Sea wave energy is concentrated at the sea surface, from which it decays exponentially with depth. For deepwater waves, the decay in energy is such that at a depth equal to half the wavelength (the bottom of the wave energy zone) the remaining wave energy is no more than 5% of energy at the surface. Systems are being developed for extracting energy from sea waves, especially in the form of electricity.
There have been recent developments of SSM (synthetic stretchable material) such as EAP (electro active polymers, e.g. PVDF or polyvinyl chloride, electrets, etc.) which generates electricity when stretched or when the amount of stretching changes. Such SSM material is described in U.S. Pat. No. 6,768,246 by Pelrine and U.S. Pat. No. 6,812,624 by Pel, and in US patent publication 200110029401 by Ishido. The generation of electrical energy from sea waves using a simple and efficient system, would be of value.
In accordance with one embodiment of the invention, systems are provided for producing electrical energy from sea waves, using SSM (synthetic stretchable material) in an efficient manner. In one system, a bendable tube, especially one that is of elastomeric material, lies at the sea surface, wherein the tube floats at the sea surface. The tube is elongated and extends at least partially parallel to the direction of wave propagation. The waves produce a bulge in the elastic tube, with the bulge propagating along the length of the tube. Bands of SSM material extend around the centerline of the tube and are stretched and relaxed as the bulge passes by the bands, to generate electricity in electrodes lying at opposite faces of the tube.
The waves also bend the tube. Several SSM power take off systems (PTOs) for converting waves into mechanical and/or electrical energy are spaced along the length of the tube. Sheets of SSM material extend parallel to the centerline of the tube between PTOs, with the SSM sheets lying at the top and bottom of the tube. Bending of the tube to follow the curves of the waves, repeatedly increase and decrease stretching of the SSM sheets and thereby cause the SSM sheets to generate electricity in the electrodes.
A multiplicity of tubes with SSM material lie in a wave energy-extraction farm. The tubes are connected together by short electrical cables and the tubes are moored to the sea bed. The outputs of the multiple tubes are delivered to an electronic circuit that produces power with a voltage that varies only moderately.
In another system, elastic tubes are moored to lie at the level of sea wave troughs to lie under the sea waves most of the time. The increased water pressure under the crest of a wave, compresses a corresponding location of the tube, while leaving uncompressed those tube locations that lie under the trough of the wave. The variation of tube cross section, is used to stretch and relax sheets of SSM material.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
The height of ocean waves varies, with a common calm condition resulting in a wave height of under one meter and a wave period of under 7 seconds. A wave height of 1 to 4 meters and wave period of 10 to 15 seconds is a common sea condition. A wave height greater than 4 meters and wave period of more than 18 seconds occurs in a large storm, such as one that occurs once every 10 years. The average sea height is halfway between the crest and trough of waves.
Instead of using only one layer of SSM material, applicant can use a plurality of layers 44, 45 (with a pair of electrodes at opposite faces of each SSM layer). The plurality of layers can consist of a long layer rolled into a spiral.
When the bulge 24 passes a location along the tube, the SSM layer 44 is stretched and then relaxed, and it generates an electrical current on its electrodes. Thus, each time a wave passes along the length of the tube and generates a traveling bulge along the tube centerline, the tube device generates a current.
When a wave passes along the length of the tube device 12, sections 50 of the tube that are spaced along the length of the tube, move up and down to follow the sinusoidal curvature of the top of the wave. The tube device or tube floats at the sea surface 20 with the top of the tube lying above the sea surface. In a quiescent sea the sea surface level would be at 52 and the tube would be straight and horizontal, with the top of the tube lying above the sea surface. In a sea wave, sections of the tube that lie above the wave trough drop down in the water under their own weight. Conversely, sections of the tube lying below the wave crest move up in the water because of their buoyancy that tends to locate the top of the tube section above the sea surface. All of this causes the tube to follow the wave curvature.
A tube 12 that applicant designed had a diameter of one meter and a length of 20 meters.
In the present invention, one WEC (wave energy converter) is fitted with several PTOs (64,
In one embodiment, the PTOs are regularly spaced in the direction of propagation of the wave (by a fraction of the wave length of interest) along the length of a deformable WEC (wave energy converter). In this case, the switching sequence is incremental starting from the first PTO located on the up-wave side of the WEC to the last PTO located on the down-wave side. As a result an “electrical wave” of voltage is propagating along the WEC length at the same speed as the real sea wave. The same principle can be applied even if the synthetic stretchable material PTOs are actuated randomly by an irregular wave sea state coming from any direction. The power electronics are used to optimize the sequence of charging and discharging of each PTO in order to maintain the output voltage almost constant.
It is also possible to discharge on activated PTO into another un-activated one in order to progressively pump up the voltage. This process can be repeated until the voltage is sufficiently close to Vmax. This allows the WEC system to generate voltages close to Vmax even when the sea waves are smaller.
Thus, the invention provides systems for generating electricity by absorbing energy using SSM (synthetic stretchable material) that produces energy as it stretches. The present invention provides systems for generating a continuous and largely constant output voltage close to the maximum voltage generated by the system even when the sea state is calm.
In embodiments where the ends 150, 152 (
Thus, applicant provides simple and reliable systems for generating electricity from sea waves by the use of a buoyant tube with elastomeric tube walls, that is moored to lie at the sea surface, so the tube undergoes changes as sea waves pass through or over it. One tube floats with the top of the tube lying above the quiescent sea level so the tube bends to follow the shape of a wave passing along the length of the tube. The tube also experiences a bulge that moves along the length of the tube. Another tube lies below the sea surface a majority of the time, and undergoes a change in diameter as a wave passes along the length of the tube. For these tubes, SSM material, which generates electricity when it undergoes a change in stretching, is coupled to the tube walls and is used to generate electricity.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Applicant claims priority from U.S. provisional patent application Ser. No. 61/135,729 filed 23 Jul. 2008 and U.S. provisional patent application Ser. No. 61/191,162 filed 5 Sep. 2008.
Number | Name | Date | Kind |
---|---|---|---|
3816774 | Ohnuki et al. | Jun 1974 | A |
4056742 | Tibbetts | Nov 1977 | A |
4145882 | Thorsheim | Mar 1979 | A |
6229225 | Carroll | May 2001 | B1 |
6424079 | Carroll | Jul 2002 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6812624 | Pei et al. | Nov 2004 | B1 |
7362032 | Pelrine et al. | Apr 2008 | B2 |
7538445 | Kornbluh et al. | May 2009 | B2 |
7557456 | Kornbluh et al. | Jul 2009 | B2 |
7696634 | Filardo | Apr 2010 | B2 |
7863768 | Filardo | Jan 2011 | B2 |
7898152 | Stocker et al. | Mar 2011 | B2 |
7980071 | Farley et al. | Jul 2011 | B2 |
20010029401 | Ishida et al. | Oct 2001 | A1 |
20080016860 | Kornbluh et al. | Jan 2008 | A1 |
20100314871 | Jean et al. | Dec 2010 | A1 |
20110006532 | Grey et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
4339307 | May 1995 | DE |
2081387 | Feb 1982 | GB |
WO 8400583 | Feb 1984 | WO |
WO 2007088325 | Aug 2007 | WO |
WO 2008052559 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100019498 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61135729 | Jul 2008 | US | |
61191162 | Sep 2008 | US |