1. Field of the Invention
This invention relates to a wave-processing method and a wave-processing die for a core metal of a wet friction material, which gains torque by applying high pressure to an opposite face while dipped in an oil and which is made by joining a friction material substrate to a ring core metal by adhesion.
2. Description of the Related Art
A technique has been developed for waving or undulating a core metal plate of a wet friction material so as to absorb shock in engaging a friction material with an opposite face of a pressure plate. This enables the clutch to smoothly engage. With such technique, the ring-shaped core metal is given a wave shape or undulation in its circumferential direction. Thus, a wave or undulation is provided on a face of a wet friction material that is stuck to the core metal. Specifically, there are two main methods of giving the wave to the core metal of the wet friction material. These conventional methods are described referring to FIG. 14 and FIG. 15.
The cool work process is described referring to FIG. 14. As shown in
On the other hand, in the hot working process, as shown in
In the cool working process shown in
On the other hand, in the hot working process show in
An object of the present invention is to provide a wave-processing method and a wave-processing die of a core metal of a wet friction material that stably achieves a high accuracy of wave shape with a simple process, in a short processing time and at low costs.
According to a first aspect of the invention, there is provided a wave-processing method for a core metal of a wet friction material comprising the steps of stamping out a material steel sheet so as to form a core metal blank having a shape corresponding to a shape of the core metal by a stamping die, and giving a wave shape to the core metal blank in a circumferential direction thereof by a special die at the same time as or after the stamping step. The special die has a main punch as an upper die and a counter punch as a lower die. The main punch and the counter punch have compression faces respectively formed with the wave shape while having a micro-protrusion at a portion corresponding to a top point of the wave shape. The core metal blank is compressed between the main punch and the counter punch so that the micro-protrusion is cut into the core metal blank so as to form a notch on the core metal blank.
According to a second aspect of the invention, there is provided a wave-processing method for a core metal of a wet friction material comprising the following steps. A material steel sheet is compressed by a die having micro-protrusions on an entire surface so as to form notches of a net shape composed of many curves at a front surface and a rear surface of a portion to be the core metal of the material steel sheet, thereby correcting a flatness of the material steel sheet at the portion. Then, the material steel sheet is stamped out after the compressing step so as to form a core metal blank having a shape corresponding to a shape of the core metal by a stamping die. Then, a wave shape is given to the core metal blank in a circumferential direction thereof by a special die at the same time as or after the stamping step. The special die has a main punch and a counter punch. The main punch and the counter punch have compression faces respectively formed with the wave shape. The core metal blank is compressed between the main punch and the counter punch.
According to a third aspect of the invention, there is provided a wave-processing die for a core metal of a wet friction material for stamping out a material steel sheet so as to form a core metal blank having a shape corresponding to a shape of the core metal, and giving a wave shape to the core metal blank in a circumferential direction thereof at the same time as or after stamping. The wave-processing die comprises: a main punch having a compression face; and a counter punch having a compression face oppositely disposed to the compression face of the main punch. The compression faces of the main punch and the counter punch are respectively formed with the wave shape while having a micro-protrusion at a portion corresponding to a top point of the wave shape. The core metal blank is compressed between the main punch and the counter punch so that the micro-protrusion is cut into the core metal blank so as to form a notch on the core metal blank.
In the wave-processing die for a core metal of a wet friction material, the micro-protrusion may have a height of about 1% to 5% of a thickness of the core metal and a width of about 50 μm to 500 μm.
In the wave-processing die for a core metal of a wet friction material, the micro-protrusion may have a shape composed of a plurality of first lines extending straightly in a radial direction of the core and a plurality of second lines extending straightly or curvedly substantially in a circumferential direction of the core metal while crossing the first lines.
In the wave-processing die for a core metal of a wet friction material, the micro-protrusion may have a shape composed of an aggregate of dots having a pyramid-shape.
In the wave-processing die for a core metal of a wet friction, the micro-protrusion may have a cross-section of a wedge and the micro-protrusion of the main punch may be shifted in position from the micro-protrusion of the counter punch in a circumferential direction of the core metal.
In the wave-processing die for a core metal of a wet friction material, the micro-protrusion may have a shape of a broken line.
In the wave-processing die for a core metal of a wet friction, the micro-protrusion may have a length such that opposite ends of the notch formed on the core metal by the micro-protrusion are positioned 0.2 mm or more away from outer and inner circumferences of the core metal.
According to a fourth aspect of the invention, there is provided a wave-processing die for a core metal of a wet friction material. The wave-processing die comprises a first processing die and a second processing die. The first processing die stamps out a material steel sheet so as to form a core metal blank having a shape corresponding to a shape of the core metal and gives a wave shape to the core metal blank in a circumferential direction thereof at the same time as or after stamping. The first processing die has a main punch and a counter punch respectively having compression faces disposed opposite to each other and being respectively formed with the wave shape. A second processing die corrects a flatness of the material steel sheet. The second processing die has a main punch and a counter punch respectively having compression faces disposed opposite to each other and being respectively formed with micro-protrusions for forming a net shape composed of many curves. The core metal blank is compressed between the main punch and the counter punch of the first processing die so as to give the wave shape to the core metal blank after the material steel sheet is compressed between the main punch and the counter punch of the second processing die so that the micro-protrusions are cut into the core metal blank so as to form notches of the net shape composed of the many curves on the core metal blank.
Further objects and advantages of the invention will be apparent from the following description, reference being had to the accompanying drawings, wherein preferred embodiments of the invention are clearly shown.
a is a schematic view showing all steps of a wave-processing method of a core metal of a wet friction material according to a first embodiment of the invention wherein a material steel plate is stamped out at an inner circumferential edge of a core metal and further stamped at an outer circumferential edge of the core metal while waving the core metal.
b is a schematic view showing all steps of a wave-processing method of a core metal of a wet friction material according to a first embodiment of the invention wherein a material steel plate is stamped at an inner and an outer circumferential edges of a core metal at once while waving the core metal.
a is a schematic view showing a main punch and a counter punch of a wave-processing die used in the wave-processing method of the core metal of the wet friction material according to the first embodiment of the invention while illustrating micro-protrusions in an enlarged manner.
b is a bottom view showing a position and a shape of the micro-protrusion formed on a lower surface of the main punch.
c is a plan view showing a position and a shape of the micro-protrusion formed on an upper surface of the counter punch.
a is a partial side view showing a state of the core metal pressed and compressed between the main punch and the counter punch in the wave-processing method of the core metal of the wet friction material according to the first embodiment of the invention.
b is a partial side view showing the core metal on surfaces of which notches were cut as a result of
c is a plan view showing the core metal in its entirety that has the notches cut and waves formed. showing a waved core metal manufactured by a wave-processing method and a wave-processing die of a core metal of a wet friction material according to a second embodiment of the invention.
Several embodiments of the invention are described hereunder referring to the attached drawings. The same reference character is used to show the same element throughout the several embodiments.
{Overall Structure}
A first embodiment of the invention is described referring to
Referring to
Next described referring to
As described above, with both the methods of
Next described referring to
As shown in
As shown in
Next described referring to
Then, as shown in
As mentioned above, with the wave-processing method and the wave-processing die of the core metal of the wet friction material according to the first embodiment, there can be obtained stably waved core metals having high waving accuracy with simple steps and in a short process time at low costs.
A wave-processing method of a core metal of a wet friction material according to a second embodiment is described referring to FIG. 4.
As shown in
A wave-processing method of a core metal of a wet friction material according to a third embodiment is described referring to FIG. 5.
As shown in
A wave-processing method of a core metal of a wet friction material according to a fourth embodiment is described referring to FIG. 6.
As shown in
A wave-processing method of a core metal of a wet friction material according to a fifth embodiment is described referring to FIG. 7 and FIG. 8.
As shown in
A wave-processing method of a core metal of a wet friction material according to a sixth embodiment is described referring to FIG. 9.
As shown in
In the same way, though the interval between the notch lines are usually constant in the first and the fourth embodiments, it may be uneven in some cases. Moreover, in the third embodiment, the dots 25 may be aligned in the radial direction of the core metal 23 so as to define several radially extending dotted lines as the notches 24. However, the dots 25 may not be aligned but disposed at random within an area of the section of the notches 24.
A wave-processing method of a core metal of a wet friction material according to a seventh embodiment is described referring to FIG. 10.
As shown in
That is, as described in the sixth and the seventh embodiments, the pattern and the number of the notches may be selected as desired depending on a required wave height and wave accuracy in practicing the invention.
A wave-processing method of a core metal of a wet friction material according to an eighth embodiment is described referring to FIG. 11.
As shown in
A material (steel plate) of the core metal may have a poor flatness before forming waves thereon. That is, the steel plate may be not wholly flat but a little warped or may have slight irregularity over its entire plane. Then, even if the core metal is pressed and compressed by the wave-processing die having the fixed waving surface and the micro-protrusions described above, a designed wave height may not be obtained in some cases. Namely, if the core metal material (steel plate) has poor flatness before forming waves, it is impossible to stably obtain high waving accuracy.
In view of the above facts, the eighth embodiment punches the notches 43 and 44 on the entire front surface and the entire rear surface of the core metal 42 before forming the waves. Then, a pressure can be applied to the whole material (steel plate) of the core metal 42 so as to correct the flatness. Thus, a completely flat material (steel plate) of the core metal 42 can be pressed and compressed by the wave-processing die. Consequently, it is possible to stably obtain high waving accuracy. In addition, the pressure is applied to the entirety of the core metal, so that it is possible to prevent the “return” phenomenon at the time of waving work. Therefore, it is unnecessary to provide the micro-protrusions at a portion corresponding to the top of the wave of the wave-processing die that is used for waving work of the core metal 42. As described above, the core metal 42 can have high waving accuracy.
In manufacturing the waved core metal, the notches 43 and 44 are punched on the entire front surface and the entire rear surface of the material of the core metal 42 first. Then, the material is stamped out at the inner and the outer circumference of the core metal 42, while the material is simultaneously added with the waving form so as to give waves to the core metal 42. Alternately, the notches 43 and 44 are punched on the entire front surface and the entire rear surface of the material of the core metal 42 first. Next, the material is stamped out at the inner and the outer circumference of the core metal 42. Thereafter, the material is added with the waving form by the wave-processing die.
A wave-processing method of a core metal of a wet friction material according to a ninth embodiment is described referring to FIG. 12 and FIG. 13.
In each of the above first to the eighth embodiments, as shown in
Therefore, as shown in FIG. 12 and
Table 1 shows characteristic features and variation of heights of the waves from designed values in each of the first to the fifth embodiment. Table 1 also shows data of the conventional cool working method that has no notches punched thereon as a comparison example.
As shown in Table 1, according to the processing method or the manufacturing method in the second embodiment and the comparison example, the material sheet is stamped out into the ring core metal first, then the waving work is applied to the core metal. According to the processing methods in all the other embodiments, the waving work is carried out simultaneously with the stamping out of the material sheet into the ring core metal.
As shown in each of
The number of waves is seven in the first embodiment, five in the second embodiment, five in the third embodiment, nine in the fourth embodiment, seven in the fifth embodiment and seven in the comparison example.
The variation of the waving height is 0.05 mm for the designed waving height of 0.20 mm in the first embodiment. The variation of the waving height is 0.06 mm for the designed waving height of 0.25 mm in the second embodiment. The variation of the waving height is 0.04 mm for the designed waving height of 0.25 mm in the third embodiment. The variation of the waving height is 0.04 mm for the designed waving height of 0.30 mm in the fourth embodiment. The variation of the waving height is 0.03 mm for the designed waving height of 0.20 mm in the first embodiment. Thus, the variation is kept small in each of the first to the fifth embodiments. The variation is particularly small in the fourth and the fifth embodiments. In contrast, the variation of the waving height is 0.19 mm for the designed waving height of 0.20 mm in the comparison example. Namely, the variation is substantially the same as the designed waving height. Thus, it is understood that the comparison example is off from practical use.
In the wave-processing methods according to each of the above embodiments, the core metal is compressed between the main punch and the counter punch at the same time as or after the material steel sheet is stamped out into the core metal. Therefore, the process is very simple and the processing time is very short as compared with the conventional hot working method. Moreover, the inventive method needs no hot heating, thereby decreasing the production costs. Furthermore, the curved portion with the notched portion as the top generates no “return” phenomenon, so that the high waving accuracy is obtained as shown in Table 1.
As described above, according to the inventive wave-processing method and wave-processing die of the core metal of the wet friction material, high waving accuracy is stably obtained with a simple process, in short time and at low costs.
The invention is not limited to the above embodiments with respect to the other steps of the wave-processing method of the core metal of the wet friction material as well as a structure, shape, number, material, dimension, relation of connection, etc. of the other parts of the wave-processing die.
Advatageous Effects
As described above, according to the inventive wave-processing method and the inventive wave-processing die, when the core metal is pressed and compressed from upward and downward, plastic flow is generated at a superficial layer of the core metal due to partial compression by the notches formed by the micro-protrusions. Then, the curve or the wave is formed while the notched portion becomes the top of the wave. Accordingly, if the micro-protrusions are provided on the main punch and the counter punch depending on a required number and a required height of the waves so as to cut the notches on the tops of the waves of the core metal, the wave shape can be easily and stably processed on the core metal.
According to the wave-processing method and the inventive wave-processing die, the core metal is compressed between the main punch and the counter punch at the same time as or after stamping out the material steel sheet to form the core metal. Consequently, the process is much simpler and the processing time is much shorter than the conventional hot working process. Moreover, since the inventive method does not need heating at a high temperature, the costs can be decreased. Furthermore, the curved portion with the notched portion as the top point does not generate the “return” phenomenon, so that high waving accuracy can be obtained. The shape of the micro-protrusion for cutting the notch may be a lined shape or a dotted shape. The number of the micro-protrusions may be selected as desired according to the required wave height and wave accuracy.
As described above, according to the inventive wave-processing method and the inventive wave-processing die for the core metal of the wet friction material, high waving accuracy can be stably obtained with a simple process, in a short processing time and at low costs.
According to the inventive wave-processing die, the core metal is compressed by the main punch and the counter punch, so that the height of the micro-protrusion provided on the main punch and the counter punch equals the depth of the notch cut in the core metal as it is, while the width of the micro-protrusion equals the width of the notch as it is. Then, if the depth and the width of the notch is too small, sufficient wave-processing effects cannot be obtained. To the contrary, if the depth and the width of the notch is too large, the strength of the core metal may be lowered. Then, if the micro-protrusion has a height of about 1% to 5% of a thickness of the core metal and a width of about 50 μm to 500 μm, the notch of appropriate depth and width can be formed. Consequently, it is possible to carry out wave-processing of high accuracy.
According to the inventive wave-processing die, the waves are given in the circumferential direction of the core metal. Then, the linear micro-protrusions extending in the radial direction need to be provided in order to generate the plastic flow of the surface layer of the core metal in the circumferential direction due to the partial compression by the notches. However, it is possible to restrain waviness of the core metal as a whole by cutting the notches extending in the circumferential direction of the core metal. Then, if the micro-protrusion has a shape composed of a plurality of first lines extending straightly in a radial direction of the core and a plurality of second lines extending straightly or curvedly substantially in a circumferential direction of the core metal while crossing the first lines, it is possible to carry out wave-processing of much higher accuracy.
According to the inventive wave-processing die, if the notches formed on the core metal reach the inner circumference or the outer circumference of the core metal, there is no trouble in use under normal load. However, if the core metal is used under severe conditions such as a use at high speed or harsh pressure repetition, the notches may become start points of the cracks so as to lower the strength of the core metal may be lowered. Then, in case of use under high load condition, if the micro-protrusion has a length such that opposite ends of the notch formed on the core metal by the micro-protrusion are positioned 0.2 mm or more away from the outer and the inner circumferences of the core metal, the core metal is prevented from lowering its strength. Thus, according to the inventive wave-processing, the core metal can be used even under high load condition.
According to the inventive wave-processing method, the material steel sheet for the core metal may have poor flatness before giving the waves. That is, the steel sheet may be not completely flat but a little warped or may have slight irregularity as a whole. Then, even if the core metal is compressed by the wave-processing die having a predetermined wave face and micro-protrusions, the height of the wave may not be a designed value. Thus, if the steel sheet for the core metal may have poor flatness before giving the waves, it is impossible to stably obtain high waving accuracy.
Therefore, the notches of net shape are cut on the entire front surface and the entire rear surface of the core metal before giving the waves, so that the material steel sheet of the core metal is applied with pressure. Consequently, the steel sheet of the core metal can have a complete flatness before being pressed and compressed by the wave-processing die. As a result, it is possible to stably obtain high waving accuracy. In addition, the pressure is applied to the entire core metal, so that the “return” phenomenon can be prevented at the time of wave-processing. Accordingly, there is no need to provide micro-protrusions at the portion corresponding to the top points of the waves on the wave-processing die that is used for the wave-processing of the core metal. Thus, high accuracy of waving can be obtained on the core metal.
The inventive wave-processing die according to the eighth embodiment is composed of the first processing die and the second processing die. Then, the material steel sheet is compressed by the second processing die so that the micro-protrusions are cut in the material steel sheet so as to form the notches of net shape composed of many curves. Thus, the flatness of the material steel sheet is corrected. Moreover, the “return” phenomenon is prevented at the time of wave-processing by applying pressure to the entire portion to be the core metal of the material steel sheet. Consequently, the first processing die needs not to be provided with the micro-protrusions at the top point of the wave shape but is enough to be provided with the wave shape. Even in this case, when the core metal is compressed by the first processing die, high waving accuracy can be obtained.
The preferred embodiments described herein are illustrative and not restrictive, the scope of the invention being indicated in the appended claims and all variations which come within the meaning of the claims are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2003-140758 | May 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3377828 | Harmon | Apr 1968 | A |
3748888 | Gerich | Jul 1973 | A |
4126216 | Babcock et al. | Nov 1978 | A |
4829799 | Coe et al. | May 1989 | A |
4865603 | Noiles | Sep 1989 | A |
5794484 | Jaddou | Aug 1998 | A |
Number | Date | Country | |
---|---|---|---|
20050061407 A1 | Mar 2005 | US |