The present disclosure relates to watersport board fins with fin retention systems, watersport boards containing the same, and associated methods.
Watersport boards such as surfboards and stand-up paddleboards (SUPS) generally are configured to permit a user to stand upon an upper surface of the watersport board while the watersport board floats in a body of water. A watersport board may include at least one fin extending into the body of water from an underside of the watersport board to stabilize the watersport board and/or to provide the user with directional control as the watersport board traverses the body of water. A fin that is integrally formed with the watersport board or permanently coupled to the watersport board may be difficult to repair and/or replace in the event of damage, such as may result from a collision with a foreign object. Accordingly, a watersport board may include a fin box or other structure configured to selectively receive and retain the fin in an operative position on the watersport board. Conventional fin boxes and removable fins may require the use of tools to retain the fin within the fin box and/or to remove the fin from the fin box. Other conventional fin boxes and removable fins do not require the use of tools but may not sufficiently secure the fin in the fin box to prevent unintentional removal of the fin from the fin box during use of the watersport board. Thus, there exists a need for watersport board fins with fin retention systems.
Watersport board fins with fin retention systems, watersport boards containing the same, and associated methods are disclosed herein. A fin to be inserted into a fin box of a watersport board for stabilizing the watersport board during use on a body of water includes a hydrodynamic blade and a fin base. The hydrodynamic blade is configured to extend into a body of water when the fin is coupled to a watersport board that operates on the body of water. The hydrodynamic blade defines a fin plane and includes a leading edge, a trailing edge, and a foil surface extending between the leading edge and the trailing edge. The fin base extends from the hydrodynamic blade and is configured to be selectively received within a fin box of the watersport board.
The fin further includes a fin retention system configured to restrict removal of the fin base from the fin box. The fin retention system includes a selective retention system configured to selectively transition between an unlocked configuration, in which the selective retention system permits the fin to be inserted into and removed from the fin box, and a locked configuration, in which the selective retention system restricts the fin from being inserted into and removed from the fin box. The selective retention system includes a retainer configured to extend within a retention channel of the fin box to restrict removal of the fin base from the fin box when the fin base is inserted into the fin box and the selective retention system is in the locked configuration. The retainer further is configured to pivot about a pivot axis when the selective retention system is transitioned between the unlocked configuration and the locked configuration. The selective retention system further includes an actuator coupled to the retainer via a pivot shaft and configured to be actuated by a user to pivot the retainer about the pivot axis to selectively transition the selective retention system between the unlocked configuration and the locked configuration. The actuator forms a portion of the hydrodynamic blade when the selective retention system is in the locked configuration and is configured to rotate away from the fin plane when the selective retention system transitions from the locked configuration to the unlocked configuration. The retainer is configured to rotate away from the fin plane when the selective retention system transitions from the unlocked configuration to the locked configuration.
In general, elements that are likely to be included in a given (i.e., a particular) embodiment are illustrated in solid lines, while elements that are optional to a given embodiment are illustrated in dashed lines. However, elements that are shown in solid lines are not essential to all embodiments, and an element shown in solid lines may be omitted from a given embodiment without departing from the scope of the present disclosure.
As schematically illustrated in
Fin 100 further includes a fin base 120 extending from hydrodynamic blade 110 and configured to be selectively received and retained within a fin box of a watersport board to operatively couple the fin to the watersport board. More specifically, the fin box may include a retention channel configured to receive fin base 120. As used herein, a fin 100 that is coupled to a watersport board also may be referred to as being installed in, received in, and/or affixed to the watersport board and/or to a fin box thereof. Similarly, a configuration in which fin 100 is coupled to, installed in, received in, and/or affixed to a fin box also may be referred to as a configuration in which fin base 110 is coupled to, installed in, received in, and/or affixed to the fin box.
As used herein, positional and directional terms such as “front,” “bottom,” “forward,” “rear,” “backward,” “upper,” “top,” “lower,” “underside,” and the like are considered with respect to a watersport board resting on a body of water with a deck portion thereof facing away from the body of water such that a fin installed in the watersport board is in a downward orientation and extends vertically downward from the watersport board and with leading edge 112 of hydrodynamic blade 110 facing a front end of the watersport board and with trailing edge 114 of the hydrodynamic blade facing a rear end of the watersport board. Thus, for example, leading edge 112 may be described as being positioned in front of trailing edge 114. As an additional example, fin base 120 may be described as being positioned above hydrodynamic blade 110.
Fin 100 includes a fin retention system 130 configured to selectively restrict removal of the fin from a fin box. As schematically illustrated in
Fin retention system 130 further includes a selective retention system 150 that is configured to selectively transition between an unlocked configuration and a locked configuration. Selective retention system 150 is configured to permit fin 100 to be inserted into and removed from a fin box while in the unlocked configuration, and is configured to restrict the fin from being inserted into and/or removed from the fin box while in the locked configuration. Selective retention system 150 may be configured to be selectively transitioned between the locked configuration and the unlocked configuration without the use of tools and without disassembling a portion of fin 100, thereby enabling a user to readily install and uninstall the fin from a watersport board without additional equipment and without misplacing a component of the fin. Furthermore, when in the locked configuration, the selective retention system is configured to resist unintentional transitioning to the unlocked configuration during use of the watersport board.
As schematically illustrated in
As schematically illustrated in
The example of fin 100 schematically illustrated in
As illustrated in
When fin box 20 is recessed within the bottom surface of watersport board 10, the ends of the fin box may be closed or otherwise obstructed by the body of the watersport board. Additionally or alternatively, and also when the fin box is not recessed within the bottom surface of the watersport board, the fin box may include end walls, as indicated in dash dot lines in
As illustrated in
As further illustrated in
Retainer 170 may have any appropriate shape adapted for pivoting within retention channel 30. As examples, and as illustrated in
As schematically illustrated in
Selective retention system 150 may include retention system lock 180 on any appropriate components of fin 100 and/or fin box 20. As examples, hydrodynamic blade 110, fin base 120, actuator 160, retainer 170, and/or fin box 20 may include first component 182 and/or second component 184 such that the first component and the second component may move, translate, and/or rotate with respect to one another.
As slightly less schematically illustrated in
As a first example of retention system lock 180, and as illustrated in
As a second example of retention system lock 180, and as illustrated in
As a third example of retention system lock 180, and as illustrated in
As a fourth example of retention system lock 180, and as illustrated in
Fin 100, watersport board 10, fin box 20, and/or any components thereof may be formed of any appropriate materials, such as may be known and/or conventional in the water sports industry. As examples, hydrodynamic blade 110, fin base 120, actuator 160, retainer 170, watersport board 10, and/or fin box 20 may be formed of a plastic, a polymer, polyurethane, a fiberglass, a fiberglass fabric, a composite, carbon fiber, a metal, aluminum, steel, and/or a wood. Additionally or alternatively, and as illustrated in
Returning to
As illustrated in
In an embodiment of fin 100 that includes static retention structure 140 in the form of at least one channel pin 142, the inserting 220 may include passing the channel pin through a pin slot 22 of fin box 20, which may be performed prior to inserting retainer 170 into retention channel 30 of the fin box. Additionally or alternatively, methods 200 further may include positioning fin 100 longitudinally along fin box 20 within retention channel 30, as indicated at 230. For example, the positioning 230 may be performed subsequent to the inserting 220, such as to position channel pin 142 to be misaligned with pin slot 22 (and thereby enabling static retention structure 140 to restrict removal of fin base 120 from retention channel 30). As another example, the positioning 230 may include positioning fin 100 along fin box 20 to produce a desired hydrodynamic effect when watersport board 10 operates upon a body of water.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.
As used herein, the phrase, “for example,” the phrase, “as an example,” and/or simply the term “example,” when used with reference to one or more components, features, details, structures, embodiments, and/or methods according to the present disclosure, are intended to convey that the described component, feature, detail, structure, embodiment, and/or method is an illustrative, non-exclusive example of components, features, details, structures, embodiments, and/or methods according to the present disclosure. Thus, the described component, feature, detail, structure, embodiment, and/or method is not intended to be limiting, required, or exclusive/exhaustive; and other components, features, details, structures, embodiments, and/or methods, including structurally and/or functionally similar and/or equivalent components, features, details, structures, embodiments, and/or methods, are also within the scope of the present disclosure.
As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.
Examples of watersport board fins according to the present disclosure, watersport boards including the same, and methods for installing fins on watersport boards according to the present disclosure are presented in the following enumerated paragraphs.
A1. A fin to be inserted into a fin box of a watersport board for stabilizing the watersport board during use on a body of water, the fin comprising:
wherein the actuator forms a portion of the hydrodynamic blade when the selective retention system is in the locked configuration; wherein the actuator is configured to rotate away from the fin plane when the selective retention system transitions from the locked configuration to the unlocked configuration; and wherein the retainer is configured to rotate away from the fin plane when the selective retention system transitions from the unlocked configuration to the locked configuration.
A2. The fin of paragraph A1, wherein the retention channel of the fin box has a retention channel width, wherein the fin box further includes a neck portion configured to permit access to the retention channel from exterior the fin box, wherein the neck portion has a neck width that is smaller than the retention channel width; wherein the retention channel is at least partially defined by at least one ledge adjacent to the neck portion; wherein the fin base is configured to be at least partially received in the retention channel; and wherein the retainer is configured to extend transversely across the retention channel when the selective retention system is in the locked configuration.
A3. The fin of paragraph A2, wherein the retainer is configured to be obstructed from removal from the fin box by the at least one ledge when the fin base is inserted into the fin box and when the selective retention system is in the locked configuration.
A4. The fin of any of paragraphs A2-A3, wherein the retainer is configured to be spaced apart from the at least one ledge when the fin base is inserted into the fin box and when the selective retention system is in the locked configuration.
A5. The fin of any of paragraphs A2-A4, wherein the retainer is configured to engage at least one ledge when the fin base is inserted into the fin box and when the selective retention system is in the locked configuration.
A6. The fin of any of paragraphs A1-A5, wherein the retention channel is at least partially defined by two opposed side walls, wherein the retention channel width is measured between the two opposed side walls, and wherein the retainer is configured to be spaced apart from each of the two opposed side walls when the fin base is inserted into the fin box and when the selective retention system is in the locked configuration.
A7. The fin of any of paragraphs A1-A5, wherein the retention channel is at least partially defined by a/the two opposed side walls, and wherein the retainer is configured to engage at least one of the two opposed side walls when the fin base is inserted into the fin box and when the selective retention system is in the locked configuration.
A8. The fin of any of paragraphs A2-A7, wherein the retainer has a retainer length that is less than the retention channel width.
A9. The fin of any of paragraphs A2-A8, wherein the fin retention system includes a static retention structure that is configured to restrict removal of the fin base from the fin box via obstruction of the static retention structure by the at least one ledge.
A10. The fin of paragraph A9, wherein the static retention structure includes at least one channel pin extending from a surface of the fin base, wherein the fin box includes at least one pin slot that is defined by the at least one ledge and is configured to permit the at least one channel pin to pass therethrough, and wherein the at least one channel pin is configured to be received in the retention channel when the fin base is received in the retention channel.
A11. The fin of any of paragraphs A1-A10, wherein the actuator forms a portion of the leading edge of the hydrodynamic blade when the selective retention system is in the locked configuration.
A12. The fin of any of paragraphs A1-A11, wherein the actuator forms a portion of the trailing edge of the hydrodynamic blade when the selective retention system is in the locked configuration.
A13. The fin of any of paragraphs A1-A10, wherein the actuator is spaced apart from each of the leading edge and the trailing edge of the hydrodynamic blade when the selective retention system is in the locked configuration.
A14. The fin of any of paragraphs A1-A13, wherein the actuator conforms to the foil surface of the hydrodynamic blade when the selective retention system is in the locked configuration.
A15. The fin of any of paragraphs A1-A14, wherein the selective retention system further includes at least one retention system lock that is configured to maintain the selective retention system in the locked configuration.
A16. The fin of paragraph A15, wherein the retention system lock is configured to resist unintentional transitioning of the selective retention system from the locked configuration to the unlocked configuration.
A17. The fin of any of paragraphs A15-A16, wherein the retention system lock includes a first component and a second component that is configured to engage the first component when the selective retention structure is in the locked configuration, wherein the retention system lock is configured such that an interaction between the first component and the second component restricts the selective retention structure from transitioning from the locked configuration to the unlocked configuration, and wherein the retention system lock further is configured to permit the selective retention structure to transition from the locked configuration to the unlocked configuration responsive to a force in excess of a threshold unlocking force being applied to at least one of the first component and the second component.
A18. The fin of paragraph A17, wherein at least one of the actuator, the hydrodynamic blade, the fin base, the retainer, and the fin box includes the first component of the retention system lock.
A19. The fin of any of paragraphs A17-A18, wherein at least one of the actuator, the hydrodynamic blade, the fin base, the retainer, and the fin box includes the second component of the retention system lock.
A20. The fin of any of paragraphs A17-A19, wherein the first component of the retention system lock includes a projection that is configured to resiliently deform against the second component of the retention system lock when the selective retention structure is in the locked configuration.
A21. The fin of any of paragraphs A17-A20, wherein the first component of the retention system lock includes a projection, and wherein the second component of the retention system lock includes a recess that is configured to receive the projection when the selective retention structure is in the locked configuration.
A22. The fin of any of paragraphs A17-A21, wherein the first component of the retention system lock includes a projection, and wherein the second component of the retention system lock is configured to resiliently deform to receive the projection of the first component of the retention system lock when the selective retention structure is in the locked configuration.
A23. The fin of paragraph A22, wherein the second component of the retention system lock includes a deformable element that is configured to facilitate the second component resiliently deforming responsive to engagement with the first component.
A24. The fin of paragraph A23, wherein the deformable element includes a cutout in the second component of the retention system lock.
A25. The fin of any of paragraphs A17-A24, wherein the first component of the retention system lock includes at least one first projection, and wherein the second component of the retention system lock includes at least one second projection that is configured to engage the at least one first projection when the selective retention structure is in the locked configuration.
A26. The fin of any of paragraphs A1-A25, wherein the retainer is configured to rotate symmetrically, or at least substantially symmetrically, about the pivot axis.
A27. The fin of any of paragraphs A1-A25, wherein the retainer is configured to rotate asymmetrically about the pivot axis.
A28. The fin of any of paragraphs A1-A27, wherein the actuator is at least substantially aligned with the fin plane when the selective retention system is in the locked configuration.
A29. The fin of any of paragraphs A1-A28, wherein the retainer is at least substantially aligned with the fin plane when the selective retention system is in the unlocked configuration.
A30. The fin of any of paragraphs A1-A29, wherein the hydrodynamic blade is formed of at least one of a plastic, a polymer, polyurethane, a fiberglass, a fiberglass fabric, a composite, carbon fiber, a metal, aluminum, steel, and a wood.
A31. The fin of any of paragraphs A1-A30, wherein the actuator is formed of at least one of a plastic, a polymer, polyurethane, a fiberglass, a fiberglass fabric, a composite, carbon fiber, a metal, aluminum, steel, and a wood.
A32. The fin of any of paragraphs A1-A31, wherein the fin base is formed of at least one of a plastic, a polymer, polyurethane, a fiberglass, a fiberglass fabric, a composite, carbon fiber, a metal, aluminum, steel, and a wood.
A33. The fin of any of paragraphs A1-A32, wherein the retainer is formed of at least one of a plastic, a polymer, polyurethane, a fiberglass, a fiberglass fabric, a composite, carbon fiber, a metal, aluminum, steel, and a wood.
A34. The fin of any of paragraphs A1-A33, wherein the retainer includes a resilient peripheral bumper that includes at least one of a plastic and a rubber.
A35. The fin of any of paragraphs A1-A34, wherein the fin box is formed of at least one of a plastic, a polymer, polyurethane, a fiberglass, a fiberglass fabric, a composite, carbon fiber, a metal, aluminum, steel, and a wood.
A36. The fin of any of paragraphs A1-A35, wherein the hydrodynamic blade has a cross-sectional shape that includes at least one of an airfoil and a hydrofoil.
A37. The fin of any of paragraphs A1-A36, wherein the fin has a rake angle, as measured between a line passing through a midpoint of the fin base and extending perpendicular to the watersport board when the fin is installed in the fin box and a line passing through the midpoint of the fin base and a point on the hydrodynamic blade distal the watersport board when the fin is installed in the fin box, and wherein the rake angle is at least one of at least 10 degrees, at least 20 degrees, at least 30 degrees, at least 40 degrees, at least 50 degrees, at least 60 degrees, at most 65 degrees, at most 55 degrees, at most 45 degrees, at most 35 degrees, at most 25 degrees, at most 15 degrees, 10-50 degrees, 20-60 degrees, 30-70 degrees, 10-35 degrees, 20-45 degrees, 30-55 degrees, and 40-65 degrees.
A38. The fin of any of paragraphs A1-A37, wherein the retainer is at least one of triangular, quadrilateral, rectangular, hexagonal, elliptical, ovoid, rounded, and chamfered.
B1. A watersport board assembly, comprising:
B2. A watersport board, comprising:
C1. A method for coupling a fin to a watersport board, the method comprising:
C2. The method of paragraph C2, wherein the method further includes, prior to the rotating the actuator, positioning the fin longitudinally along the fin box.
C3. The method of paragraph C3, wherein the fin includes a/the at least one channel pin extending from a surface of the fin base, wherein the fin box includes a/the at least one pin slot that is configured to permit the at least one channel pin to pass therethrough, and wherein the inserting the fin base at least partially into the fin box includes passing the at least one channel pin through the at least one pin slot prior to inserting the retainer into the retention channel of the fin box.
The watersport board fins, watersport boards, and methods disclosed herein are applicable to the water sports industry.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1730844 | Dupuis | Oct 1929 | A |
3659300 | Johnson | May 1972 | A |
4379703 | Mizell | Apr 1983 | A |
4398485 | Diziére | Aug 1983 | A |
4421492 | Leva | Dec 1983 | A |
4846745 | Lobe | Jul 1989 | A |
5215488 | Bailey | Jun 1993 | A |
5464359 | Whitty | Nov 1995 | A |
5830025 | Fleming | Nov 1998 | A |
5934962 | Daum et al. | Aug 1999 | A |
5934963 | Frizzell | Aug 1999 | A |
6764364 | Hickman et al. | Jul 2004 | B1 |
6991504 | English et al. | Jan 2006 | B1 |
7481690 | Shibata | Jan 2009 | B2 |
20030092334 | McCausland et al. | May 2003 | A1 |
20080050994 | Shibata | Feb 2008 | A1 |
20080220672 | Koelling et al. | Sep 2008 | A1 |
20100233921 | Kumano et al. | Sep 2010 | A1 |
20120052755 | Durante | Mar 2012 | A1 |
20130084762 | Templeman | Apr 2013 | A1 |
20160375968 | Norrie et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
491811 | Mar 1978 | AU |
27 06 141 | Aug 1978 | DE |
3248580 | Jul 1984 | DE |
8603222 | Jul 1988 | NL |
WO 2014008529 | Jan 2014 | WO |
WO 2015135034 | Sep 2015 | WO |
Entry |
---|
English-language machine translation of German Patent No. 27 06 141, published Aug. 17, 1978. |
English-language machine translation of German Patent Application Publication No. DE 3248580 A1, Jul. 5, 1984. |
English-language machine translation of Dutch Patent Application Publication No. 8603222, Jul. 18, 1988. |
Number | Date | Country | |
---|---|---|---|
20180327060 A1 | Nov 2018 | US |