Wave-front engineering with an achromatic x-y variable light modulator

Information

  • Research Project
  • 8252513
  • ApplicationId
    8252513
  • Core Project Number
    R43GM103680
  • Full Project Number
    1R43GM103680-01
  • Serial Number
    103680
  • FOA Number
    PA-11-096
  • Sub Project Id
  • Project Start Date
    7/1/2012 - 12 years ago
  • Project End Date
    6/30/2013 - 11 years ago
  • Program Officer Name
    FRIEDMAN, FRED K.
  • Budget Start Date
    7/1/2012 - 12 years ago
  • Budget End Date
    6/30/2013 - 11 years ago
  • Fiscal Year
    2012
  • Support Year
    01
  • Suffix
  • Award Notice Date
    6/25/2012 - 12 years ago

Wave-front engineering with an achromatic x-y variable light modulator

DESCRIPTION (provided by applicant): The primary proposed objective is to determine the feasibility of achromatic spatial modulation of the optical wavefront in microscopy. Modern microscopy methods seek to adapt traditional optical systems for optimal function with digital detection and processing systems. These methods employ devices, referred to as spatial light modulators, to manipulate the phase and amplitude of light illuminating, and/or transmitted by, a sample. Phase and amplitude of light waves in the microscope illumination and (or) imaging paths are engineered in application-specific ways; to improve resolution, acquire quantitative data in addition to observational data and increase the rate of information throughput. Current spatial light modulation devices are all wavelength dependant, thus the use microscopy methods developed through this approach is restricted. A sample's properties can only be studied one wavelength at a time. To overcome this limitation, Boulder Nonlinear Systems proposes to investigate the feasibility of incorporating alternative phase modulation methods in a liquid-crystal spatial light modulator. The proposed geometric phase modulation methods are wavelength independent. Modulation of the geometric phase will allow achromatic lateral (x-y) phase modulation of the microscope wavefront over the visible wavelength range. Implementation of this approach is currently limited by the state of the art in liquid crystal technology. However, the potential benefits of an achromatic spatial light modulator to the field of microscopy include expanded capability and increased commercial accessibility of current microscopy methods using spatial light modulators as well as new avenues for innovative applied microscopy research in biology, chemistry and nanotechnology. Potential barriers to this solution and its applicability to the field of high-resolution optical microscopy will be investigated through assessment of a proto-type programmable liquid crystal spatial light modulator device that operates using achromatic geometric phase modulation methods. Although limited in capability, this device will be used to assess whether or not further research into this approach is warranted. Such an assessment will be made by measuring the difference in chromatic performance between current liquid crystal spatial light modulation methods and geometric phase-shifting modulation in an x-y pixilated device. The marketability of this type of devices will be evaluated through demonstration of stable and uniform operation in a simple achromatic multi- focal imaging experiment. PUBLIC HEALTH RELEVANCE: Wave-front engineering is a multi-disciplinary microscope systems design approach, often implemented with an x-y variable light modulator, which is changing the fundamental limits of optical imaging. Implementation of developing microscope system designs at high speed (~1kHz) and without restriction with regard to wavelength (within the visible range) may allow observation of new dynamic biological and chemical processes.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R43
  • Administering IC
    GM
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    161798
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
  • Funding ICs
    NIGMS:161798\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    BOULDER NONLINEAR SYSTEMS, INC.
  • Organization Department
  • Organization DUNS
    602673188
  • Organization City
    LAFAYETTE
  • Organization State
    CO
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    800268878
  • Organization District
    UNITED STATES