The present invention relates to a wave antenna coupled to a wireless communication device so that the wireless communication device can wirelessly communicate information.
Wireless communication devices are commonly used today to wirelessly communicate information about goods. For example, transponders may be attached to goods during their manufacture, transport and/or distribution to provide information, such as the good's identification number, expiration date, date of manufacture or “born on” date, lot number, and the like. The transponder allows this information to be obtained unobtrusively using wireless communication without slowing down the manufacturing, transportation, and/or distribution process.
Some goods involve environmental factors that are critical to their manufacture and/or intended operation. An example of such a good is a vehicle tire. It may be desirable to place a wireless communication device in a tire so that information regarding the tire, such as a tire's identification, pressure, temperature, and other environmental information, can be wirelessly communicated to an interrogation reader during the tire's manufacture and/or use.
Tire pressure monitoring may be particularly important since the pressure in a tire governs its proper operation and safety in use. For example, too little pressure in a tire during its use can cause a tire to be damaged by the weight of a vehicle supported by the tire. Too much pressure can cause a tire to rupture. Tire pressure must be tested during the manufacturing process to ensure that the tire meets intended design specifications. The tire pressure should also be within a certain pressure limits during use in order to avoid dangerous conditions. Knowledge of the tire pressure during the operation of a vehicle can be used to inform an operator and/or vehicle system that a tire has a dangerous pressure condition. The vehicle may indicate a pressure condition by generating an alarm or warning signal to the operator of the vehicle.
During the manufacturing process of a tire, the rubber material comprising the vehicle tire is violently stretched during its manufacture before taking final shape. Wireless communication devices placed inside tires during their manufacture must be able to withstand this stretching and compression and still be able to operate properly after the completion of the tire's manufacture. Since wireless communication devices are typically radio-frequency communication devices, an antenna must be coupled to the wireless communication device for communication. This antenna and wireless communication device combination may be placed in the inside of the tire along its inner wall or inside the rubber of tire for example. This results in stretching and compression of the wireless communication device and antenna whenever the tire is stretched and compressed. Often, the antenna is stretched and subsequently damaged or broken thereby either disconnecting the wireless communication device from an antenna or changing the length of the antenna, which changes the operating frequency of the antenna. In either case, the wireless communication device may be unable to communicate properly when the antenna is damaged or broken.
Therefore, an object of the present invention is to provide an antenna for a wireless communication device that can withstand a force, such as stretching or compression, and not be susceptible to damage or a break. In this manner, a high level of operability can be achieved with wireless communication devices coupled to antennas for applications where a force is placed on the antenna.
The present invention relates to a wave antenna that is coupled to a wireless communication device, such as a transponder, to wirelessly communicate information. The wave antenna is formed through a series of alternating bends in a substantially straight conductor, such as a wire, to form at least two different sections wherein at least one section of the conductor is bent at an angle of less than 180 degrees with respect to the other. A wave antenna is capable of stretching when subjected to a force without being damaged. A wave antenna can also provide improved impedance matching capability between the antenna and a wireless communication device because of the reactive interaction between different sections of the antenna conductor. In general, varying the characteristics of the conductor wire of the wave antenna, such as diameter, the angle of the bends, the lengths of the sections formed by the bends, and the type of conductor wire, will modify the cross coupling and, hence, the impedance of the wave antenna.
In a first wave antenna embodiment, a wireless communication device is coupled to a single conductor wave antenna to form a monopole wave antenna.
In a second wave antenna embodiment, a wireless communication device is coupled to two conductor wave antennas to form a dipole wave antenna.
In a third wave antenna embodiment, a dipole wave antenna is comprised out of conductors having different sections having different lengths. The first section is coupled to the wireless communication device and forms a first antenna having a first operating frequency. The second section is coupled to the first section and forms a second antenna having a second operating frequency. The wireless communication device is capable of communicating at each of these two frequencies formed by the first antenna and the second antenna.
In a fourth wave antenna embodiment, a resonating conductor is additionally coupled to the wireless communication device to provide a second antenna operating at a second operating frequency. The resonating ring may also act as a stress relief for force placed on the wave antenna so that such force is not placed on the wireless communication device.
In another embodiment, the wireless communication device is coupled to a wave antenna and is placed inside a tire so that information can be wirelessly communicated from the tire to an interrogation reader. The wave antenna is capable of stretching and compressing, without being damaged, as the tire is stretched and compressed during its manufacture and pressurization during use on a vehicle.
In another embodiment, the interrogation reader determines the pressure inside a tire by the response from a wireless communication device coupled to a wave antenna placed inside the tire. When the tire and, therefore, the wave antenna stretch to a certain length indicative that the tire is at a certain threshold pressure, the length of the antenna will be at the operating frequency of the interrogation reader so that the wireless communication device is capable of responding to the interrogation reader.
In another embodiment, a method of manufacture is disclosed on one method of manufacturing the wave antenna out of a straight conductor and attaching wireless communication devices to the wave antenna. The uncut string of wireless communication devices and wave antennas form one continuous strip that can be wound on a reel and later unwound, cut and applied to a good, object, or article of manufacture.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The present invention relates to a wave antenna that is coupled to a wireless communication device, such as a transponder, to wirelessly communicate information. The wave antenna is formed through a series of alternating bends in a substantially straight conductor, such as a wire, to form at least two different sections wherein at least one section of the conductor is bent at an angle of less than 180 degrees with respect to each other. A wave antenna is capable of stretching without being damaged when subjected to a force. A wave antenna can also provide improved impedance matching capability between the antenna and a wireless communication device because of the reactive interaction between different sections of the antenna conductor. In general, varying the characteristics of the conductor wire of the wave antenna, such as diameter, the angle of the bends, the lengths of the sections formed by the bends, and the type of conductor wire, will modify the cross coupling and, hence, the impedance of the wave antenna.
Before discussing the particular aspects and applications of the wave antenna as illustrated in
The control system 12 may be any type of circuitry or processor that receives and processes information received by the communication electronics 14, including a micro-controller or microprocessor. The wireless communication device 10 may also contain a memory 16 for storage of information. Such information may be any type of information about goods, objects, or articles of manufacture, including but not limited to identification, tracking, environmental information, such as pressure and temperature, and other pertinent information. The memory 16 may be electronic memory, such as random access memory (RAM), read-only memory (ROM), flash memory, diode, etc., or the memory 16 may be mechanical memory, such as a switch, dipswitch, etc.
The control system 12 may also be coupled to sensors that sense environmental information concerning the wireless communication device 10. For instance, the control system 12 may be coupled to a pressure sensor 18 to sense the pressure on the wireless communication device 10 and/or its surroundings. The control system 12 may also be coupled to a temperature sensor 19 to sense the temperature of the wireless communication device 10 or the ambient temperature around the wireless communication device 10. More information on different types of pressure sensors 18 that can be used to couple to the control system are disclosed in U.S. Pat. Nos. 6,299,349 and 6,272,936, entitled “Pressure and temperature sensor” and “Pressure sensor,” respectively, both of which are incorporated herein by reference in their entirety.
The temperature sensor 19 may be contained within the wireless communication device 10, or external to the wireless communication device 10. The temperature sensor 19 may be any variety of temperature sensing elements, such as a thermistor or chemical device. One such temperature sensor 19 is described in U.S. Pat. No. 5,959,524, entitled “Temperature sensor,” incorporated herein by reference in its entirety. The temperature sensor 19 may also be incorporated into the wireless communication device 10 or its control system 12, like that described in U.S. Pat. No. 5,961,215, entitled “Temperature sensor integral with microprocessor and methods of using same,” incorporated herein by reference in its entirety. However, note that the present invention is not limited to any particular type of temperature sensor 19.
Some wireless communication devices 10 are termed “active” devices in that they receive and transmit data using their own energy source coupled to the wireless communication device 10. A wireless communication device 10 may use a battery for power as described in U.S. Pat. No. 6,130,602 entitled “Radio frequency data communications device,” or may use other forms of energy, such as a capacitor as described in U.S. Pat. No. 5,833,603, entitled “Implantable biosensing transponder.” Both of the preceding patents are incorporated herein by reference in their entirety.
Other wireless communication devices 10 are termed “passive” devices meaning that they do not actively transmit and therefore may not include their own energy source for power. One type of passive wireless communication device 10 is known as a “transponder.” A transponder effectively transmits information by reflecting back a received signal from an external communication device, such as an interrogation reader. An example of a transponder is disclosed in U.S. Pat. No. 5,347,280, entitled “Frequency diversity transponder arrangement,” incorporated herein by reference in its entirety. Another example of a transponder is described in co-pending patent application Ser. No. 09/678,271, entitled “Wireless communication device and method,” incorporated herein by reference in its entirety.
The interrogation reader 20 communicates with the wireless communication device 10 by emitting an electronic signal 32 modulated by the interrogation communication electronics 24 through the interrogation antenna 28. The interrogation antenna 28 may be any type of antenna that can radiate a signal 32 through a field 34 so that a reception device, such as a wireless communication device 10, can receive such signal 32 through its own antenna 17. The field 34 may be electromagnetic, magnetic, or electric. The signal 32 may be a message containing information and/or a specific request for the wireless communication device 10 to perform a task or communicate back information. When the antenna 17 is in the presence of the field 34 emitted by the interrogation reader 20, the communication electronics 14 are energized by the energy in the signal 32, thereby energizing the wireless communication device 10. The wireless communication device 10 remains energized so long as its antenna 17 is in the field 34 of the interrogation reader 20. The communication electronics 14 demodulates the signal 32 and sends the message containing information and/or request to the control system 12 for appropriate actions.
It is readily understood to one of ordinary skill in the art that there are many other types of wireless communications devices and communication techniques than those described herein, and the present invention is not limited to a particular type of wireless communication device, technique or method.
A wave antenna 17 may be particularly advantageous to use with a wireless communication device 10 in lieu of a straight antenna. One advantage of a wave antenna 17 is that it is tolerant to stretching without substantial risk of damage or breakage to the conductor. Certain types of goods, objects, or articles of manufacture may encounter a force, such as stretching or compression, during their manufacture and/or normal use. If a wireless communication device 10 uses a straight conductor as antenna 17 and is attached to goods, objects, or articles of manufacture that are subjected to a force during their manufacture or use, the antenna 17 may be damaged or broken when the good, object or article of manufacture is subjected to such force. If the antenna 17 is damaged or broken, this may cause the wireless communication device 10 to be incapable of wireless communication since a change in the length or shape of the conductor in the antenna 17 may change the operating frequency of the antenna 17.
A wave antenna 17, because of its bent sections 21, also causes the field emitted by the conductors in sections 21 to capacitively couple to other sections 21 of the wave antenna 17. This results in improved impedance matching with the wireless communication device 10 to provide greater and more efficient energy transfer between the wireless communication device 10 and the wave antenna 17. As is well known to one of ordinary skill in the art, the most efficient energy transfer occurs between a wireless communication device 10 and an antenna 17 when the impedance of the antenna 17 is the complex conjugate of the impedance of the wireless communication device 10.
The impedance of a straight conductor antenna 17 is dependant on the type, size, and shape of the conductor. The length of the antenna 17 is the primary variable that determines the operating frequency of the antenna 17. Unlike a straight conductor antenna 17, a wave antenna 17 can also be varied in other ways not possible in a straight conductor antenna 17. In a wave antenna 17, other variables exist in the design of the antenna in addition to the type, size, shape and length of the conductor. The impedance of a wave antenna 17 can also be varied by varying the length of the individual sections 21 of the conductor making up the wave antenna 17 and the angle between these individual sections 21 in addition to the traditional variables available in straight conductor antennas 17. These additional variables available in wave antennas 17 can be varied while maintaining the overall length of the conductor so that the operating frequency of the wave antenna 17 is maintained. In this embodiment, the lengths of the individual sections 21 and the angles between the individual sections 21 are the same; however, they do not have to be.
In summary, a wave antenna 17 provides the ability to alter and select additional variables not possible in straight conductor antennas 17 that affect the impedance of the antenna 17, thereby creating a greater likelihood that a wave antenna's 17 impedance can be designed to more closely match the impedance of the wireless communication device 10. Of course, as is well known by one of ordinary skill in the art, the type of materials attached to the wave antenna 17 and the material's dielectric properties also vary the impedance and operating frequency of the wave antenna 17. These additional variables should also be taken into account in the final design of the wave antenna 17. The reactive cross-coupling that occurs between different sections 21 of the wave antenna 17 also contribute to greater impedance matching capability of the wave antenna 17 to a wireless communication device 10. More information on impedance matching between a wireless communication device 10 and an antenna 17 for efficient transfer of energy is disclosed in U.S. pending patent application Ser. No. 09/536,334, entitled “Remote communication using slot antenna,” incorporated herein by reference in its entirety.
The first symmetrical sections 21A, 21B are 30.6 millimeters or λ/4 in length and are coupled to the wireless communication device 10 so that the wave antenna 17 is capable of receiving 2.45 GHz signals. The second symmetrical sections 21C, 21D are coupled to the first sections 21A, 21B, respectively, to form a second dipole antenna for receiving signals at a second frequency. In this embodiment, the second sections 21C, 21D are 70 millimeters in length and are coupled to the first sections 21A, 21B, respectively, to form lengths that are designed to receive 915 MHz signals. Also note that bends in the conductor in the wave antenna 17 are not constant. The bends in the wave antenna 17 that are made upward are made at an angle of less than 180 degrees. The bends in the wave antenna 17 that are made downward are made at an angle of 180 degrees.
Note that it is permissible for bends in sections 21 of the conductor to be 180 degrees so long as all of the sections 21 in the conductor are not bent at 180 degrees with respect to adjacent sections 21. If all of the sections 21 in the conductor are bent at 180 degrees, then the conductor will effectively be a straight conductor antenna 17 and not a wave antenna 17.
This embodiment may be particularly advantageous if it is necessary for the wireless communication device 10 to be capable of wirelessly communicating regardless of the force, such as stretching or compression, exerted on the wave antenna 17. The resonating ring 40 is designed to remain in its original shape regardless of the application of any force that may be placed on the wireless communication device 10 or a good, object, or article of manufacture that contains the wireless communication device 10. Depending on the force exerted on the wave antenna 17 or a good, object or article of manufacture that contains the wave antenna 17 and wireless communication device 10, the length of the wave antenna 17 may change, thereby changing the operating frequency of the wave antenna 17. The new operating frequency of the wave antenna 17 may be sufficiently different from the normal operating frequency such that wave antenna 17 and the wireless communication device 10 could not receive and/or demodulate signals sent by the interrogation reader 20. The resonating ring 40 is capable of receiving signals 32 regardless of the state of the wave antenna 17.
This embodiment may be advantageous in cases where a force, placed on the dipole wave antenna 17 without providing a relief mechanism other than the wireless communication device 10 itself would possibly cause the dipole wave antenna 17 to disconnect from the wireless communication device 10, thus causing the wireless communication device 10 to be unable to wirelessly communicate. The resonating ring 40 may be constructed out of a stronger material than the connecting point between the dipole wave antenna 17 and the wireless communication device 10, thereby providing the ability to absorb any force placed on the dipole wave antenna 17 without damaging the resonating ring 40. This embodiment may also be particularly advantageous if the wireless communication device 10 is placed on a good, object or article of manufacture that undergoes force during its manufacture or use, such as a rubber tire, for example.
In this embodiment, a wireless communication device 10 and dipole wave antenna 17 are attached on the inner surface of the tire 50 on the other side of the tread surface 52. During the manufacturing of a tire 50, the rubber in the tire 50 undergoes a lamination process whereby the tire 50 may be stretched up to approximately 1.6 times its normal size and then shrunk back down to the normal dimensions of a wheel. If a wireless communication device 10 is placed inside the tire 50 during the manufacturing process, the wireless communication device 10 and antenna 17 must be able to withstand the stretching and shrinking that a tire 50 undergoes without being damaged. The wave antenna 17 of the present invention is particularly suited for this application since the wave antenna 17 can stretch and compress without damaging the conductor of the wave antenna 17.
Also, a tire 50 is inflated with gas, such as air, to a pressure during its normal operation. If the wireless communication device 10 and antenna 17 are placed inside the tread surface 52 or inside the tire 50, the wireless communication device 10 and antenna 17 will stretch and compress depending on the pressure level in the tire 50. The more pressure contained in the tire 50, the more the tire 50 will stretch. Therefore, any wireless communication device 10 and antenna 17 that is contained inside the tire 50 or inside the rubber of the tire 50 must be able to withstand this stretching without being damaged and/or affecting the proper operation of the wireless communication device 10.
The process starts (block 70), and the interrogation reader 20 emits a signal 32 through the field 34 as discussed previously for operation of the interrogation reader 20 and wireless communication device 10 illustrated in
The reporting system 77 may also communicate information received from the wireless communication device 10, via the interrogation reader 20, to a remote system 78 located remotely from the reporting system 77 and/or the interrogation reader 20. The communication between the reporting system 77 and the remote system 78 may be through wired communication, wireless communication, modem communication or other networking communication, such as the Internet. Alternatively, the interrogation reader 20 may communicate the information received from the wireless communication device 10 directly to the remote system 78 rather than first reporting the information through the reporting system 77 using the same or similar communication mediums as may be used between the reporting system 77 and the remote system 78.
The second step of the process involves placing tin solder on portions of the wave antenna 17 so that a wireless communication device 10 can be soldered and attached to the wave antenna 17 in a later step. A soldering station 123 is provided and is comprised of a first tinning position 123A and a second tinning position 123B. For every predefined portion of the wave antenna 17 that passes by the soldering station 123, the first tinning position 123A and second tinning position 123B raise upward to place tin solder on the left side of the peak 124A and an adjacent right side of the peak 124A so that the wireless communication device 10 can be soldered to the wave antenna 17 in the third step of the process. Please note that the process may also use glue instead of solder to attach the wireless communication device 10 to the wave antenna 17.
The third step of the process involves attaching a wireless communication device 10 to the wave antenna 17. A wireless communication device is attached to the left side of the peak 124A and the right side of the peak 124B at the points of the tin solder. An adhesive 126 is used to attach the leads or pins (not shown) of the wireless communication device 10 to the tin solder, and solder paste is added to the points where the wireless communication device 10 attach to the tin solder on the wave antenna 17 to conductively attach the wireless communication device 10 to the wave antenna 17. Note that when the wireless communication device 10 is attached to the wave antenna 17, the peak remains on the wireless communication device 10 that causes a short 128 between the two input ports (not shown) of the wireless communication device 10 and the two wave antennas 17 coupled to the wireless communication device 10.
The fourth step in the process involves passing the wireless communication device 10 as connected to the wave antenna 17 through a hot gas re-flow soldering process well known to one of ordinary skill in the art to securely attach the solder between the leads of the wireless communication device 10 and the wave antenna 17.
The fifth step in the process involves the well-known process of cleaning away any excess solder that is unused and left over during the previous soldering.
The sixth step in the process involves removing the short 128 between the two wave antennas 17 left by the peak 124 of the wave antenna 17 from the third step in the process. Depending on the type of wireless communication device 10 and its design, the short 128 may or may not cause the wireless communication device 10 to not properly operate to receive signals and re-modulate response signals. If the wireless communication device 10 operation is not affected by this short 128, this step can be skipped in the process.
The seventh step in the process involves encapsulating the wireless communication device 10. The wireless communication device 10 is typically in the form of a RF integrated circuit chip that is encapsulated with a hardened, non-conductive material 130, such as a plastic or epoxy, to protect the inside components of the chip from the environment.
The eighth and last step involves winding wireless communication devices 10 as attached on the wave antenna 17 onto a reel 130. The wireless communication devices 10 and wave antenna 17 are contained on a strip since the wave antenna 17 conductor has not been yet cut. When it is desired to apply the wireless communication device 10 and attached wave antenna 17 to a good, object, or article of manufacture, such as a tire 50, the wireless communication device 10 and attached wave antenna 17 can be unwound from the reel 130 and the wave antenna 17 conductor cut in the middle between two consecutive wireless communication devices 10 to form separate wireless communication device 10 and dipole wave antenna 17 devices.
The embodiments set forth above represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the preceding description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It should be understood that the present invention is not limited to applications involving a vehicle tire. It should also be understood that the present invention is not limited to any particular type of component, including but not limited to the wireless communication device 10 and its components, the interrogation reader 20 and its components, the pressure sensor 18, the temperature sensor 19, the resonating ring 40, the tire 50 and its components, the reporting system 77, the remote system 78, the wheel 100 and its components, the cogs 120, the soldering station 123, the adhesive 124, and the encapsulation material 130. For the purposes of this application, couple, coupled, or coupling is defined as either a direct connection or a reactive coupling. Reactive coupling is defined as either capacitive or inductive coupling.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a Continuation of application Ser. No. 10/012,206, filed Oct. 29, 2001, now U.S. Pat. No. 6,630,910, issued Oct. 7, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3202985 | Perkins et al. | Aug 1965 | A |
3508274 | Kesler et al. | Apr 1970 | A |
3689929 | Moody | Sep 1972 | A |
3778833 | Castrovillo et al. | Dec 1973 | A |
4250509 | Collins | Feb 1981 | A |
4520365 | Langheck | May 1985 | A |
4529961 | Nishimura et al. | Jul 1985 | A |
4739516 | Starkloff et al. | Apr 1988 | A |
4864322 | Yamamoto et al. | Sep 1989 | A |
4866456 | Ebey | Sep 1989 | A |
5181975 | Pollack et al. | Jan 1993 | A |
5218861 | Brown et al. | Jun 1993 | A |
5274393 | Scott | Dec 1993 | A |
5319354 | Myatt | Jun 1994 | A |
5347280 | Schuermann | Sep 1994 | A |
5479171 | Schuermann | Dec 1995 | A |
5554242 | Brown et al. | Sep 1996 | A |
5731754 | Lee, Jr. et al. | Mar 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5926107 | Glehr | Jul 1999 | A |
5959524 | Wienand et al. | Sep 1999 | A |
5961215 | Lee et al. | Oct 1999 | A |
5972156 | Brady et al. | Oct 1999 | A |
6016127 | Casiola et al. | Jan 2000 | A |
6023250 | Cronyn | Feb 2000 | A |
6043746 | Sorrells | Mar 2000 | A |
6087930 | Kulka et al. | Jul 2000 | A |
6097347 | Duan et al. | Aug 2000 | A |
6100804 | Brady et al. | Aug 2000 | A |
6104349 | Cohen | Aug 2000 | A |
6127989 | Kunz | Oct 2000 | A |
6130602 | OTool et al. | Oct 2000 | A |
6140974 | Dalley | Oct 2000 | A |
6140975 | Cohen | Oct 2000 | A |
6147606 | Duan | Nov 2000 | A |
6198442 | Rutkowski et al. | Mar 2001 | B1 |
6208244 | Wilson et al. | Mar 2001 | B1 |
6257289 | Tomita et al. | Jul 2001 | B1 |
6265977 | Vega et al. | Jul 2001 | B1 |
6272936 | Oreper et al. | Aug 2001 | B1 |
6278413 | Hugh et al. | Aug 2001 | B1 |
6281794 | Duan | Aug 2001 | B1 |
6285342 | Brady et al. | Sep 2001 | B1 |
6299349 | Steinel et al. | Oct 2001 | B1 |
6320509 | Brady et al. | Nov 2001 | B1 |
6320545 | Nagumo et al. | Nov 2001 | B1 |
6366260 | Carrender | Apr 2002 | B1 |
6388567 | Bohm et al. | May 2002 | B1 |
6405064 | Endo et al. | Jun 2002 | B1 |
6417489 | Blankenship | Jul 2002 | B1 |
6424315 | Glenn et al. | Jul 2002 | B1 |
6429817 | Creigh et al. | Aug 2002 | B1 |
6429831 | Babb | Aug 2002 | B2 |
6448942 | Weinberger et al. | Sep 2002 | B2 |
6459413 | Tseng et al. | Oct 2002 | B1 |
6463798 | Niekerk et al. | Oct 2002 | B2 |
6474380 | Rensel et al. | Nov 2002 | B1 |
6480110 | Lee et al. | Nov 2002 | B2 |
6535175 | Brady et al. | Mar 2003 | B2 |
6630885 | Hardman et al. | Oct 2003 | B2 |
6630910 | Forster et al. | Oct 2003 | B2 |
6853347 | Forster et al. | Feb 2005 | B2 |
6856285 | Bettin | Feb 2005 | B2 |
6870506 | Chen | Mar 2005 | B2 |
6895655 | Forster et al. | May 2005 | B2 |
6899153 | Pollack | May 2005 | B1 |
6903704 | Forster et al. | Jun 2005 | B2 |
6999028 | Egbert | Feb 2006 | B2 |
7019695 | Cohen | Mar 2006 | B2 |
7050017 | King | May 2006 | B2 |
7116213 | Thiesen | Oct 2006 | B2 |
7256751 | Cohen | Aug 2007 | B2 |
20010011964 | Sadler et al. | Aug 2001 | A1 |
20020066506 | Wilson | Jun 2002 | A1 |
20020075145 | Hardman et al. | Jun 2002 | A1 |
20020088517 | Shimura | Jul 2002 | A1 |
20020093422 | Shimura | Jul 2002 | A1 |
20020116992 | Rickel | Aug 2002 | A1 |
20020126005 | Hardman et al. | Sep 2002 | A1 |
20020140574 | Starkey et al. | Oct 2002 | A1 |
20020190852 | Lin | Dec 2002 | A1 |
20020190853 | Nigon et al. | Dec 2002 | A1 |
20030005760 | Bulst et al. | Jan 2003 | A1 |
20030117334 | Forster et al. | Jun 2003 | A1 |
20030132893 | Forster et al. | Jul 2003 | A1 |
20040017321 | Benedict et al. | Jan 2004 | A1 |
20040021559 | O'Brien | Feb 2004 | A1 |
20040032377 | Forster et al. | Feb 2004 | A1 |
20050193549 | Forster et al. | Sep 2005 | A1 |
20060279425 | Forster | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
37 36 803 | Nov 1989 | DE |
100 30 402 | Feb 2001 | DE |
0 884 796 | Dec 1998 | EP |
1 177 597 | Feb 2002 | EP |
1037755 | Mar 2002 | EP |
1-116899 | Aug 1989 | JP |
2-79602 | Mar 1990 | JP |
11-154819 | Jun 1999 | JP |
2001-525281 | Dec 2001 | JP |
2002-503047 | Jan 2002 | JP |
2002-64329 | Feb 2002 | JP |
2003-505962 | Feb 2003 | JP |
9929522 | Jun 1999 | WO |
WO 9929525 | Jun 1999 | WO |
9940647 | Aug 1999 | WO |
WO 9956345 | Nov 1999 | WO |
WO 9967851 | Dec 1999 | WO |
WO 0069016 | Nov 2000 | WO |
0108254 | Feb 2001 | WO |
WO 0207085 | Jan 2002 | WO |
WO 03038747 | May 2003 | WO |
WO2004070876 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040041739 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10012206 | Oct 2001 | US |
Child | 10637326 | US |