Not applicable.
The present invention relates to a pool and a wave generating system. More particularly, the present invention is a pool ride having a slide feature.
Conventional water slides involve a form of tube, half round, or other slide structure having a jet or film of water flowing across the surface to reduce friction for riders. Generally, gravity is used as the primary motive force to propel the riders along the slide. The riders may also use mats or riding tubes to reduce further the friction between the rider and the surface of the slide. The reduced friction enables sliding riders to move easily and rapidly along the slide. In some cases, the water slide may include small water jets to assist in propelling the riders along the slide. At the end of the water slide, the riders are discharged into some form of pool.
Water slides typically provide structure to retain or conserve the flowing water within the slide and to re-direct riders as they travel along the slide. Gravity imparts an initial potential energy to the rider that is converted to kinetic energy, which as noted above, may be enhanced by water jets. Thus, the beginning of the slide must be positioned at some considerable elevation for the rider to begin sliding with available potential energy. During the slide, riders are separated or isolated by guiding structure for protection and for redirection.
It would be desirable to have a water ride that uses a form of energy different from the potential energy in elevation. Further, it would be useful to have a water ride that produces a sliding effect, but in which the riders are not isolated from each other until the discharge pool.
The present invention is a pool that is configured to produce a water upsurge, which cascades down to create swells that provide a ride having a sliding effect for swimmers.
An aspect of this water ride for swimmers is a pool having a bottom and at least one side wall so that the at least one side wall and bottom form a container capable of containing a body of water, so that the water may have a range of desired surface levels. The pool bottom defines or includes at least one hole. The pool may be a variety of shapes, whether circular, rectangular, irregular, etc. The side wall may form an incline, such as a low slope to simulate a beach.
An elongated tubular chamber having a substantially closed rear end and a substantially open front end, the chamber may be viewed as having three portions. The first portion has the substantially closed rear end and may be positioned generally underneath the bottom of the pool. The second portion has the substantially open front end and is positioned in a substantially vertical orientation with respect to the bottom of the pool and passes through the at least one hole in the bottom for a predetermined exposed length into the pool, so that the open front end of the tubular chamber is in fluid communication with the water in the pool. The predetermined exposed length is generally below the desired surface level of the body of water. A protective cover may be disposed about the at least one hole and the predetermined exposed length to keep swimmers from getting too close. The third portion connects the first and second portions in fluid communication. The chamber may be anchored underneath the pool in a desired orientation, possibly by concrete, for example.
To prevent flow from the pool into the chamber, a discharge back flow prevention device is disposed in the second portion of the elongated tubular chamber, proximate to the open front end of the chamber. This preventer enable discharge of the chamber to the body of water, but stops back flow.
A compressed air system is included having a supply of compressed air fluidly interconnected with the rear end of the chamber and an air control valve in fluid communication with the supply of compressed air for operatively controlling the flow of compressed air into the chamber.
A supply of make-up water is also provided that is in fluid communication with the chamber; a make-up valve is interposed between and in fluid communication with the supply of make-up water and the chamber. In the event that the chamber were to reach a predetermined low pressure after any release of air into the rear end of the chamber, then makeup valve opens and the supply of make-up water introduces water into the rear end of the chamber to relieve the low pressure.
The actuation of the air control valve releases the compressed air into the rear end of the chamber to forcibly expel a portion of the water within the chamber out of the open front end forming an upsurge of water in and above the surface of the body of water. The cascade return of the water causes at least one swell in the body of water radiating away from the elongated chamber.
Optionally, the second portion of the chamber may define an inner surface circumscribing a flow area cross section for the water that generally decreases in a direction moving toward the open front end. Alternatively, this feature may be provided by at least one vane attached to the inner surface.
The present invention is a pool in which is configured to produce a water upsurge that provides a ride having a sliding effect for swimmers. This approach uses the energy from the expansion of compressed air in a chamber to generate this effect.
A form of device adapted for the present invention may be seen in U.S. Pat. No. 5,833,393 to Carnahan et al. (or the '393 patent), which is hereby incorporated by reference. That device relied on submerged, elongated chambers (e.g., tubes) that were effectively or substantially open at one end and substantially closed at the other end. The device operated by releasing bursts of pressurized air that forced water out of the chamber and into a body of water to form a wave. The air then escaped out the open end of the chamber and into the body of water, following the expelled water. Water then refilled the chamber. As noted in U.S. application Ser. No. 11/786,652, the '393 patent design presented certain efficiency and structural challenges. Further, the '393 patent does not disclose a configuration capable of producing a sliding effect for swimmers.
With reference to the side schematic view of
An elongated tubular chamber 30 having a substantially closed rear end 31E and a substantially open front end 32D may be used to create upsurge 100 (not shown). The chamber 30 may be considered as having three portions 31, 32, 33. The first portion 31, with the substantially closed rear end 31E, is positioned generally underneath the bottom 2 of the pool 1. Preferably, first portion 31 is set in an anchoring medium such as concrete 35 to anchor elongated chamber 30 in a desired orientation. The second portion 32, with the substantially open front end 32D, is positioned in a substantially vertical orientation with respect to the bottom 2 of pool 1. The second portion 32 passes through the at least one hole 2H (not shown) for a predetermined exposed length 32L into the pool 1 so that the open front end 32D of the tubular chamber 30 is in fluid communication with the body of water 75. In general, the predetermined exposed length 32L is below the desired surface 75L of the body of water 75. The third portion 33 connects first portion 31 and second portion 32 in fluid communication.
As may be seen in
Returning to
Preferably, discharge back flow prevention device 40 is disposed in the second portion 32 of the elongated tubular chamber 30 proximate to the open front end 32D. The back flow prevention device 40 permits discharge of the chamber 30 into the body of water 75 but inhibits reverse flow from the body of water 75 into the chamber 30 along the open front end 32D. Optionally, the backflow prevention device 40 may be a check valve. Optionally, backflow prevention device may be a check valve 40 defining an equalization orifice that permits a small flow of water through the valve when in the shut position to permit equalization of pressure across the check valve at a desired rate.
Several systems support the operation of the elongated chamber 30. A compressed air system 50 having supply of compressed air 51 is fluidly interconnected with the rear end 31E of the chamber 30 via an air control valve 52 that operatively controls the flow of compressed air into the chamber 30.
Actuation of air control valve 52 releases compressed air into the rear end 31E of the chamber 30 to forcibly expel a portion of the water within the chamber 30 out of the open front end 32D. This release may form a desirable upsurge 100 of water in and above the surface 75L of the body of water 75, as shown in
Upsurge 100 is to be distinguished from a complete expulsion of water from chamber 30 or from a discharge in which expelled water does not move above the general level of the surface 75L of the body of water 75. The inventors have discovered the formation of a preferable upsurge 100 using about a 1-2 second discharge of 15-80 psi compressed into a model chamber 30 formed of 6 inch diameter pipe having an approximate length of 14 feet. In this example, upsurge 100 was formed from a portion of water within the chamber 30 traveling above the surface of body of water 75L. The return of upsurge 100 formed a cascade into body of water 75 forming current and swells 110 rapidly radiating away from chamber 30. The cascade, current, and swells 110 would enable a swimmer 90 to travel rapidly outward and away from chamber 30.
As shown in
An optional aspect of the invention is shown in
With reference to
Another aspect of the invention is a make up system 60 having supply of make-up water 61 is provided in fluid communication with the chamber 30 via a make-up valve 62 interposed between and in fluid communication with the supply of make-up water 61 and the chamber 30. Thus, in the event the chamber 30 reaches a predetermined low pressure after the release of air into the rear end 31E of the chamber 30, the make-up valve 62 opens and the supply of make-up water 61 introduces water into the rear end 31E of the chamber to relieve the low pressure. Optionally, a spill water collection system 76 may be disposed about at least a portion of the periphery of the pool 1 and in fluid communication with the supply of make-up water 61. This spill collection system 76 may be configured to collect at least a portion of spill water from swells 110 created by upsurge 100 and to deliver the spill water to the supply of make-up water 61. A spill water collection system 76 solves two problems: capture of water from swells 110 to obviate interference from return waves, and re-supply of make up water.
With reference to
As may be seen in the
The above examples should be considered to be exemplary embodiments, and are in no way limiting of the present invention. Thus, while the description above refers to particular embodiments, it will be understood that many modifications may be made without departing from the spirit thereof.
This application claims benefit of the priority date of the U.S. Provisional Patent Application Ser. No. 60/921,537, filed on Apr. 3, 2007, titled “Wave Slide Ride,” inventor Garrett Johnson, which is hereby incorporated by reference. This application is also a continuation in part of U.S. application Ser. No. 11/786,652, filed on Apr. 12, 2007, and U.S. application Ser. No. 11/290,906 filed on Nov. 30, 2005, both of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60921537 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11786652 | Apr 2007 | US |
Child | 12062443 | US | |
Parent | 11290906 | Nov 2005 | US |
Child | 11786652 | US |