The present invention relates in a first aspect to a wave power assembly, comprising a hull and a linear electric generator, the rotor of which by means of connection means is connected to the hull and the stator of which is arranged to be anchored at a sea/lake bottom.
In a second aspect the invention relates to a wave power plant comprising a plurality of wave power assemblies according to the invention.
In a third aspect, the invention relates to the use of the invented wave power assembly in order to produce electric current.
In a fourth aspect, the invention relates to a method for the generation of electric energy.
In the present application, the term rotor is used for the movable part of the linear generator. Thus, it should be appreciated that the term rotor does not relate to a rotary body but a linearly reciprocating body. Thus, by the direction of motion of the rotor, reference is made to the linear direction of motion thereof.
The wave power assembly according to the invention is primarily intended for but not limited to applications up to 500 kW.
The fact that the stator is arranged for anchorage at the bottom of the sea does not necessarily imply that it is situated on the same. Neither that it has to be stiffly connected to the bottom of the sea. Thus, the stator construction may naturally be floatingly supported and the anchorage may only consist of a line or the like, which prevents the assembly to drive away.
Wave motions in the sea and large lakes are a potential energy source which till now is very little utilized. The available wave energy depends on the wave height and is naturally different for different locations. The average wave energy during a year is dependent on the different wind conditions, which are highly influenced by the distance of the location from the nearest coast. Measurements have, among other things, been made in the North Sea. At a measuring point approx. 100 km to the west of the coast of Jutland where the depth was approx. 50 m, measurings of the wave height have been made.
In order to utilize the energy that is available by the motions of the sea waves, different types of wave power assemblies for the generation of electric power have been proposed. However, these have not succeeded to successfully compete with conventional electric power production. Wave power plants realized hitherto have in the main been test plants or used for local energy supply to navigation buoys. In order for commercial electricity production to be feasible, and thereby give access to the large energy reserve available in the motions of the sea waves, it is not only required that the setting out of the assemblies is carried out in suitably located places. It is also necessary that the assembly is reliable, has high efficiency as well as low manufacturing and operating costs.
Among the feasible principles of the conversion of the wave motion energy to electric energy, a linear generator should in that connection to the largest extent meet these requirements.
The vertical motions of the hull caused by the wave motions can thereby directly be transferred to a reciprocating motion of the rotor of the generator. A linear generator may be made very robust and simple and by it being anchored at the bottom, it becomes solidly unaffectable by streams in the water. The only movable part of the generator will be the reciprocating rotor. By the few movable parts thereof and the simple constructive build-up thereof, the assembly becomes very reliable.
By, for instance, U.S. Pat. No. 6,020,653, a wave power assembly is previously known, which is based on the linear generator principle. Hence, the specification describes a generator anchored at the bottom, which generator produces electric energy from the wave motions of the sea surface. A generator coil is connected to a hull so that the coil moves up and down with the wave motions. A magnetic field acts on the coil when it moves so that an electromagnetic force is generated in the same. The magnetic field is such that it provides a uniform field having a single magnetic orientation along the length of stroke of the entire coil. The generator comprises a base plate on the bottom of the sea that carries the magnetic core in which the coil moves.
Furthermore, a wave power assembly provided with a linear electric generator is previously known by U.S. Pat. No. 4,539,485. The rotor thereof consists of a number of permanent magnets and the winding of the generator is arranged in the surrounding stator.
Further, in PCT/SE02/02405, a wave power assembly is disclosed having a linear generator in which the rotor is permanent magnetic and the stator comprises winding forming a plurality of poles distributed in the direction of motion of the rotor. A spring means is arranged in the form of a tension spring and exerts a downwardly directed tensile force on the rotor, i.e. directed against the lifting force of the hull.
In a wave power assembly of the type that the invention relates to, the rotor is subjected to axial forces. Said forces are pulsating and thereby lead to an uneven running and create disturbances. The object of the present invention is to reduce the same disturbances.
The object set-up has been attained, according to the invention, by a wave power assembly of the kind defined in the preamble of claim 1 comprising the special features that the generator is provided with an electromechanic damping means in order to keep the pulsations of the axial force exerted by the stator on the rotor on a relatively low level, which damping means comprises geometrical arrangement adapted herefor of at least some one of the stator winding, the stator slots and the rotor magnets.
The invention is based on an analysis of the causes for the mentioned disturbances. This has led up to the understanding that the causes to a significant part can be derived to the electromagnetic transformation of energy and the courses of the axial magnetic forces that the stator in that connection exerts on the rotor. As a consequence of the magnets on the rotor passing past the windings of the stator, said forces will pulsate depending on the position of the respective magnetic pole in relation to a stator slot. This insight constitutes the basis for the measures that, according to the invention, are taken in order to overcome the disturbances. By the fact that the generator is provided with means for keeping said pulsations at a relatively low level, the total axial force on the rotor will become much more even than otherwise, which results in more even and more undisturbed running.
The means for this is related to the geometry of the components vital for the electromechanic transformation of energy. Thus, by geometrically arranging the stator winding, the stator slots and the rotor magnets so that pulsating axial force occurring on the respective rotor magnet co-operates contra-cyclically with each other and is leveled out over time, it is attained that the resulting magnetic axial force on the rotor becomes more even during the course of motion, the desired reduction of the disturbances being obtained.
As should be clear from the description above, the term “damping means” should not be understood so that the means has the direct function of damping already developed pulsations but rather to prevent that the pulsations become so large as they would be in conventional arrangements of winding, slots and magnets.
The result will be that the risk of mechanical problems of the generator is reduced. Furthermore, the electromagnetic transformation of energy will be more favourable in that it becomes more even and having a higher efficiency.
According to a preferred embodiment of the invented wave power assembly, the stator comprises multiphase winding, and the electromagnetic damping means consists of the stator winding comprising fractional slot winding. Fractional slot winding is a well-tried construction for rotary electric generators and constitutes a simple and expedient way to, by means of the winding geometry, reduce the axial force pulsations.
According to an additional preferred embodiment, the fractional slot winding has a winding factor that is <1. The advantage of such an embodiment is that it facilitates having less distance between the poles.
According to an alternative preferred embodiment, the fractional slot winding has a winding factor that is >1. This is especially favourable in slow-running machines, which is normally the case in assemblies of the type to which the invention relates.
According to an additional advantageous embodiment, the stator is composed of a plurality of stator packs distributed evenly around the rotor, with each stator pack having a winding that comprises fractional slot winding. Thereby, it is made possible to utilize as large a part as possible of the magnetic field for the induction, and for maximal evenness it is then suitable that all the stator packs are fractional slot winded.
According to an additional preferred embodiment, the electromagnetic damping means comprises that at least some of the poles of the rotor and/or some of the winding slots of the stator are oriented obliquely in relation to a plane perpendicular to the direction of motion of the rotor.
By the poles and/or winding slots being obliquely oriented, it is attained that a pole passes a winding gradually. Thereby, the magnetic force will correspondingly get a gradually increasing and decreasing strength with a less strong pulsation as a consequence.
According to a preferred embodiment, each pole comprises a magnet of an elongate shape having a longitudinal axis that forms an angle to a plane perpendicular to the direction of motion of the rotor.
According to an alternative preferred embodiment, each pole comprises a group of a plurality of magnets, which are axially displaced in relation to each other.
The two embodiments closest above enables a structurally simple way to solely by means of modification of the rotor provide the inclination, wherein the stator can be formed in a conventional way.
According to an additional preferred embodiment, the winding slots form an angle to a plane perpendicular to the direction of motion of the rotor. By means of this embodiment, the rotor can be formed in a conventional way.
The embodiments above may naturally be combined so that the generator has an asymmetric alignment of the magnets as well as the winding slots, if so at different inclinations. It may also be combined with fractional slot winding.
According to an additional preferred embodiment, the rotor is permanent magnetic, which constitutes a simple and expedient embodiment.
The above-mentioned preferred embodiments of the invented wave power assembly are defined in the claims depending on claim 1.
In the second, third and fourth aspects of the invention, the object set-up has been attained by a wave power plant comprising a plurality of wave power assemblies according to the invention, by the use of a wave power plant according to the invention in order to produce electric current, and by a method for production of electric current being carried out by means of a wave power assembly according to the invention, respectively, which are defined in claims 12, 13 and 14, respectively.
By the invented wave power assembly, the invented use and the invented method, advantages of the corresponding type are gained as in the invented wave power assembly and the preferred embodiments of the same and that have been accounted for above.
The invention is explained closer by the appended detailed description of advantageous embodiment examples of the same, reference being made to the appended drawing figures.
The base plate 8 has a centrally arranged hole 10, and concentrically therewith a bottom hole 9 is recessed in the bottom of the sea. The bottom hole 9 may suitably be lined. At the lower end of the bottom hole 9, a tension spring 11 is fastened, which with the other end thereof is fastened at the lower end of the rotor 7. The hole 10 in the base plate 8 and the bottom hole 9 have a diameter allowing the rotor 7 to move freely through the same.
Each stator pack 6a, 6c is composed of a number of modules. In the example shown, it is marked on the stator pack 6a how the same is divided into three vertically distributed modules 61, 62, 63.
When the hull 3 by the wave motions on the sea surface 2 moves up and down, this motion is transferred Via the line 4 to the rotor 7, which receives a corresponding reciprocating motion between the stator packs. Thereby, current is generated in the stator windings. The bottom hole 9 allows the rotor to pass the entire stator in the downward motion thereof. The tension spring 11 gives an additional force to the downward motion so that the line 4 at every instant is kept stretched.
The spring may also be formed so that it in certain situations also can exert an upwardly directed force. By means of a control means 28, the spring constant of the spring may be adjusted so that resonance is attained during as large a part of the time as possible.
In order to be able to resist salt water, the stator is entirely or partly impregnated by VP or silicone.
Each stator pack comprises fractional slot winding, i.e. the winding factor is not an integer.
The winding factor,
where Q is the number of slots, M the number of phases and P the number of poles. Thus, the fractional slot winding represents that Q#MPn, where also n is an integer. This in contrast to conventional winding where Q=MPn. Fractional slot winding is a generally known embodiment as regards rotary electric machines.
In
Each slot 12 contains 4 turns of a winding and the different phases are indicated by different symbols. In this case, q is an integer. Thus,
The surface of the rotor 7 shown in the figure co-operates with a stator pack located above the plane of the figure and having winding slots facing the rotor 7. One of the winding slots 13 of the stator pack is indicated by dashed lines in the figure. When the rotor 7 moves downwards in the figure, the magnet 141a of the first pole 14a will pass past the winding slot 13 and induce current in the winding thereof, wherein as a consequence thereof an upwardly directed force will act on the rotor 7. Then, with some delay, the adjacent magnet 142a will pass the winding slot with the corresponding course of events and then the magnets 143a and 144a. The axial force on the rotor 7 will, in that connection, be distributed in time in comparison with if the magnets 141a-144a of the pole 14a had been oriented in a conventional way, parallel to the winding slot 13. Thereby, the axial force becomes less strongly pulsating.
A wave power plant according to the invention consists of two or more assemblies of the above-described kind. In
The voltages on the DC side may be connected in parallel, connected in series or a combination of both.
Number | Date | Country | Kind |
---|---|---|---|
0301106 | Apr 2003 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2004/000576 | 4/13/2004 | WO | 00 | 10/7/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/090324 | 10/21/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4539485 | Neuenschwander | Sep 1985 | A |
4912746 | Oishi | Mar 1990 | A |
5654602 | Willyoung | Aug 1997 | A |
6020653 | Woodbridge et al. | Feb 2000 | A |
6392314 | Dick | May 2002 | B1 |
6515375 | Beal | Feb 2003 | B1 |
6617705 | Smalser et al. | Sep 2003 | B1 |
6791214 | Korenaga | Sep 2004 | B2 |
6849969 | Kang et al. | Feb 2005 | B2 |
6894416 | Leijon et al. | May 2005 | B1 |
7164212 | Leijon et al. | Jan 2007 | B2 |
Number | Date | Country |
---|---|---|
2272026 | May 1994 | GB |
02311160 | Dec 1990 | JP |
WO 0106119 | Jan 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070040384 A1 | Feb 2007 | US |