amount of the female-side annular member 81 protruding from the front end surface 75 in the axial direction is set to be shorter than a protruding amount of the male-side annular member 51 protruding the front end surface 45 in the axial direction.
In this embodiment, as illustrated in
Next, the description will be given about an assembly method of both housings and a fitting operation. First, as illustrated in
When the female housing 19 is inserted to the male housing 17, the pair of the projection parts 83 of the female housing 19 pass through the first notch parts 41 of the male housing 17 respectively, and the locked part 87 of the female housing 19 passes through the second notch part 43 of the male housing 17. In addition, the stepped part 85 of the female housing 19 is guided along the guide groove 37 of the male housing 17.
Subsequently, when the insertion of the female housing 19 is performed, the lock arm 53 of the male housing 17 is placed on the locked part 87 along the tilted surface 89 of the locked part 87 of the female housing 19, and the arm part 61 is bent and deformed upward. Further, the locking part 63 of the arm part 61 gets over the locked part 87, so that the arm part 61 returns elastically. Accordingly, the locked part 87 is locked in the locking part 63, and both housings are locked in a normal fitting state.
On the other hand, when the female-side annular member 81 is inserted to the male-side annular member 51, the protrusion part 105 which is guided inward along the tilted surface 99 of the male-side annular member 51 moves along the inner circumferential surface 95 of the male-side annular member 51, and as illustrated in
As described above, in this embodiment, when the male connector 13 and the female connector 15 are fitted to each other, the male-side annular member 51 having an elasticity is pressed from the inside by the female-side annular member 81 having a relatively high rigidity and is expanded under an elastic limit. Thus, the gap between the male-side annular member 51 and the female-side annular member 81 is sealed without a plastic deformation, so as to prevent that water is infiltrated into the openings 47 and 77 and to improve the waterproof performance of the connector 11. In addition, the male-side annular member 51 and the female-side annular member 81 are sealed in a direct contact manner, so that the rubber packing and the like for maintaining the watertightness are not necessary, and the connector inner space can be set to be small. Thus, miniaturization and cost reduction of the connector 11 can be achieved.
The male-side annular member 51 is formed to have an elasticity (spring property), and is pressed by the female-side annular member 81 over the entire circumference. Thus, it is possible to suppress excessive deformation, and to prevent plastic deformation or breakage of the connector 11. Further, although the distance and the like between the male-side annular member 51 and the female-side annular member 81 (hereinafter, referred to as “annular members 51 and 81”) are displaced due to the vibration delivered to the connector 11, the male-side annular member 51 is deformed elastically while contacting the protrusion part 105 of the female-side annular member 81, and thus the vibration is absorbed between the annular members so as to suppress the time degradation of the connector 11 associated with the vibration.
Additionally, in this embodiment, when the protrusion part 105 is formed on the way from the tip of the female-side annular member 81 to the depth side, a range where the male-side annular member 51 contacts the female-side annular member 81 can be limited to the top part 107 of the protrusion part 105, and the friction between the female-side annular member 81 and the male-side annular member 51 can be made small. Accordingly, the insertion load of inserting the female housing 19 to the male housing 17 can be reduced, and thus, the operability at the time of assembling the connector 11 can be improved.
In this embodiment, when the female housing 19 is inserted to the male housing 17, the pair of the projection parts 83 abut on the inner circumferential surface of the male housing 17, and the stepped part 85 is guided along the guide groove 37 of the male housing 17. Accordingly, a relative position deviation of the male housing 17 and the female housing 19 is suppressed so that the female-side annular member 81 can be allowed to contact the setting position of the male-side annular member 51. Thus, the adhesiveness of the annular members 51 and 81 can be improved to stabilize a waterproof property.
In this embodiment, the description has been given about an example in which when the male connector 13 and the female connector 15 are fitted to each other, the front end part of the female-side annular member 81 which is inserted to the male-side annular member 51 is set to be in non-contact with the front end surface 45 of the male housing 17, and the front end part of the male-side annular member 51 is set to be in non-contact with the front end surface 75 of the female housing 19. However, the tip part of any one annular member may be set to be formed to abut on the counterpart housing (for example, the front end surfaces 45 and 75). Accordingly, the tip part of the any one annular member abuts on the counterpart housing to function as a stopper. Thus, the relative movement of the male-side annular member 51 and the female-side annular member 81 is stopped to prevent damage and the like caused by excessive pressing between the annular members. In addition, the contact area of both housings can be increased so as to improve the waterproof property.
In this embodiment, the description has been given about an example in which the protrusion part 105 formed in the female-side annular member 81 presses the inner circumferential surface 95 of the male-side annular member 51. However, the protrusion part 105 may be formed in the male-side annular member 51 instead of the female-side annular member 81. That is, for example, as illustrated in
Also in such a configuration, it is possible to obtain the same effect as the case of
Incidentally, in this embodiment, the description has been given about an example in which the female-side annular member 81 is inserted to the male-side annular member 51. However, instead thereof, the male-side annular member 51 may be configured to be inserted to the female-side annular member 81. In this case, the protrusion part 105 is formed in any one of the outer circumferential surface 97 of the male-side annular member 51 and the inner circumferential surface 101 of the female-side annular member 81.
Hereinafter, a waterproof structure for a connector according to a second embodiment of the invention will be described with reference to the drawings. However, this embodiment is basically similar to the first embodiment. Therefore, hereinafter, only characteristic configuration of this embodiment will be described, and the common configuration with the first embodiment will not be described.
The protrusion part 109 is formed in an annular shape to have the tilted surface 113, a rear end surface 115 which stands almost perpendicularly from the outer circumferential surface 103 of the female-side annular member 81, and the top part 111 which extends in a direction orthogonal to the circumferential direction of the protrusion part 109. Similarly to the protrusion part 105 of
The total area of the top part 111 abutting on the male-side annular member 51 of the protrusion part 109 is larger than the total area of the protrusion part 105 having an arc-shaped cross section where the protrusion part 105 of
The tilted surface 113 is formed over the entire circumference on the front side of the protrusion part 109, and thus the male-side annular member 51 can be placed on the protrusion part 109 along the tilted surface 113. Accordingly, the impact generated when the male-side annular member 51 contacts the female-side annular member 81 is alleviated so that the plastic deformation or breakage of the annular members 51 and 81 can be prevented reliably.
In this embodiment, the description has been given about an example in which the protrusion part 109 formed in the female-side annular member 81 presses the inner circumferential surface 95 of the male-side annular member 51. However, the protrusion part 109 may be formed in the male-side annular member 51 instead of the female-side annular member 81. That is, for example, as illustrated in
Hereinafter, a waterproof structure for a connector according to a third embodiment of the invention will be described with reference to
In this embodiment, when the male housing 17 and the female housing 19 are fitted, the female-side annular member 81 is fitted into the male-side annular member 51.
The male-side annular member 51 is a resin member which extends in a cylindrical shape from the circumferential edge of the opening 47 of the base part 31 of the male housing 17, and has a higher elasticity than the female-side annular member 81. The male-side annular member 51 is formed in an elliptical cylindrical shape in which the cross section orthogonal to the axial direction of the male housing 17 has a longitudinal side in the width direction, and has the inner circumferential surface 95 and the outer circumferential surface 97 which extend in the axial direction of the male housing 17. The inner circumferential surface 95 has an annular first protrusion part 121 which protrudes to the position of contacting the outer circumferential surface 103 of the female-side annular member 81, and the first protrusion part 121 is formed over the circumferential direction such that the cross section in the width direction (axial direction) has an arc shape. The tilted surface 99 which is tilted in a separating direction from the facing female-side annular member 81 to be widened forward is formed in the tip inner circumferential surface of the male-side annular member 51. The tilted surface 99 guides the female-side annular member 81 to the inside of the male-side annular member 51.
The female-side annular member 81 is a resin member which extends in a cylindrical shape from the circumferential edge of the opening 77 of the base part 71 of the female housing 19, and has a higher rigidity than the male-side annular member 51. The female-side annular member 81 has the inner circumferential surface 101 and the outer circumferential surface 103 which extend in the axial direction of the female housing 19. The outer circumferential surface 103 has an annular second protrusion part 123 which protrudes to the position of contacting the inner circumferential surface 95 of the male-side annular member 51.
As illustrated in
In this embodiment, as illustrated in
As illustrated in
As described above, in this embodiment, when the male connector 13 and the female connector 15 are fitted to each other, the male-side annular member 51 having an elasticity is pressed from the inside by the female-side annular member 81 having a relatively high rigidity and is expanded under an elastic limit. Thus, the gap between the male-side annular member 51 and the female-side annular member 81 is sealed without a plastic deformation. For this reason, it is possible to prevent that water is infiltrated into the openings 47 and 77 and to improve the waterproof performance of the connector 11. In addition, the male-side annular member 51 and the female-side annular member 81 are sealed in a direct contact manner, so that a waterproof rubber packing and the like are not necessary, and the inner space of the connector 11 can be set to be small. Thus, miniaturization and cost reduction of the connector 11 can be achieved.
In this embodiment, in the waterproof structure of the gap between the male-side annular member 51 and the female-side annular member 81, the first protrusion part 121 and the second protrusion part 123 are provided such that the positions are deviated from each other. Thus, it is possible to lengthen the depth length of the waterproof structure. Accordingly, a waterproof function of the waterproof structure can be improved, so as to more effectively prevent that water is infiltrated into the openings 47 and 77.
In this embodiment, when the male-side annular member 51 and the female-side annular member 81 are fitted to a normal position, the first protrusion part 121 is engaged between two crest parts 125a and 125b of the second protrusion part 123, so as to regulate a relative movement in the axial direction (front and rear direction) between the female-side annular member 81 and the male-side annular member 51, and to maintain such an overlapped state. Therefore, for example, when the connector 11 vibrates, the male-side annular member 51 and the female-side annular member 81 are integrally expanded and contracted, so as to absorb the vibration. Thus, it is possible to prevent the time degradation or the waterproof property deterioration of the connector 11 associated with the vibration.
In addition, in this embodiment, when the male housing 17 is inserted to the female housing 19, the pair of the projection parts 83 abut on the inner circumferential surface of the male housing 17, and the stepped part 85 is guided along the guide groove 37 of the male housing 17. Accordingly, the relative position deviation of the male housing 17 and the female housing 19 is suppressed so that the female-side annular member 81 can be allowed to contact the setting position of the male-side annular member 51 at a predetermined angle. Thus, the annular members 51 and 81 can be overlapped in a proper position so as to stabilize the waterproof property.
Incidentally, in this embodiment, the description has been given about an example in which when the male connector 13 and the female connector 15 are fitted to each other, the front end part of the female-side annular member 81 which is inserted to the male-side annular member 51 is set to be in non-contact with the front end surface 45 of the male housing 17, and the front end part of the male-side annular member 51 is set to be in non-contact with the front end surface 75 of the female housing 19. However, the tip part of any one annular member may be set to be formed to abut on the counterpart housing (for example, the front end surfaces 45 and 75). Accordingly, the tip part of the any one annular member abuts on the counterpart housing to function as a stopper. Thus, the relative movement of the male-side annular member 51 and the female-side annular member 81 is stopped to prevent damage and the like caused by excessive pressing between the annular members 51 and 81. In addition, the contact area of both housings can be increased so as to improve the waterproof property.
In this embodiment, the description has been given about an example in which the second protrusion part 123 of the female-side annular member 81 presses the male-side annular member 51 in the form of engaging the first protrusion part 121 of the male-side annular member 51. However, the positions of the first protrusion part 121 and the second protrusion part 123 may be configured to be switched. That is, as illustrated in
Hereinafter, a waterproof structure for a connector according to a fourth embodiment of the invention will be described with reference to the drawings.
The waterproof structure for a connector of this embodiment is different from the waterproof structure for a connector (
In the first protrusion part 129, the cross section of the width direction is formed in a trapezoidal shape, and the first protrusion part 129 protrudes to the position of contacting the outer circumferential surface 103 of the female-side annular member 81. The first protrusion part 129 is provided in the front end part of the male-side annular member 51, and is formed in a shape to regulate the movement of the second protrusion part 131 in a pulling-out direction (the left direction of
In the second protrusion part 131, the cross section of the width direction is formed in a trapezoidal shape, and the second protrusion part 131 protrude to the position of contacting the inner circumferential surface 95 of the male-side annular member 51. When the male housing 17 and the female housing 19 are fitted to a normal position, the second protrusion part 131 is arranged to the rear side of the first protrusion part 129 of the male-side annular member 51, and is formed in a shape to regulate the movement of the first protrusion part 129 in the pulling-out direction (the right direction of
The second protrusion part 131 has a tilted surface 135 which is tilted from the top part to the front side of the female-side annular member 81. Accordingly, in the second protrusion part 131, when the male housing 17 and the female housing 19 are fitted, the first protrusion part 129 is placed on the second protrusion part 131 along the tilted surface 135, so as to get over the second protrusion part 131. Incidentally, the corner part 133 of the second protrusion part 131 abuts on the rear side of the first protrusion part 129 which gets over the second protrusion part 131, and thus the second protrusion part 131 cannot be easily got over although an external force is applied in the pulling-out direction.
In this embodiment, the first protrusion part 129 and the second protrusion part 131 are positioned in a direction to pull out the annular members 51 and 81. Further, the first protrusion part 129 and the second protrusion part 131 are formed in a shape to regulate the movement of the counterpart in the pulling-out direction, so that the male-side annular member 51 and the female-side annular member 81 can maintain reliably a state of being overlapped with each other. Therefore, the adhesiveness of the male-side annular member 51 and the female-side annular member 81 is maintained so as to continuously prevent that water is infiltrated into the openings 47 and 77.
In addition, also in this embodiment, in the waterproof structure of the gap of the male-side annular member 51 and the female-side annular member 81, the first protrusion part 129 and the second protrusion part 131 are provided to be deviated in position from each other so as to lengthen the depth length of the waterproof structure. Thus, it is possible to improve the waterproof property of the gap of the male-side annular member 51 and the female-side annular member 81.
The first protrusion part 121 is formed is the same shape as that of the fifth embodiment. The second protrusion part 137 is formed by protruding the base end part of the depth side of the outer circumferential surface 103 of the female-side annular member 81 to the position of contacting the inner circumferential surface 95 of the male-side annular member 51 in a stepped shape. The second protrusion part 137 has a tilted surface 139 which is tilted from the top part toward the outer circumferential surface 103.
In this embodiment, as illustrated in
Similarly to the above-described embodiments, in this embodiment, a structure is not provided which regulates the movement of each of the male-side annular member 51 and the female-side annular member 81 in a pulling direction. However, the movement of the first protrusion part 121 and the second protrusion part 137 to the stop position at the time of fitting the male housing 17 and the female housing 19 becomes smooth to that extent. Thus, it is possible to reduce the insertion load of inserting the female housing 19 to the male housing 17, and to improve the operability at the time of assembling the connector 11.
Also in this embodiment, in the waterproof structure of the gap of the male-side annular member 51 and the female-side annular member 81, the first protrusion part 121 and the second protrusion part 137 are provided to be deviated in position from each other so as to lengthen the depth length of the waterproof structure. Thus, it is possible to improve the waterproof property of the gap of the male-side annular member 51 and the female-side annular member 81.
Hereinbefore, the invention has been described in detail with reference to a specific embodiment. However, it is clear for those skilled in the art that it is possible to perform various alterations or modifications without departing from the spirit and range of the invention.
Herein, the features of the embodiments of the waterproof structure for a connector according to the above-described invention is concisely summarized as follows.
(1) A waterproof structure for a connector which prevents that water is infiltrated into openings of terminal accommodating cavities (29 and 69) which are respectively formed in a pair of housings (17 and 19) fitted to each other, in which
the pair of housings include annular members (51 and 81) protruding in a fitting direction to surround the opening, the annular member (81) of one housing being inserted into an annulus of the annular member (51) of the other housing at a time of fitting, and
the at least one annular member (81) includes a protrusion part (105) which is an annular protrusion part (105) protruding toward the other annular member (51) and has a top part (107) which is pressed by a surface of the other annular member (51) at the time of fitting.
(2) The waterproof structure for a connector according to the above-described (1), in which
the protrusion part (105) is formed such that a sectional shape of the top part in a cross section orthogonal to a circumferential direction of the annular member (81) is an arc shape.
(3) The waterproof structure for a connector according to the above-described (1) or (2), in which
the protrusion part (109) includes a tilted surface (113) which is tilted from the top part (111) toward a protruding end of the annular member (81).
(4) The waterproof structure for a connector according to any one of the above-described (1) to (3), in which
an inner circumferential surface (95) of one annular member (51) is formed with an annular first protrusion part (121) which protrudes to contact an outer circumferential surface (103) of the other annular member (81),
the outer circumferential surface (103) of the other annular member (81) is formed with an annular second protrusion part (123) which protrudes to contact the inner circumferential surface (95) of the one annular member (51), and
the first protrusion part (121) and the second protrusion part (123) are arranged to be deviated from each other at the time of fitting.
(5) The waterproof structure for a connector according to the above-described (4), in which
any one of the first protrusion part (129) and the second protrusion part (131) has a shape (133) which regulates movement of the other in a fitting release direction at the time of fitting.
(6) The waterproof structure for a connector according to the above-described (4) or (5), in which
any one (123) of the first protrusion part (121) and the second protrusion part (123) has a sectional shape which has a plurality of crest parts (125a and 125b) in a cross section orthogonal to a circumferential direction thereof, and
the other (121) of the first protrusion part and the second protrusion part is positioned in a valley part (127) between the adjacent crest parts (125a and 125b) at the time of fitting.
(7) The waterproof structure for a connector according to any one of the above-described (4) to (6), in which
any one (137) of the first protrusion part (121) and the second protrusion part (137) is formed in a connecting end of the annular member (81) with a main body (71) of the housing (19), and
the other (121) of the first protrusion part and the second protrusion part presses the surface (103) of the annular member (81) between the connecting end and the protruding end of the annular member (81).
This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2015-170926 filed Aug. 31, 2015 and Japanese Patent Application No. 2015-171305 filed Aug. 31, 2015, the entire contents of which are incorporated herein by reference.
According to the invention, it is possible to achieve improvement for a waterproof performance at the time of fitting housings and to miniaturize a connector. The invention with such an effect is effectively applied to a waterproof structure for a connector.
Number | Date | Country | Kind |
---|---|---|---|
2015-170926 | Aug 2015 | JP | national |
2015-171305 | Aug 2015 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/075407 | Aug 2016 | US |
Child | 15886768 | US |