The present invention relates generally to a connection between a first waterway component and a second waterway component and, more particularly, to an overmold coupler which secures the first waterway component to the second waterway component in a faucet assembly.
Faucets are generally controlled by either a single handle which utilizes a mixing valve to proportion the flow of hot and cold water to a delivery spout, or dual-handles which utilize two individual valves to control the flow of hot and cold water. The valve bodies which house the respective valves are each typically connected to an upstream waterway through a conventional mechanical connection, such as mating threads. Further, each valve body is typically connected to a downstream waterway by brazing the valve bodies to the downstream waterway. In other examples the valve bodies and the downstream waterway are cast as a single component. Brazing requires additional time, assembly, and inspection. One of the problems with a brazing connection is that undesirable materials, such as harmful metals may be communicated from the brazing material into the water passing through the connection. Additionally, brazing requires a etching operation to be performed subsequent to the brazing operation.
In a exemplary embodiment of the present invention, a faucet for connection to a water supply having a hot water supply and a cold water supply is provided. The faucet comprising: a hot water inlet member having a hot water fluid inlet adapted to be coupled to the hot water supply, a hot water fluid outlet, and an internal waterway connecting the hot water fluid inlet to the hot water fluid outlet; a cold water inlet member having a cold water fluid inlet adapted to be coupled to the cold water supply, a cold water fluid outlet and an internal waterway connecting the cold water fluid inlet to the cold water fluid outlet; a waterway component having a first fluid inlet, a second fluid inlet, a fluid outlet and an internal waterway connecting the first fluid inlet, the second fluid inlet, and the fluid outlet; at least one coupler configured to maintain the position of the hot water inlet member relative to the waterway component and to maintain the position of the cold water inlet member relative to the waterway component, the at least one coupler being an overmold of at least a first portion of the hot water inlet member, a first portion of the cold water inlet member, and a first portion of the waterway component, the at least one coupler coupling the hot water inlet member and the waterway component such that the internal waterway of the hot water inlet member is in fluid communication with the internal waterway of the waterway component and coupling the cold water inlet member and the waterway component such that the internal waterway of the cold water inlet member is in fluid communication with the internal waterway of the waterway component. In an example, the at least one coupler includes a first overmold coupler which couples the hot water inlet member to the waterway component and a second overmold coupler which couples the cold water inlet member to the waterway component. In another example, the at least one coupler includes a first overmold coupler which couples the hot water inlet member to the waterway component and the cold water inlet member to the waterway component. In a variation the faucet further comprises a hot water upstream waterway coupled to the hot water inlet member, the hot water upstream waterway being positioned downstream from the hot water supply and upstream to the hot water inlet member, wherein the first overmold coupler further couples the hot water inlet member to the hot water upstream waterway. In another variation, the faucet further comprises a cold water upstream waterway coupled to the cold water inlet member, the cold water upstream waterway being positioned downstream from the cold water supply and upstream to the cold water inlet member, wherein the first overmold coupler further couples the cold water inlet member to the cold water upstream waterway. In a further example, the faucet further comprises a first user input device configured to control a flow rate of hot water exiting the fluid outlet of the hot water inlet member, the first user input device being positioned above the at least one coupler, and a second user input device configured to control a flow rate of cold water exiting the fluid outlet of the cold water inlet member, the second user input device being positioned above the at least one coupler.
In another exemplary embodiment of the present invention, a faucet is provided. The faucet comprising: a first waterway component of the faucet having an internal waterway; a second waterway component of the faucet having an internal waterway, the second component being positioned such that the internal waterway of the second waterway component is in fluid communication with the internal waterway of the first waterway component; a valve positioned within the first waterway component to control the flow rate of fluid through the first waterway component; a user input device coupled to the valve; and a coupler configured to maintain the position of the second waterway component relative to the first waterway component, the coupler being an overmold of at least a first portion of the first waterway component and a first portion of the second waterway component, wherein the coupler is spaced apart from the fluid being communicated by the internal waterways of the first waterway component and the second waterway component and wherein the user input device is external relative to the coupler. In an example, the coupler is made of a glass reinforced polypropylene. In another example, a seal is positioned between the first waterway component and the second waterway component. In a further example, the first waterway component and the second waterway component are housed in an escutcheon and the first user input device extends above the escutcheon.
In an exemplary method of the present invention, a method of assembling a faucet is provided. The method comprising the steps of: providing a first waterway component of the faucet having an internal waterway and a second waterway component of the faucet having an internal waterway; positioning the first waterway component and the second waterway component in a mold such that a fluid outlet of the internal waterway of the first waterway component is generally positioned proximate to a fluid inlet of the second waterway component; and molding a coupler over at least a portion of the first waterway component and at least a portion of the second waterway component, wherein the internal waterway of the first waterway component and the internal waterway of the second waterway component are in fluid communication and the coupler is spaced apart from the internal waterway of the first waterway component and the second waterway component. In an example, the method further comprises the step of positioning a valve within the first waterway component, the valve being configured to control the flow rate of fluid through the internal waterway of the first waterway component, the valve being positioned within the first waterway component prior to the step of molding a coupler. In one variation, the method further comprising the steps of: placing an escutcheon over the coupler; and coupling a first user input device to the valve, the first user input device being located above the escutcheon.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description of the drawings particularly refers to the accompanying figures in which:
The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the invention. Although the disclosure is described in connection with water, it should be understood that additional types of fluids may be used.
Referring to
The internal waterway of each of hot water valve body 102 and cold water valve body 104, is in fluid communication with an internal waterway in a waterway component 114. As such, water from hot supply 110 and water from cold water supply 112 pass through hot water valve body 102 and cold water valve body 104, respectively, and into waterway component 114 where they are mixed and provided to an internal waterway in a downstream waterway component 116. Downstream waterway component 116, such as a spout, is in fluid communication with a fluid outlet 118, such as an aerator.
Hot water valve body 102 houses a valve 120 which is moveable between a first position wherein water from hot water supply 110 is in fluid communication with waterway component 114 and a second position wherein water from hot water supply 110 is not in fluid communication with waterway component 114. In one embodiment, valve 120 is a rotatable valve. The position of valve 120 is adjusted though a hot water user input 124, such as a handle 125. Handle 125 generally extends above escutcheon 107 of faucet 100.
Similarly, cold water valve body 104 houses a valve 122 which is moveable between a first position wherein water from cold water supply 112 is in fluid communication with waterway component 114 and a second position wherein water from cold water supply 112 is not in fluid communication with waterway component 114. In one embodiment, valve 122 is a rotatable valve. The position of valve 122 is adjusted though a cold water user input 126, such as a handle 127. Handle 127 generally extends above escutcheon 107 of faucet 100.
Suitable rotatable valves include the valves disclosed in U.S. Pat. Nos. 3,645,493; 4,453,567; 4,577,835; and 4,700,928, the disclosures of which are expressly incorporated by reference herein.
In one embodiment, hot water valve body 102 and cold water valve body 104 are connected to upstream hot water waterway component 106 and upstream cold water waterway component 108, respectively, through a conventional connection. Exemplary conventional connections include a mechanical connection, such as mating threaded portions with or without one or more seals. Hot water valve body 102 and cold water valve body 104 are each connected to waterway component 114 through an overmold coupler 130, 132, respectively.
In one embodiment, overmold couplers 130, 132 are formed by the steps of positioning each of hot water valve body 102, cold water valve body 104, and waterway component 114 relative to each other such that the respective waterways of each are in fluid communication. This grouping (hot water valve body 102, cold water valve body 104, and waterway component 114) is positioned within a mold (not shown) which is designed to hold the grouping in place. In another embodiment the grouping is created by the placement of hot water valve body 102, cold water valve body 104, and waterway component 114 in the mold. The mold is closed. Injection moldable material is introduced in the regions indicated by overmold couplers 130 and 132 in
Each connection coupled by a respective overmold coupler 130, 132 permits the transport of fluid there through. In one embodiment, an outlet of the internal waterway of hot water valve body 102 is positioned relative to the internal waterway of waterway component 114 so that fluid may flow from hot water valve body 102 into waterway component 114. In one embodiment, the positioning of hot water valve body 102 and waterway component 114 prevents the injection moldable material of overmold coupler 130 from contacting the fluid waterway created by hot water valve body 102 and waterway component 114. As such, overmold coupler 130 is spaced apart from the fluid transported in fluid waterway created by hot water valve body 102 and waterway component 114.
Similarly, in one embodiment, an outlet of the internal waterway of cold water valve body 104 is positioned relative to the internal waterway of waterway component 114 so that fluid may flow from cold water valve body 104 into waterway component 114. In one embodiment, the positioning of cold water valve body 104 and waterway component 114 prevents the injection moldable material of overmold coupler 132 from contacting the fluid waterway created by cold water valve body 104 and waterway component 114. As such, overmold coupler 132 is spaced apart from the fluid transported in fluid waterway created by cold water valve body 104 and waterway component 114.
In one embodiment, a single overmold coupler 134 is used in place of overmold couplers 130 and 132. Overmold coupler 134, like overmold couplers 130 and 132, is made from injection moldable material. Unlike overmold couplers 130 and 132, overmold coupler 134 spans at least two connections, illustratively the connection between hot water valve body 102 and waterway component 114 and the connection between cold water valve body 104 and waterway component 114. As such, overmold coupler 134 couples three components of the waterway assembly of faucet 100 together. In addition, by utilizing a contiguous coupler 134 additional strength is provided to the waterway assembly of faucet 100. The components coupled together by overmold coupler 134 are positioned so that the injection moldable material of overmold coupler 134 is prevented from contacting the fluid waterway created by the components coupled together. As such, overmold coupler 134 is spaced apart from the fluid transported in the fluid waterway created by the components coupled together by overmold coupler 134.
In the illustrated embodiment, hot water valve body 102, valve 120, cold water valve body 104, valve 122, waterway component 114, and the respective overmold coupler (either 130 and 132, or 134) are at least partially housed within an escutcheon 107. In another embodiment, an external surface of coupler 134 is visible to the operator. Similarly, downstream waterway component 116 is housed within a spout 109.
As used herein waterway assembly is used to indicate the respective overmold coupler or components and the components coupled together thereby. In an example, a first waterway assembly includes hot water valve body 102, waterway component 114, and overmold coupler 130. In another example, a second waterway assembly includes cold water valve body 104, waterway component 114, and overmold coupler 132. In a further example, a third waterway assembly includes hot water valve body 102, cold water valve body 104, waterway component 114, and overmold coupler 134.
In one embodiment, an overmold coupler, similar to overmold coupler 130 couples hot water valve body 102 and upstream hot water waterway component 106. In another embodiment, an overmold coupler, similar to overmold coupler 132 couples cold water valve body 104 and upstream cold water waterway component 108. In still a further embodiment, overmold coupler 134 couples together the following pairs of components: (1) hot water valve body 102 and upstream hot water waterway component 106, (2) hot water valve body 102 and waterway component 114, (3) cold water valve body 104 and upstream cold water waterway component 108, and (4) cold water valve body 104 and waterway component 114. In one example, upstream hot water waterway component 106 and upstream cold water waterway component 108 each include a flexible tubing portion which is at least partially located outside of overmold coupler 134. As such, during installation of faucet 100, the waterway assembly including overmold coupler 134 may be positioned relative to the sink (not shown) and the only fluid connections required for installation would be between the flexible tubing of upstream hot water waterway component 106 and hot water supply 110, such as the hot water isolation valve, and between the flexible tubing of the upstream cold water waterway component 108 and the cold water supply 112, such as the cold water isolation valve.
In one embodiment, an overmold coupler 131, similar to overmold coupler 130 couples waterway component 114 and downstream waterway component 116. In another embodiment, overmold coupler 134 couples together the following pairs of components: (1) hot water valve body 102 and waterway component 114, (2) cold water valve body 104 and waterway component 114, and (3) waterway component 114 and downstream waterway component 116. In one example, wherein downstream waterway component 116 corresponds generally to a spout, overmold coupler 134 extends generally down to the aerator associated with the spout. In another embodiment, downstream waterway component 116 and waterway 114 are a single component, such as an injection molded component.
In another embodiment, overmold coupler 134 couples together the following pairs of components: (1) hot water valve body 102 and upstream hot water waterway component 106, (2) hot water valve body 102 and waterway component 114, (3) cold water valve body 104 and upstream cold water waterway component 108, (4) cold water valve body 104 and waterway component 114; and (5) waterway component 114 and downstream waterway component 116. As such, each connection of faucet 100, except for the connections between faucet 100 and the respective hot water supply 110 and cold water supply 112 are maintained by overmold coupler 134.
Although the above discussion has illustrated a single upstream hot water waterway component 106, a single upstream cold water waterway component 108, and a single downstream water 116, it should be understood that the use of one or more overmold couplers may be extended to multiple upstream hot water waterways 106, multiple upstream cold water waterways 108, and/or multiple downstream waterways 116. Further, waterway component 114 may be formed of multiple waterways which are coupled together through the use of one or more overmold couplers.
Referring to
Valve 204 is actuatable by a hot/cold water user input device 208. In one example, user input device 208 includes a handle 210. In one embodiment, valve 204 and valve body 202 are generally covered by an escutcheon 206. In another embodiment, an external surface of coupler 234 is visible to the operator. User input device 208 generally extends beyond escutcheon 206. Illustratively, user input device 208 is shown below escutcheon 206. In one embodiment, user input device 208 is positioned above escutcheon 206.
Each of the following connections may be coupled by a respective overmold coupler: (1) upstream hot water waterway component 106 and valve body 202 are illustratively coupled by overmold coupler 130; (2) upstream cold water waterway component 108 and valve body 202 are illustratively coupled by overmold coupler 132; and (3) valve body 202 and downstream waterway component 116 are coupled together by overmold coupler 230. Similar to faucet 100, one or more of the overmold couplers may be combined in a single overmold coupler. Illustratively overmold couplers 130, 132, and 230 may be replaced with a single overmold coupler 234. In one embodiment, the respective overmold couplers provide structural support for faucet 200 in addition to maintaining the connections between the various components.
Referring to
Valves 310 and 312 are shown as rotatable cartridge valves. Exemplary cartridge valves are disclosed in U.S. Pat. Nos. 3,645,493; 4,453,567; 4,577,835; and 4,700,928, the disclosures of which are expressly incorporated by reference herein. Referring to
Each of seal assemblies 316A, 316B include a sleeve 320, a spring 322, and a seat 324. As explained below, seal assemblies 316A, 316B interact with respective valve cartridges 314A, 314B to regulate the flow of fluid through respective valves 310, 312. The following discussion is generally related to the assembly and operation of valve 310 relative to a valve body 340A. However, it is also applicable to the assembly and operation of valve 312 relative to valve body 340B.
Referring to
Valve body 340A includes an internal waterway 354A having a first portion 356A, a second portion 358A, and a third portion 360A. In the absence of blockage by valve 310 water enters internal waterway 354A from an upstream waterway (not shown) at fluid inlet 359A, travels generally vertically through first portion 356A and second portion 358A, then generally horizontally through third portion 360A, and out fluid outlet 361A to a downstream waterway component, illustratively waterway component 370.
Seal assembly 316A is positioned generally within second portion 358A of waterway 354A and valve cartridge 314A is positioned in third portion 360A of waterway 354A. Spring 322A biases seat 324A upward such that seat 324A presses against plate 336A (see
Referring to
Waterway component 370 includes two generally tubular portions 371A, 371B each having an internal waterway 382A, 382B and each configured to mate with valve bodies 340A, 350B respectively. Portions 371A, 371B are generally shown to be arranged in a V-shaped arrangement. This arrangement is to provide clearance for a drain assembly (not shown) of faucet 300 as explained below. In other embodiments, portions 371A, 371B may be generally co-linear. Further waterway component 370 may be comprised of multiple waterway components which are coupled together by an overmold component 400.
Each portion 371A, 371B includes a flange 372A, 372B and a seal surface 376A, 376B. A seal 378A, 378B is positioned over seal surface 376A, 376B and rests against surface 374 (374A shown) of flanges 372A, 372B. Seals 378A, 378B also rest against a seal surface 369 (369B shown) of valve bodies 340A, 340B when valve bodies 340A, 340B are coupled to waterway component 370. Although the positioning of seal 374A, 374B may hold valve bodies 340A, 340B and waterway component 370 together absent an external force and/or fluid flowing through the respective valve bodies 340A, 340B and waterway component 370, additional coupling is required.
Waterway component 370 further includes an upright portion 386 having a waterway 384. Upright portion 386 includes a reduced portion 388 which is configured to be coupled to a downstream waterway 440 (see
Referring back to
Since overmold coupler 400 couples valve bodies 340A, 340B and waterway component 370 together without the need for brazing, valve bodies 340A, 340B and waterway component 370 may be made from dissimilar materials and non-metallic materials. In one embodiment, valve bodies 340A, 340B are machined from brass stock and waterway component 370 is made from a thermoplastic material through an injection molding operation. In another embodiment, valve bodies 340A, 340B are made from a brass sleeve wherein the internal structure such as second portion 358A, 358B which holds seal assembly 316A, 316B and seat surface 369 of fluid outlet 361A, 361B are made from a thermoplastic material through an injection molding operation.
In addition to coupling valve bodies 340A, 340B, and waterway component 370 together, overmold coupler 400 in the illustrated embodiment may function as a mounting component as well. Referring to
Referring to
As seen in
In one embodiment, overmold coupler 400 is manufactured by placing waterway component 370, valve body 340A, valve body 340B, and seals 378A, 378B in a mold (not shown) as inserts. It is well known in the injection molding art to mold a thermoplastic material around one or more inserts positioned in the mold.
The components are either individually placed or placed as an assembly. In either case, the components are assembled such that seal 378A is generally contacting surface 369A of valve body 340A and surface 374A of waterway component 370 and such that seal 378B is generally contacting surface 369B of valve body 340B and surface 374B of waterway component 370. Once the mold is closed the thermoplastic material is injected into the mold which is configured to form the overmold coupler shown in
In one embodiment, referring to
In one embodiment, waterway component 370 is connected to waterway component 440 through conventional couplers. In another embodiment, similar to overmold components 134 and 234, overmold component 400 may include additional connections such as between waterway connector 370 and waterway component 440 and/or various upstream waterway components (not shown).
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2200091 | Kovach | May 1940 | A |
2219471 | Davis | Oct 1940 | A |
2546327 | Young | Mar 1951 | A |
2548933 | Barnett | Apr 1951 | A |
2781786 | Young | Feb 1957 | A |
2884007 | Green | Apr 1959 | A |
3229710 | Keller, III | Jan 1966 | A |
3422849 | Manoogian | Jan 1969 | A |
3448768 | Keller, III | Jun 1969 | A |
3505098 | Miller et al. | Apr 1970 | A |
3520325 | Stuart | Jul 1970 | A |
3580289 | James et al. | May 1971 | A |
3590876 | Young | Jul 1971 | A |
3600723 | Mongerson et al. | Aug 1971 | A |
3714958 | Johnson et al. | Feb 1973 | A |
3757824 | Parkhurst et al. | Sep 1973 | A |
3770004 | Johnson et al. | Nov 1973 | A |
3796380 | Johnson et al. | Mar 1974 | A |
3807453 | Dom et al. | Apr 1974 | A |
3854493 | Farrell | Dec 1974 | A |
3965936 | Lyon | Jun 1976 | A |
3989787 | Scott, Jr. et al. | Nov 1976 | A |
3998240 | Liautaud | Dec 1976 | A |
4026328 | Nelson | May 1977 | A |
4076279 | Klotz et al. | Feb 1978 | A |
4103709 | Fischer | Aug 1978 | A |
4130136 | Garnier et al. | Dec 1978 | A |
4221338 | Shames et al. | Sep 1980 | A |
4316870 | Rowley | Feb 1982 | A |
4337795 | Argyris et al. | Jul 1982 | A |
4356574 | Johnson | Nov 1982 | A |
4357957 | Bisonaya et al. | Nov 1982 | A |
4387738 | Bisonaya et al. | Jun 1983 | A |
4415389 | Medford et al. | Nov 1983 | A |
4446084 | Rowley | May 1984 | A |
4453567 | MacDonald | Jun 1984 | A |
4458839 | MacDonald | Jul 1984 | A |
4484600 | Peterson et al. | Nov 1984 | A |
4502507 | Hayman | Mar 1985 | A |
4513769 | Purcell | Apr 1985 | A |
4525136 | Rowley | Jun 1985 | A |
4552171 | Farrell et al. | Nov 1985 | A |
4577835 | Holycross, Jr. | Mar 1986 | A |
4580601 | Schlotman et al. | Apr 1986 | A |
4592388 | Wilcox | Jun 1986 | A |
4607659 | Cole | Aug 1986 | A |
4610429 | Arnold et al. | Sep 1986 | A |
4626005 | Stifter | Dec 1986 | A |
4635673 | Gerdes | Jan 1987 | A |
4649958 | Purcell | Mar 1987 | A |
4652263 | Herweck et al. | Mar 1987 | A |
4664423 | Rowley | May 1987 | A |
4667987 | Knebel | May 1987 | A |
4687025 | Kahle et al. | Aug 1987 | A |
4700928 | Marty | Oct 1987 | A |
4708172 | Riis | Nov 1987 | A |
4754993 | Kraynick | Jul 1988 | A |
4760871 | Vijay | Aug 1988 | A |
4762143 | Botnick | Aug 1988 | A |
4773348 | Rowley | Sep 1988 | A |
4783303 | Imgram | Nov 1988 | A |
4803033 | Rowley | Feb 1989 | A |
4838304 | Knapp | Jun 1989 | A |
4853164 | Kiang et al. | Aug 1989 | A |
4877660 | Overbergh et al. | Oct 1989 | A |
4887642 | Bernat | Dec 1989 | A |
4942644 | Rowley | Jul 1990 | A |
4957135 | Knapp | Sep 1990 | A |
4971112 | Knapp | Nov 1990 | A |
4979530 | Breda | Dec 1990 | A |
5001008 | Tokita et al. | Mar 1991 | A |
5006207 | Peterman et al. | Apr 1991 | A |
5027851 | Drees et al. | Jul 1991 | A |
5053097 | Johansson et al. | Oct 1991 | A |
5090062 | Hochstrasser | Feb 1992 | A |
5095554 | Gloor | Mar 1992 | A |
5100565 | Fujiwara et al. | Mar 1992 | A |
5110044 | Bergmann | May 1992 | A |
5127814 | Johnson et al. | Jul 1992 | A |
5131428 | Bory | Jul 1992 | A |
5148837 | Ågren et al. | Sep 1992 | A |
5150922 | Nakashiba et al. | Sep 1992 | A |
5219185 | Oddenino | Jun 1993 | A |
5279333 | Lawerence | Jan 1994 | A |
5366253 | Nakashiba et al. | Nov 1994 | A |
5375889 | Nakashiba et al. | Dec 1994 | A |
5397102 | Kingman | Mar 1995 | A |
5417242 | Goncze | May 1995 | A |
5493873 | Donselman et al. | Feb 1996 | A |
5494259 | Peterson | Feb 1996 | A |
5518027 | Saiki et al. | May 1996 | A |
5527503 | Rowley | Jun 1996 | A |
5553935 | Burnham et al. | Sep 1996 | A |
5555912 | Saadi et al. | Sep 1996 | A |
5558128 | Pawelzik et al. | Sep 1996 | A |
5566707 | Ching et al. | Oct 1996 | A |
5573037 | Cole et al. | Nov 1996 | A |
5577393 | Donselman et al. | Nov 1996 | A |
5579808 | Mikol et al. | Dec 1996 | A |
5611093 | Barnum et al. | Mar 1997 | A |
5615709 | Knapp | Apr 1997 | A |
5622210 | Crisman et al. | Apr 1997 | A |
5622670 | Rowley | Apr 1997 | A |
5642755 | Mark et al. | Jul 1997 | A |
5669407 | Bailey | Sep 1997 | A |
5669417 | Lian-Jie | Sep 1997 | A |
5669595 | Bytheway | Sep 1997 | A |
5685341 | Chrysler et al. | Nov 1997 | A |
5687952 | Arnold et al. | Nov 1997 | A |
5695094 | Burnham et al. | Dec 1997 | A |
5725008 | Johnson | Mar 1998 | A |
5730173 | Sponheimer | Mar 1998 | A |
5741458 | Rowley | Apr 1998 | A |
5746244 | Woolley, Sr. et al. | May 1998 | A |
5756023 | Stachowiak | May 1998 | A |
5758690 | Humpert | Jun 1998 | A |
5775587 | Davis | Jul 1998 | A |
5803120 | Bertoli | Sep 1998 | A |
5813435 | Knapp | Sep 1998 | A |
5833279 | Rowley | Nov 1998 | A |
5850855 | Kerschbaumer et al. | Dec 1998 | A |
5857489 | Chang | Jan 1999 | A |
5861200 | Rowley | Jan 1999 | A |
5865473 | Semchuchk et al. | Feb 1999 | A |
5875809 | Barrom | Mar 1999 | A |
5893387 | Paterson et al. | Apr 1999 | A |
5895695 | Rowley | Apr 1999 | A |
5916647 | Weinstein | Jun 1999 | A |
5924451 | Kuo | Jul 1999 | A |
5927333 | Grassberger | Jul 1999 | A |
5934325 | Brattoli et al. | Aug 1999 | A |
5937892 | Meisner et al. | Aug 1999 | A |
5944225 | Kawolics | Aug 1999 | A |
5950663 | Bloomfield | Sep 1999 | A |
5960490 | Pitch | Oct 1999 | A |
5965077 | Rowley et al. | Oct 1999 | A |
5975143 | Järvenkylä et al. | Nov 1999 | A |
5979489 | Pitch | Nov 1999 | A |
6013382 | Coltrinari et al. | Jan 2000 | A |
6023796 | Pitsch | Feb 2000 | A |
6029860 | Donselman et al. | Feb 2000 | A |
6029948 | Shafer | Feb 2000 | A |
6053214 | Sjoberg et al. | Apr 2000 | A |
6062251 | Pitsch | May 2000 | A |
6070614 | Holzheimer et al. | Jun 2000 | A |
6070916 | Rowley | Jun 2000 | A |
6073972 | Rivera | Jun 2000 | A |
6079447 | Holzheimer et al. | Jun 2000 | A |
6082407 | Paterson et al. | Jul 2000 | A |
6082780 | Rowley et al. | Jul 2000 | A |
6085784 | Bloom et al. | Jul 2000 | A |
6116884 | Rowley et al. | Sep 2000 | A |
6123232 | Donselman et al. | Sep 2000 | A |
6131600 | Chang | Oct 2000 | A |
6138296 | Baker | Oct 2000 | A |
6155297 | MacAusland et al. | Dec 2000 | A |
6161230 | Pitsch | Dec 2000 | A |
6170098 | Pitsch | Jan 2001 | B1 |
6177516 | Hudak | Jan 2001 | B1 |
6202686 | Pitsch et al. | Mar 2001 | B1 |
6227464 | Allmendinger et al. | May 2001 | B1 |
6238575 | Patil | May 2001 | B1 |
6256810 | Baker | Jul 2001 | B1 |
6270125 | Rowley et al. | Aug 2001 | B1 |
6287501 | Rowley | Sep 2001 | B1 |
6293336 | Emerick, Sr. et al. | Sep 2001 | B1 |
6296017 | Kimizuka | Oct 2001 | B2 |
6305407 | Selby | Oct 2001 | B1 |
6315715 | Taylor et al. | Nov 2001 | B1 |
6328059 | Testori et al. | Dec 2001 | B1 |
6334466 | Jani et al. | Jan 2002 | B1 |
6341617 | Wilson | Jan 2002 | B1 |
6349733 | Smith | Feb 2002 | B1 |
6378790 | Paterson et al. | Apr 2002 | B1 |
6385794 | Miedzius et al. | May 2002 | B1 |
6464266 | O'Neill et al. | Oct 2002 | B1 |
6485666 | Rowley | Nov 2002 | B1 |
6557907 | Rowley | May 2003 | B2 |
6609732 | Souvatzidis et al. | Aug 2003 | B1 |
6635334 | Jackson et al. | Oct 2003 | B1 |
6732543 | Jenkins, Jr. et al. | May 2004 | B2 |
6770376 | Chen | Aug 2004 | B2 |
6770384 | Chen | Aug 2004 | B2 |
6783160 | Rowley | Aug 2004 | B2 |
6803133 | Chen | Oct 2004 | B2 |
6817379 | Perla | Nov 2004 | B2 |
6835777 | Botros | Dec 2004 | B2 |
6838041 | Rowley | Jan 2005 | B2 |
6848719 | Rowley | Feb 2005 | B2 |
6860523 | O'Neill et al. | Mar 2005 | B2 |
6860524 | Rowley | Mar 2005 | B1 |
6877172 | Malek et al. | Apr 2005 | B2 |
6894115 | Botros | May 2005 | B2 |
6902210 | Rowley | Jun 2005 | B1 |
6920899 | Haenlein et al. | Jul 2005 | B2 |
6959736 | Järvenkylä | Nov 2005 | B2 |
6962168 | McDaniel et al. | Nov 2005 | B2 |
6978795 | Perrin | Dec 2005 | B2 |
7111640 | Rhodes | Sep 2006 | B2 |
7118138 | Rowley et al. | Oct 2006 | B1 |
7225828 | Giagni et al. | Jun 2007 | B2 |
7231936 | Chang | Jun 2007 | B2 |
20020100139 | Rowley | Aug 2002 | A1 |
20020167171 | Becker et al. | Nov 2002 | A1 |
20040007278 | Williams | Jan 2004 | A1 |
20040021120 | Turnau, III et al. | Feb 2004 | A1 |
20040060608 | Angus | Apr 2004 | A1 |
20040117906 | Baker et al. | Jun 2004 | A1 |
20040150132 | Rowley | Aug 2004 | A1 |
20040176503 | Czayka et al. | Sep 2004 | A1 |
20050005989 | Roloff | Jan 2005 | A1 |
20050194051 | Pinette | Sep 2005 | A1 |
20060108705 | Rowley | May 2006 | A1 |
20060118185 | Nobili | Jun 2006 | A1 |
20060124183 | Kuo | Jun 2006 | A1 |
20060130908 | Marty et al. | Jun 2006 | A1 |
20060170134 | Rowley et al. | Aug 2006 | A1 |
20060202142 | Marty et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
10133041 | Jan 2003 | DE |
200132343 | Jun 2001 | JP |
WO 0061831 | Oct 2000 | WO |
WO 0225022 | Mar 2002 | WO |
WO 2005108829 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070044852 A1 | Mar 2007 | US |