The present application claims foreign priority based on Japanese Patent Application No. 2008-153415, filed Jun. 11, 2008, the contents of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a waveform observing apparatus and the system thereof.
2. Description of the Background Art
There has been used a waveform observing apparatus for observing a temperature and pressure of equipment on a factory production line. The measured data on temperatures and pressure historically used to be written in waveform on rolled paper (chart), but with the development of electronic equipment, a waveform observing apparatus that displays a waveform by use of a display in place of paper is currently in wide use.
The waveform observing apparatus is capable of displaying in a display section a constantly varying measured value, namely a time-series waveform, while storing measured data captured from a thermocouple or the like into a memory mounted to the waveform observing apparatus. For example, Japanese Patent Application Laid-Open No. H7-114349 and Japanese Patent Application Laid-Open No. 2002-82133 each disclose a waveform observing apparatus having a display with a touch panel. Japanese Patent Application Laid-Open No. H7-114349 proposes that, by a user touching a function key displayed in a display section, a function designated by the function key displayed in the display section is executed. Japanese Patent Application Laid-Open No. 2002-82133 displays that, while a displayed waveform is observed, an operation of inputting a comment or a marking by pen-input is performed using a pen-input touch screen.
Incidentally, Japanese Patent Application Laid-Open No. 2000-146628 discloses a conventional technique in the case of writing a copy of measured data stored in a memory mounted in a waveform observing apparatus (body memory) into a removable storage medium (e.g. FD) for the purpose of long-term storage of measured data stored in the body memory. Specifically, the following technique has been disclosed as a conventional example. Namely, assuming that a storage capacity of the body memory is three hours, when measured data is stored into the body memory in every one hour, in the first one hour, measured data with a capacity for one hour is written into the FD. In the subsequent writing, measured data with a capacity for the subsequent one hour is written in addition to the data with a capacity of the last one hour. In the further subsequent writing, data with a capacity for three hours including the data with a capacity for the last two hours is written. As opposed to this, the invention proposed by Japanese Patent Application Laid-Open No. 2000-146628 proposes to make a mode selectable between a first mode of writing into the FD measured data, namely measured data with a capacity for three hours, stored in the body memory as conventionally done and a second mode of writing in the FD measured data up to the present excluding measured data having been written into the FD in the past out of measured data inside body memory, namely difference data.
Namely, Japanese Patent Application Laid-Open No. 2000-146628 proposes a technique for difference copy in which difference data as a second mode is written into an FD in regard to measured data stored in the body memory with intent to improve data writing efficiency at the time of storing measured data stored in the body memory of the waveform observing apparatus into the other storage medium for long periods. In the waveform observing apparatus currently commercially available, measured data stored in a body memory is copied into an FD or a USB memory by a method shown in
With reference to
For example, in a case where some trouble occurs during collection of measured data, an external computer is used to seek for a cause of the trouble. In this case, a copy of data is acquired from the waveform observing apparatus by use of a removable storage medium, but when the conventional technique for difference copy is used, there may occur a problem in that only data stored in the body memory can be copied out of measured data collected by the waveform observing apparatus. This problem is described with reference to
An object of the present invention is to provide a waveform observing apparatus and the system thereof in which, at the time of inserting a removable storage medium into the waveform observing apparatus to capture a copy of measured data therefrom, a difference copy can be made while including the latest measured data collected by the waveform observing apparatus at that time.
A further object of the present invention is to provide a waveform observing apparatus and the system thereof which facilitate management of measured data by the waveform observing apparatus and an external computer.
According to a first aspect of the present invention, the above technical problems are solved by providing a waveform observing apparatus, which temporarily stores sampled measured data, creates a measured data file in a body memory in each predetermined filing creation cycle, houses the temporarily stored measured data into the measured data file, and also supplies a removable storage medium with a copy of the measured data file stored in the body memory,
wherein, in supplying the removable storage medium with a copy of the measured data file, a new measured data file is created in the body memory for housing the temporarily stored measured data.
According to a second aspect of the present invention, the above technical problems are solved by providing a waveform observing apparatus, which houses sampled measured data into a measured data file formed in a body memory in each predetermined filing creation cycle, and also supplies a removable storage medium with a copy of the measured data file stored in the body memory, the apparatus including:
a buffer memory for temporarily storing sampled measured data;
a file creating device, which creates in the body memory a measured data file for housing measured data temporarily stored in the buffer memory when the removable storage medium is inserted into the waveform observing apparatus and a difference copy command is received from the removable storage medium, and houses the buffer memory in the measured data file; and
a file transferring device for supplying the removable storage medium with a copy of measured data file including difference data.
According to a third aspect of the present invention, the above technical problems are solved by providing a waveform observing apparatus which houses sampled measured data into a measured data file formed in a body memory in each predetermined filing creation cycle, and also supplies a removable storage medium with a copy of the measured data file stored in the body memory, the apparatus including:
a buffer memory for temporarily storing sampled measured data;
a file creating device, which creates in the body memory a measured data file for housing measured data temporarily stored in the buffer memory when the removable storage medium is inserted into the waveform observing apparatus and a difference copy command is received from the removable storage medium, and houses measured data of the buffer memory in the measured data file; and
a file transferring device for supplying the removable storage medium with a copy of measured data file including difference data,
in addition to the above waveform observing system, the above technical problems being solved by providing a waveform observing system, further including an external computer that receives a difference copy from the removable storage medium,
wherein, out of the measured data files stored in the external computer, a measured data file in common with the measured data file received from the removable storage medium is overwritten and stored when the external computer receives the measured data file from the removable storage medium having completed storage of the difference copy.
According to the present invention, when measured data collected by the waveform observing apparatus is captured by use of the removable storage medium, a difference copy can be written, while including temporarily stored measured data before collected and filed by the waveform observing apparatus, from the waveform observing apparatus into the removable storage medium, with the temporarily stored measured data also being in a filed state. Therefore, at the time when the removable storage medium is inserted into the waveform observing apparatus and a copy of measured data is captured thereinto, a difference copy can be made while including the latest measured data collected by the waveform observing apparatus at that time. Further, since having been filed in the waveform observing apparatus and the external computer at the time of making a difference copy, the measured data are easily managed.
In the following, a preferred embodiment of the present invention is described with reference to attached drawings.
The body 20 has a relay substrate 201 located on its front surface in an erect state, and a main substrate 202 that is connected to the upper end of the relay substrate 201 and horizontally extends. The relay substrate 201 is installed with ten measurement-unit connectors 203 and four IO-unit connectors 204. The relay substrate 201 and the main substrate 202 are housed inside a body case 205.
The body case 205 is made up of a metal-made outer case 206 and an inner plastic case 207, and in the plastic case 207, multistage shelves in two right and left columns for housing measurement units 23 and IO units 24 are formed. The measurement unit 23 and the IO unit 24 can be connector-connected by being inserted into the shelves of the plastic case 207 from its rear side. Namely, the relay substrate 201 that is located in the erect state ahead of the plastic case 207 is installed with the connectors 203, 204 in positions associated with the respective shelves of the plastic case 207, and the measurement units 23 or the IO units 24 can be connector-connected by being inserted into the respective shelves of the plastic case 207. Adopting such a configuration can reduce the size of the waveform observing apparatus 1.
The measurement unit 23 and the IO unit 24 are respectively installed with terminal boards 25, 26 on the rear surfaces thereof (
The CPU 29 of the main substrate 202 performs signal processing in accordance with a predetermined program, to store the measured data into a body memory 31 in a predetermined cycle, and also generates an image signal for controlling drawing in the display section 2. The main substrate 202 and the display section 2 are connected with each other through the relay substrate 201. When the user touches the touch panel 222, a touched position signal, or a coordinate signal, corresponding to the touch is supplied from the touch panel 222 to the CPU 29 of the main substrate 202, and the CPU 29 realizes a function meant by a key corresponding to the touched place, or generates a signal for executing scroll of a waveform on display in the display section 2 based upon the coordinate signal.
The waveform observing apparatus 1 is installed into a control box 32 (
A trigger setting as a condition for storing measured data into the body memory 31 can be made by use of the personal computer 34. Further, the personal computer 34 is incorporated with an edit-copy condition setting program for setting conditions for executing copying and edition of data to be transmitted to the USB memory 35 or the personal computer 34, and using the personal computer 34, the user can set conditions for copying and edition of the measured data. Subsequently, in accordance with the conditions for edition and copying set by the user, desired data can be read from data stored in the body memory 31, and this extracted data can be filed, so as to be transferred to the personal computer 34 or stored into the USB memory 35 as a removable recording medium.
In the waveform observing apparatus 1, in accordance with a trigger condition of measured data to be sampled, which was set using the personal computer 34, namely a trigger setting device 47 (
It is to be noted that in present embodiment, a normal file is automatically created when an amount of measured data reaches a predetermined amount, namely a predetermined amount or ratio of a capacity of the buffer memory 30. However, other than such a technique, a technique may be employed in which a normal measured data file is created at the time when the number of pieces of measured data acquired reaches a previously set number or the measured data cycle reaches a previously set cycle.
The compression ratio setting device 48 is configured for setting conditions for edition and copying of data at the time of transferring a copy of part of measured data stored in the buffer memory 30 to the personal computer 34.
Conditions for edition and copying can be set using a display screen of the personal computer 34, and as items settable by the user include items as below other than a later-described difference copy.
(1) Setting of Data Extracted Range as Basic Setting:
As options, data is extracted by (1a) elapsed time; (1b) a data range; (1c) the most recent data; (1d) an alarm position; or (1e) a comment position.
(2) Setting of Detailed Conditions:
(2a) designating extraction starting date and time; (2b) designating a data position at the start of extraction; (2c) designating how many days or how many hours before the latest data in the case of extracting the most recent data; (2d) designating a time interval in the case of extracting data with predetermined time intervals; (2e) designating, by the number of pieces of data or the time, a range of data to be acquired before and after the alarm position or the comment position in the case of extracting data by each of the positions; (2f) designating, by the number of pieces of data, date, hour, and minute, a range of pre-data and/or post-data; (2g) designating a binary or a CSV as an output file format; designating (2h) whether or not to compress data; (2i) designating a compression ratio; and the like. It should be noted that the waveform observing apparatus 1 is a multi-channel, and although not shown in
Assuming that data up to thirteenth measured data have been previously copied, currently, a third measured data file 003 housing the thirteenth measured data houses eleventh to fifteenth measured data. In the USB memory 35 written as objects of the difference copy are copies of the third measured data file 003 and the eleventh to fifteenth measured data housed therein, and the fourth measured data file 004 that was exceptionally created before the normal file creation cycle and given the file name including the serial number, and the sixteenth and seventeenth measured data housed therein.
As thus described, managing measured data in units of files can not only ensure convenience in use of measured data, but also prevent leakage of data in seeking a cause of inconvenience in use of the personal computer 34 since a difference copy including measured data temporarily stored in the buffer memory 30 at the time of executing the difference copy of measured data by use of the USB memory 35 is supplied to the personal computer 34. It goes without saying that, with the use of the difference copy, writing of data from the waveform observing apparatus 1 into the USB memory 35 and writing of the USB memory 35 into the personal computer 34 can be made efficient.
A specific one example regarding the difference copy is described with reference to flowcharts of
With reference to the copy history, in the case of the example of
When in above Step S24, the determination is NO, namely when temporarily stored measured data having not been filed is not present in the buffer memory 30, the process shifts to Step S26, and out of the measured data files stored in the body memory 31 of the waveform observing apparatus 1, a measured data file including measured data of the difference is supplied to the USB memory 35, and written into the USB memory 35.
With reference to
Step S34 is described in the case of the forgoing example of
Upon completion of transmission of the copy of the measured data file from the personal computer 34 in Step S33, the process proceeds to Step S34, and the copy history file of the USB memory 35 is updated, to write into the USB memory 35 that the measured data up to the seventeenth measured data have been copied. Further, in Step S35, the third measured data file 003 and the fourth measured data file 004 inside the USB memory 35 are deleted. Upon completion of a series of these steps, the measured data copying program of the personal computer 34 is completed (S36).
For example in a case where a trouble occurs in the personal computer 34 and measured data collected by the waveform observing apparatus 1 is acquired by use of the USB memory 35 as the removable storage medium in order to seek for a cause of the trouble, the measured data collected by the waveform observing apparatus 1 at the time of inserting the USB memory 35 can be captured into the personal computer 34 while including the latest measured data in the buffer memory 30. It is thereby possible to accurately seek for the cause of the trouble by the personal computer 34 without an omission of data. Further, since having been filed and stored in the personal computer 34, the measured data are easily managed, which is convenient for example in searching for desired measured data.
Number | Date | Country | Kind |
---|---|---|---|
2008-153415 | Jun 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5398337 | Ito | Mar 1995 | A |
5832520 | Miller | Nov 1998 | A |
20050101849 | Al-Ali et al. | May 2005 | A1 |
20060047465 | Ousley et al. | Mar 2006 | A1 |
20060212623 | Honma | Sep 2006 | A1 |
20090319731 | Kirihata | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
07-114349 | May 1995 | JP |
2000-146628 | May 2000 | JP |
2002-082133 | Mar 2002 | JP |
2002-146628 | May 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20090313289 A1 | Dec 2009 | US |