Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication

Information

  • Patent Grant
  • 11056795
  • Patent Number
    11,056,795
  • Date Filed
    Friday, March 15, 2019
    5 years ago
  • Date Issued
    Tuesday, July 6, 2021
    3 years ago
Abstract
An antenna system includes a first substrate, a plurality of chips and a waveguide antenna element based beam forming phased array that includes a plurality of radiating waveguide antenna cells for millimeter wave communication. Each radiating waveguide antenna cell includes a plurality of pins where a first pin is connected with a body of a corresponding radiating waveguide antenna cell and the body corresponds to ground for the pins. The first pin includes a first and a second current path, the first current path being longer than the second current path. A first end of the radiating waveguide antenna cells is mounted on the first substrate, where the plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end of the plurality of radiating waveguide antenna cells for the communication.
Description
FIELD OF TECHNOLOGY

Certain embodiments of the disclosure relate to an antenna system for millimeter wave-based wireless communication. More specifically, certain embodiments of the disclosure relate to a waveguide antenna element based beam forming phased array antenna system for millimeter wave communication.


BACKGROUND

Wireless telecommunication in modern times has witnessed advent of various signal transmission techniques, systems, and methods, such as use of beam forming and beam steering techniques, for enhancing capacity of radio channels. For the advanced high-performance fifth generation communication networks, such as millimeter wave communication, there is a demand for innovative hardware systems, and technologies to support millimeter wave communication in effective and efficient manner. Current antenna systems or antenna arrays, such as phased array antenna or TEM antenna, that are capable of supporting millimeter wave communication comprise multiple radiating antenna elements spaced in a grid pattern on a flat or curved surface of communication elements, such as transmitters and receivers. Such antenna arrays may produce a beam of radio waves that may be electronically steered to desired directions, without physical movement of the antennas. A beam may be formed by adjusting time delay and/or shifting the phase of a signal emitted from each radiating antenna element, so as to steer the beam in the desired direction. Although some of the existing antenna arrays exhibit low loss, however, mass production of such antenna arrays that comprise multiple antenna elements may be difficult and pose certain practical and technical challenges. For example, the multiple antenna elements (usually more than hundred) in an antenna array, needs to be soldered on a substrate during fabrication, which may be difficult and a time-consuming process. This adversely impacts the total cycle time to produce an antenna array. Further, assembly and packaging of such large sized antenna arrays may be difficult and cost intensive task. Thus, an advanced antenna system may be desirable that may be cost-effective, easy to fabricate, assemble, and capable of millimeter wave communication in effective and efficient manner.


Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present disclosure as set forth in the remainder of the present application with reference to the drawings.


BRIEF SUMMARY OF THE DISCLOSURE

A waveguide antenna element based beam forming phased array antenna system for millimeter wave communication, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.


These and other advantages, aspects and novel features of the present disclosure, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A depicts a perspective top view of an exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure.



FIG. 1B depicts a perspective bottom view of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure.



FIG. 2A depicts a perspective top view of an exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure.



FIG. 2B depicts a perspective bottom view of the exemplary radiating waveguide antenna cell of FIG. 2A, in accordance with an exemplary embodiment of the disclosure.



FIG. 3A depicts a schematic top view of an exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure.



FIG. 3B depicts a schematic bottom view of an exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication of FIG. 1A, in accordance with an exemplary embodiment of the disclosure.



FIG. 4A illustrates a first exemplary antenna system that depicts a cross-sectional side view of the exemplary radiating waveguide antenna cell of FIG. 2A mounted on a substrate, in accordance with an exemplary embodiment of the disclosure.



FIG. 4B illustrates a second exemplary antenna system that depicts a cross-sectional side view of an exemplary radiating waveguide antenna cell of FIG. 2A mounted on a substrate, in accordance with an exemplary embodiment of the disclosure.



FIG. 4C illustrates a third exemplary antenna system that depicts a cross-sectional side view of an exemplary radiating waveguide antenna cell of FIG. 2A mounted on a substrate, in accordance with an exemplary embodiment of the disclosure.



FIG. 5A illustrates various components of a first exemplary antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 5B illustrates various components of a second exemplary antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 5C illustrates various components of a third exemplary antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 5D illustrates a block diagram of a dual band waveguide antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure.



FIG. 5E illustrates a frequency response curve of the dual band waveguide antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure.



FIG. 5F depicts a perspective top view of an exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure.



FIG. 6 illustrates radio frequency (RF) routings from a chip to an exemplary radiating waveguide antenna cell in the first exemplary antenna system of FIG. 5A, in accordance with an exemplary embodiment of the disclosure.



FIG. 7 illustrates protrude pins of an exemplary radiating waveguide antenna cell of an exemplary waveguide antenna array in an antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 8 illustrates a perspective bottom view of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A integrated with a first substrate and a plurality of chips, and mounted on a board in an antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 9 illustrates beamforming on an open end of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A in the first exemplary antenna system of FIG. 5, in accordance with an exemplary embodiment of the disclosure.



FIG. 10 depicts a perspective top view of an exemplary four-by-four waveguide antenna element based beam forming phased array antenna system with dummy elements, in accordance with an exemplary embodiment of the disclosure.



FIG. 11 illustrates various components of a third exemplary antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 12 depicts a perspective top view of an exemplary eight-by-eight waveguide antenna element based beam forming phased array antenna system with dummy elements, in accordance with an exemplary embodiment of the disclosure.



FIG. 13 illustrates various components of a fourth exemplary antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 14 illustrates positioning of an interposer in an exploded view of an exemplary four-by-four waveguide antenna element based beam forming phased array antenna system module, in accordance with an exemplary embodiment of the disclosure.



FIG. 15 illustrates the interposer of FIG. 14 in an affixed state in an exemplary four-by-four waveguide antenna element based beam forming phased array antenna system module, in accordance with an exemplary embodiment of the disclosure.



FIG. 16 illustrates various components of a fifth exemplary antenna system, in accordance with an exemplary embodiment of the disclosure.



FIG. 17 depicts schematic bottom views of a plurality of versions of the exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication of FIG. 1A, in accordance with an exemplary embodiment of the disclosure.



FIG. 18A depicts a first exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure.



FIG. 18B depicts a second exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure.



FIG. 18C depicts a third exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure.



FIG. 18D depicts a fourth exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure.





DETAILED DESCRIPTION OF THE DISCLOSURE

Certain embodiments of the disclosure may be found in a waveguide antenna element based beam forming phased array antenna system for millimeter wave communication. In the following description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments of the present disclosure.



FIG. 1A depicts a perspective top view of an exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 1A, there is shown a waveguide antenna element based beam forming phased array 100A. The waveguide antenna element based beam forming phased array 100A may have a unitary body that comprises a plurality of radiating waveguide antenna cells 102 arranged in a certain layout for millimeter wave communication. The unitary body refers to one-piece structure of the waveguide antenna element based beam forming phased array 100A, where multiple antenna elements, such as the plurality of radiating waveguide antenna cells 102 may be fabricated as a single piece structure, for example, by metal processing or injection molding. In FIG. 1A, an example of four-by-four waveguide array comprising sixteen radiating waveguide antenna cells, such as a radiating waveguide antenna cell 102A, in a first layout, is shown. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be one-piece structure of eight-by-eight waveguide array comprising sixty four radiating waveguide antenna cells in the first layout. It is to be understood by one of ordinary skill in the art that the number of radiating waveguide antenna cells may vary, without departure from the scope of the present disclosure. For example, the waveguide antenna element based beam forming phased array 100A may be one-piece structure of N-by-N waveguide array comprising “M” number of radiating waveguide antenna cells arranged in certain layout, wherein “N” is a positive integer and “M” is N to the power of 2.


In some embodiments, the waveguide antenna element based beam forming phased array 100A may be made of electrically conductive material, such as metal. For example, the waveguide antenna element based beam forming phased array 100A may be made of copper, aluminum, or metallic alloy that are considered good electrical conductors. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be made of plastic and coated with electrically conductive material, such as metal, for mass production. The exposed or outer surface of the waveguide antenna element based beam forming phased array 100A may be coated with electrically conductive material, such as metal, whereas the inner body may be plastic or other inexpensive polymeric substance. The waveguide antenna element based beam forming phased array 100A may be surface coated with copper, aluminum, silver, and the like. Thus, the waveguide antenna element based beam forming phased array 100A may be cost-effective and capable of mass production as a result of the unitary body structure of the waveguide antenna element based beam forming phased array 100A. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be made of optical fiber for enhanced conduction in the millimeter wave frequency.



FIG. 1B depicts a perspective bottom view of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 1B, there is shown a bottom view of the waveguide antenna element based beam forming phased array 100A that depicts a plurality of pins (e.g. four pins in this case) in each radiating waveguide antenna cell (such as the radiating waveguide antenna cell 102A) of the plurality of radiating waveguide antenna cells 102. The plurality of pins of each corresponding radiating waveguide antenna cell are connected with a body of a corresponding radiating waveguide antenna cell that acts as ground for the plurality of pins. In other words, the plurality of pins of each corresponding radiating waveguide antenna are connected with each other by the ground resulting in the unitary body structure.



FIG. 2A depicts a perspective top view of an exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 2A, there is shown a perspective top view of an exemplary single radiating waveguide antenna cell, such as the radiating waveguide antenna cell 102A of FIG. 1A. There is shown an open end 202 of the radiating waveguide antenna cell 102A. There is also shown an upper end 204 of a plurality of pins 206 that are connected with a body of the radiating waveguide antenna cell 102A. The body of the radiating waveguide antenna cell 102A acts as ground 208.



FIG. 2B depicts a perspective bottom view of the exemplary radiating waveguide antenna cell of FIG. 2A, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 2B, there is shown a bottom view of the radiating waveguide antenna cell 102A of FIG. 2A. There is shown a first end 210 of the radiating waveguide antenna cell 102A, which depicts a lower end 212 of the plurality of pins 206 that are connected with the body (i.e., ground 208) of the radiating waveguide antenna cell 102A. The plurality of pins 206 may be protrude pins that protrude from the first end 210 from a level of the body of the radiating waveguide antenna cell 102A to establish a firm contact with a substrate on which the plurality of radiating waveguide antenna cells 102 (that includes the radiating waveguide antenna cell 102A) may be mounted.



FIG. 3A depicts a schematic top view of an exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 3A, there is shown the open end 202 of the radiating waveguide antenna cell 102A, the upper end 204 of the plurality of pins 206 that are connected with the body (i.e., ground 208) of the radiating waveguide antenna cell 102A. The body of the radiating waveguide antenna cell 102A acts as the ground 208. The open end 202 of the radiating waveguide antenna cell 102A represents a flat four-leaf like hollow structure surrounded by the ground 208.



FIG. 3B depicts a schematic bottom view of an exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 3B, there is shown a schematic bottom view of the radiating waveguide antenna cell 102A of FIG. 2B. There is shown the first end 210 of the radiating waveguide antenna cell 102A. The first end 210 may be the lower end 212 of the plurality of pins 206 depicting positive and negative terminals. The plurality of pins 206 in the radiating waveguide antenna cell 102A includes a pair of vertical polarization pins 302a and 302b that acts as a first positive terminal and a first negative terminal. The plurality of pins 206 in the radiating waveguide antenna cell 102A further includes a pair of horizontal polarization pins 304a and 304b that acts as a second positive terminal and a second negative terminal. The pair of vertical polarization pins 302a and 302b and the pair of horizontal polarization pins 304a and 304b are utilized for dual-polarization. Thus, the waveguide antenna element based beam forming phased array 100A may be a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency (RF) waves for the millimeter wave communication in both horizontal and vertical polarizations. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency (RF) waves in also left hand circular polarization (LHCP) or right hand circular polarization (RHCP), known in the art. The circular polarization is known in the art, where an electromagnetic wave is in a polarization state, in which electric field of the electromagnetic wave exhibits a constant magnitude. However, the direction of the electromagnetic wave may rotate with time at a steady rate in a plane perpendicular to the direction of the electromagnetic wave.



FIG. 4A illustrates a first exemplary antenna system that depicts a cross-sectional side view of the exemplary radiating waveguide antenna cell of FIG. 2A mounted on a substrate, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 4A, there is shown a cross-sectional side view of the ground 208 and two pins, such as the first pair of horizontal polarization pins 304a and 304b, of the radiating waveguide antenna cell 102A. There is also shown a first substrate 402, a chip 404, and a plurality of connection ports 406 provided on the chip 404. The plurality of connection ports 406 may include at least a negative terminal 406a and a positive terminal 406b. There is further shown electrically conductive routing connections 408a, 408b, 408c, and 408d, from the plurality of connection ports 406 of the chip 404 to the waveguide antenna, such as the first pair of horizontal polarization pins 304a and 304b and the ground 208. There is also shown a radio frequency (RF) wave 410 radiated from the open end 202 of the radiating waveguide antenna cell 102A.


As the first pair of horizontal polarization pins 304a and 304b protrude slightly from the first end 210 from the level of the body (i.e., the ground 208) of the radiating waveguide antenna cell 102A, a firm contact with the first substrate 402 may be established. The first substrate 402 comprises an upper side 402A and a lower side 402B. The first end 210 of the plurality of radiating waveguide antenna cells 102, such as the radiating waveguide antenna cell 102A, of the waveguide antenna element based beam forming phased array 100A may be mounted on the upper side 402A of the first substrate 402. Thus, the waveguide antenna element based beam forming phased array 100A may also be referred to as a surface mount open waveguide antenna. In some embodiments, the chip 404 may be positioned beneath the lower side 402B of the first substrate 402. In operation, the current may flow from the ground 208 towards the negative terminal 406a of the chip 404 through at least a first pin (e.g., the pin 304b of the first pair of horizontal polarization pins 304a and 304b), and the electrically conductive connection 408a. Similarly, the current may flow from the positive terminal 406b of the chip 404 towards the ground 208 through at least a second pin (e.g., the pin 304a of the first pair of horizontal polarization pins 304a and 304b) of the plurality of pins 206 in the radiating waveguide antenna cell 102A. This forms a closed circuit, where the flow of current in the opposite direction in closed circuit within the radiating waveguide antenna cell 102A in at least one polarization creates a magnetic dipole and differential in at least two electromagnetic waves resulting in propagation of the RF wave 410 via the open end 202 of the radiating waveguide antenna cell 102A. The chip 404 may be configured to form a RF beam and further control the propagation and a direction of the RF beam in millimeter wave frequency through the open end 202 of each radiating waveguide antenna cell by adjusting signal parameters of RF signal (i.e. the radiated RF wave 410) emitted from each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102.


In accordance with an embodiment, each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102 may further be configured to operate within multiple frequency ranges in the field of millimeter wave-based wireless communication. For example, each radiating waveguide antenna cell may be configured to operate as a dual-band antenna. Each radiating waveguide antenna cell may be configured to operate in high band resonant frequency with a range of 37-40.5 GHz and low band resonant frequency with a range of 26.5-29.5 GHz. By designing a radiating waveguide antenna cell to operate as a dual-band antenna, multiple companies may benefit from the disclosed design of the radiating waveguide antenna cell. For example, Verizon may operate with the low band resonant frequency with the range of 26.5-29.5 GHz and AT&T may operate with the high band resonant frequency with the range of 37-40.5 GHz. Consequently, a single radiating waveguide antenna cell may be used by both the service providers (Verizon and AT&T). In accordance with an embodiment, the communication elements, such as transmitters and receivers may also cover the dual bands (for example, the high band resonant frequency and the low band resonant frequency). The advantage of dual band is both band share the antenna which saves designing cost and the overall power requirements. The gain and the radiation efficiency may be same in both bands. Accordingly, the gain and the radiation efficiency of the radiating waveguide antenna cell that operates with the dual band may remain the same for the high band resonant frequency and the low band resonant frequency.



FIG. 4B illustrates a second exemplary antenna system that depicts a cross-sectional side view of an exemplary radiating waveguide antenna cell of FIG. 2A mounted on a substrate, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 4B, there is shown a cross-sectional side view of the ground 2008 and two pins, such as the first pair of horizontal polarization pins 3004a and 3004b, of the radiating waveguide antenna cell 1002A. There is also shown a first substrate 4002, a chip 4004, and a plurality of connection ports 4006 provided on the chip 4004. The plurality of connection ports 4006 may include at least a negative terminal 4006a and a positive terminal 4006b. There is further shown electrically conductive routing connections 4008a, 4008b, 4008c, and 4008d, from the plurality of connection ports 4006 of the chip 4004 to the waveguide antenna, such as the first pair of horizontal polarization pins 3004a and 3004b and the ground 2008. There is also shown a radio frequency (RF) wave 4100 radiated from the open end 2002 of the radiating waveguide antenna cell 1002A.


In accordance with an embodiment, the radiating waveguide antenna cell 1002A may be configured to operate in dual band. In accordance with an embodiment, each of the first pair of horizontal polarization pins 3004a and 3004b comprises a first current path and a second current path. The first current path is longer than the second current path. Since the frequency of an antenna is inversely proportional to wavelength of the antenna, the first current path may correspond to the low band resonant frequency of the radiating waveguide antenna cell 1002A and the second current path may correspond to the high band resonant frequency of the radiating waveguide antenna cell 1002A. In accordance with an embodiment the chip 4004 may operate as a dual-band chip. The chip 4004 may be configured to generate a high band RF signal and a low band RF signal at the transmitter and at the receiver. The high band RF signal may have the high band resonant frequency and the low band RF signal may have the low band resonant frequency.


In operation, the radiating waveguide antenna cell 1002A may operate with the high band resonant frequency and the low band resonant frequency. Accordingly, a low band RF current, via the first current path, and a high band RF current, via the second current path, may flow from the ground 2008 towards the negative terminal 4006a of the chip 4004 through at least a first pin (e.g., the pin 3004b of the first pair of horizontal polarization pins 30004a and 3004b), and the electrically conductive connection 4008a. Similarly, the low band RF current and the high band RF current may flow from the positive terminal 4006b of the chip 4004 towards the ground 2008 through at least a second pin (e.g., the pin 3004a of the first pair of horizontal polarization pins 3004a and 3004b) of the plurality of pins 2006 in the radiating waveguide antenna cell 1002A. This forms a closed circuit, where the flow of currents in the opposite direction in closed circuit within the radiating waveguide antenna cell 1002A in at least one polarization creates a magnetic dipole and differential in at least two electromagnetic waves resulting in propagation of the RF wave 4100 via the open end 2002 of the radiating waveguide antenna cell 1002A. Since the high band RF current flows through a shorter path, the high band RF current may result in the propagation of the high band RF signal and the low band RF current flows through a shorter path and the low band RF current may result in the propagation of the low band RF signal. In accordance with an embodiment, the directions of the flow of the low band RF current in the first current path and the high band RF current in the second current path are same. The chip 4004 may be configured to form two RF beams (for example, a high band RF beam and a low band RF beam) and further control the propagation and direction of the high band RF beam and the low band RF beam in millimeter wave frequency through the open end 2002 of each radiating waveguide antenna cell by adjusting signal parameters of RF signal (i.e. the radiated RF wave 4100) emitted from each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102.



FIG. 4C illustrates a third exemplary antenna system that depicts a cross-sectional side view of an exemplary radiating waveguide antenna cell of FIG. 2A mounted on a substrate, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 4C, there is shown a cross-sectional side view of the ground 2018 and two pins, such as the first pair of horizontal polarization pins 3014a and 3014b, of the radiating waveguide antenna cell 1012A. There is also shown a first substrate 4012, a chip 4014, and a plurality of connection ports 4016 provided on the chip 4014. The plurality of connection ports 4016 may include at least a negative terminal 4016a and a positive terminal 4016b. There is further shown electrically conductive routing connections 4018a, 4018b, 4018c, and 4018d, from the plurality of connection ports 4016 of the chip 4014 to the waveguide antenna, such as the first pair of horizontal polarization pins 3014a and 3014b and the ground 2018. There is also shown a RF wave 4100 radiated from the open end 2012 of the radiating waveguide antenna cell 1012A. In accordance with an embodiment, the radiating waveguide antenna cell 1012A may be configured to operate in dual band such that there is a variation in a shape of the radiating waveguide antenna cell 1012A to generate the high band RF current corresponding to the high band resonant frequency. The intensity of the high band RF current may correspond to a size of the radiating waveguide antenna cell 1012A. By a variation in the size of the radiating waveguide antenna cell 1012A, the high band resonant frequency corresponding to the high band RF current may be obtained. Accordingly, the radiating waveguide antenna cell 1012A acts as a dual band with the high band resonant frequency in the range of 37-40.5 GHz and the low band resonant frequency in the range of 26.5-29.5 GHz.


In operation, the radiating waveguide antenna cell 1012A may operate with the high band resonant frequency and the low band resonant frequency. The magnitude of the high band resonant frequency is based on the size of the radiating waveguide antenna cell 1012A. Since the frequency of the radiating waveguide antenna cell 1012A is inversely proportional to the wavelength of the radiating waveguide antenna cell 1012A, by varying the size of the radiating waveguide antenna cell 1012A a high band resonant frequency is obtained. Accordingly, the low band RF current and the high band RF current may flow from the ground 2018 towards the negative terminal 4016a of the chip 4014 through at least a first pin (e.g., the pin 3014b of the first pair of horizontal polarization pins 3014a and 3014b), and the electrically conductive connection 4018a. Similarly, the low band RF current and the high band RF current may flow from the positive terminal 4016b of the chip 4014 towards the ground 2018 through at least a second pin (e.g., the pin 3014a of the first pair of horizontal polarization pins 3014a and 3014b) of the plurality of pins 2016 in the radiating waveguide antenna cell 1012A. This forms a closed circuit, where the flow of currents in the opposite direction in a closed circuit within the radiating waveguide antenna cell 1012A in at least one polarization creates a magnetic dipole and differential in at least two electromagnetic waves resulting in propagation of the RF wave 4100 via the open end 2012 of the radiating waveguide antenna cell 1012A. The chip 4014 may be configured to form two RF beams (for example, the high band RF beam and the low band RF beam) and further control the propagation and direction of the high band RF beam and the low band RF beam in millimeter wave frequency through the open end 2012 of each radiating waveguide antenna cell by adjusting signal parameters of RF signal (i.e. the radiated RF wave 4100) emitted from each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102.



FIG. 5A illustrates various components of a first exemplary antenna system, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 5A, there is shown a cross-sectional side view of an antenna system 500A. The antenna system 500A may comprise the first substrate 402, a plurality of chips 502, a main system board 504, and a heat sink 506. There is further shown a cross-sectional side view of the waveguide antenna element based beam forming phased array 100A in two dimension (2D).


In accordance with an embodiment, a first end 508 of a set of radiating waveguide antenna cells 510 of the waveguide antenna element based beam forming phased array 100A (as the unitary body) may be mounted on the first substrate 402. For example, in this case, the first end 508 of the set of radiating waveguide antenna cells 510 of the waveguide antenna element based beam forming phased array 100A is mounted on the upper side 402A of the first substrate 402. The plurality of chips 502 may be positioned between the lower side 402B of the first substrate 402 and the upper surface 504A of the system board 504. The set of radiating waveguide antenna cells 510 may correspond to certain number of radiating waveguide antenna cells, for example, four radiating waveguide antenna cells, of the plurality of radiating waveguide antenna cells 102 (FIG. 1A) shown in the side view. The plurality of chips 502 may be electrically connected with the plurality of pins (such as pins 512a to 512h) and the ground (ground 514a to 514d) of each of the set of radiating waveguide antenna cells 510 to control beamforming through a second end 516 of each of the set of radiating waveguide antenna cells 510 for the millimeter wave communication. Each of the plurality of chips 502 may include a plurality of connection ports (similar to the plurality of connection ports 406 of FIG. 4A). The plurality of connection ports may include a plurality of negative terminals and a plurality of positive terminals (represented by “+” and “−” charges). A plurality of electrically conductive routing connections (represented by thick lines) are provided from the plurality of connection ports of the plurality of chips 502 to the waveguide antenna elements, such as the pins 512a to 512h and the ground 514a to 514d of each of the set of radiating waveguide antenna cells 510.


In accordance with an embodiment, the system board 504 includes an upper surface 504A and a lower surface 504B. The upper surface 504A of the system board 504 comprises a plurality of electrically conductive connection points 518 (e.g., solder balls) to connect to the ground (e.g., the ground 514a to 514d) of each of set of radiating waveguide antenna cells 510 of the waveguide antenna element based beam forming phased array 100A using electrically conductive wiring connections 520 that passes through the first substrate 402. The first substrate 402 may be positioned between the waveguide antenna element based beam forming phased array 100A and the system board 504.


In accordance with an embodiment, the heat sink 506 may be attached to the lower surface 504B of the system board 504. The heat sink may have a comb-like structure in which a plurality of protrusions (such as protrusions 506a and 506b) of the heat sink 506 passes through a plurality of perforations in the system board 504 such that the plurality of chips 502 are in contact to the plurality of protrusions (such as protrusions 506a and 506b) of the heat sink 506 to dissipate heat from the plurality of chips 502 through the heat sink 506.



FIG. 5B illustrates various components of a second exemplary antenna system, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 5B, there is shown a cross-sectional side view of an antenna system 500B that depicts a cross-sectional side view of the waveguide antenna element based beam forming phased array 100A in 2D. The antenna system 500B may comprise the first substrate 402, the plurality of chips 502, the main system board 504, and other elements as described in FIG. 5A except a dedicated heat sink (such as the heat sink 506 of FIG. 5A).


In some embodiments, as shown in FIG. 5B, the plurality of chips 502 may be on the upper side 402A of the first substrate 402 (instead of the lower side 402B as shown in FIG. 5A). Thus, the plurality of chips 502 and the plurality of radiating waveguide antenna cells 102 (such as the set of radiating waveguide antenna cells 510) of the waveguide antenna element based beam forming phased array 100A may be positioned on the upper side 402A of the first substrate 402. Alternatively stated, the plurality of chips 502 and the waveguide antenna element based beam forming phased array 100A may lie on the same side (i.e., the upper side 402A) of the first substrate 402. Such positioning of the plurality of radiating waveguide antenna cells 102 of the waveguide antenna element based beam forming phased array 110A and the plurality of chips 502 on a same side of the first substrate 402, is advantageous, as insertion loss (or routing loss) between the first end 508 of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array 110A and the plurality of chips 502 is reduced to minimum. Further, when the plurality of chips 502 and the waveguide antenna element based beam forming phased array 100A are present on the same side (i.e., the upper side 402A) of the first substrate 402, the plurality of chips 502 are in physical contact to the waveguide antenna element based beam forming phased array 100A. Thus, the unitary body of the waveguide antenna element based beam forming phased array 100A that has a metallic electrically conductive surface acts as a heat sink to dissipate heat from the plurality of chips 502 to atmospheric air through the metallic electrically conductive surface of the waveguide antenna element based beam forming phased array 110A. Therefore, no dedicated metallic heat sink (such as the heat sink 506), may be required, which is cost-effective. The dissipation of heat may be based on a direct and/or indirect contact (through electrically conductive wiring connections) of the plurality of chips 502 with the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array 110A on the upper side 402A of the first substrate 402.



FIG. 5C illustrates various components of a third exemplary antenna system, in accordance with an exemplary embodiment of the disclosure. Dual band dual polarization antenna can be integrated in an element. With reference to FIG. 5C, there is shown a cross-sectional side view of an antenna system 5000A. The antenna system 5000A may comprise the first substrate 4002, a plurality of chips 5002, a main system board 5004, and a heat sink 5006. The antenna system 5000A corresponds to a cross-sectional side view of the waveguide antenna element based beam forming phased array 100A in two dimension (2D).


In accordance with an embodiment, a first end 5008 of a set of radiating waveguide antenna cells 5010 of the waveguide antenna element based beam forming phased array 100A (as the unitary body) may be mounted on the first substrate 4002. For example, in this case, the first end 5008 of the set of radiating waveguide antenna cells 5010 of the waveguide antenna element based beam forming phased array 100A is mounted on the upper side 4002A of the first substrate 4002. The plurality of chips 5002 may be positioned between the lower side 4002B of the first substrate 4002 and the upper surface 5004A of the system board 5004. The set of radiating waveguide antenna cells 5010 may correspond to certain number of radiating waveguide antenna cells, for example, four of the radiating waveguide antenna cell 1002A (FIG. 4B) shown in the side view. In accordance with an embodiment, the set of radiating waveguide antenna cells 5010 may correspond to a certain number of radiating waveguide antenna cells, for example, four of the radiating waveguide antenna cell 1012A (FIG. 4C) shown in the side view. Each pair of the plurality of pins (such as pins 5012a to 5012h) may correspond to the pair of horizontal polarization pins 304a and 304b. In accordance with an embodiment, each pair of the plurality of pins (such as pins 5012a to 5012h) may correspond to the pair of vertical polarization pins 302a and 302b. The plurality of chips 5002 may be electrically connected with the plurality of pins (such as pins 5012a to 5012h) and the ground (ground 5014a to 5014d) of each of the set of radiating waveguide antenna cells 5010 to control beamforming through a second end 5016 of each of the set of radiating waveguide antenna cells 5010 for the propagation of the high band RF beam and the low band RF beam in the millimeter wave communication. Each of the plurality of chips 5002 may include a plurality of connection ports (similar to the plurality of connection ports 4006 of FIG. 4B). The plurality of connection ports may include a plurality of negative terminals and a plurality of positive terminals (represented by “+” and “−” charges). A plurality of electrically conductive routing connections (represented by thick lines) are provided from the plurality of connection ports of the plurality of chips 5002 to the waveguide antenna elements, such as the pins 5012a to 5012h and the ground 5014a to 5014d of each of the set of radiating waveguide antenna cells 5010.


In accordance with an embodiment, the system board 5004 may be similar to the system board 504 and the heat sink 5006 may be similar to the heat sink 506 of FIG. 5A. The various components of the antenna system 5000A may be arranged similar to either of the arrangement of various components of the antenna system 500A or the antenna system 500B without deviating from the scope of the invention.



FIG. 5D illustrates a block diagram of the dual band waveguide antenna system for the millimeter wave communication, in accordance with an exemplary embodiment of the disclosure. FIG. 5D is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, 4B, 4C, and 5A-5C. With reference to FIG. 5D, there is shown dual band transmitter receiver shared antenna system 5100. The dual band transmitter receiver shared antenna system 5100 may be similar to the antenna system 5000A of FIG. 5C. The dual band transmitter receiver shared antenna system 5100 further includes a plurality of dual band transmitter receiver shared antennas 5100a to 5100d, a plurality of single pole, 4 throw (SP4T) switches (SP4T 5102a to 5102h), a set of high band power amplifiers (power amplifier 5104a, 5104c, 5104e, and 5104g), a set of low band power amplifiers (amplifier 5104b, 5104d, 5104f, and 5104h), a set of high band low noise amplifier (low noise amplifier 5106a, 5106c, 5106e, and 5106g), a set of low band low noise amplifier (low amplifier 5106b, 5106d, 5106f, and 5106h), a set of phase shifters (phase shifter 5108a to 5108d), a mixer 5110 and a local oscillator 5112 in addition to the various components of the antenna system 5000A as described in FIG. 5C. Since each antenna is a dual band transmitter receiver shared antenna, all the plurality of dual band transmitter receiver shared antennas 5100a to 5100d are configured to transmit and receive dual band resonant frequencies in high band with the range of 37-40.5 GHz and low band with the range of 26.5-29.5 GHz.


In operation, for transmission of a RF signal, the RF signal may be mixed with a signal from the local oscillator 5112 by the mixer 5110. A phase of the mixed RF signal may be changed by one phase shifter of the set of phase shifters (phase shifter 5108a to 5108d). The phase shifted RF signal may then be supplied to a low band power amplifier or a high band power amplifier based on whether the dual band transmitter receiver shared antenna is operating to transmit the low band resonant frequency or the high band resonant frequency. The selection of the low band power amplifier or the high band power amplifier is performed by the SP4T switch. For reception, an incoming RF signal may be received by the dual band transmitter receiver shared antenna. The received RF signal may then flow through one of the high band low noise amplifier or the low band low noise amplifier based on whether the incoming RF signal corresponds to the high band resonant frequency or the low band resonant frequency. The selection of the high band low noise amplifier or the low band low noise amplifier is performed by the SP4T switch. The phase of the incoming RF signal is shifted and mixed with a local oscillator frequency. These operations may allow the receiver to be tuned across a wide band of interest, such that the frequency of the received RF signal is converted to a known, fixed frequency. This allows the received RF signal of interest to be efficiently processed, filtered, and demodulated.



FIG. 5E illustrates a frequency response curve of the dual band waveguide antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure. FIG. 5E is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, and 4B, 4C to 5A-5D. The frequency response curve may look substantially identical to that shown in FIG. 5E. The first resonant frequency and the second resonant frequency of the dual band antenna devices in FIGS. 4B, 4C, 5C and 5D may correspond to the low band resonant frequency with the range of 26.5-29.5 GHz and the high band resonant frequency with the range of 37-40.5 GHz as shown in FIG. 5E. It may be observed from the frequency response curve that the matching of the dual band waveguide antenna at the low band resonant frequency and at the high band resonant frequency is good with substantially low return loss. The matching at frequencies other than the low band resonant frequency and the high band resonant frequency is not good and has high return loss.



FIG. 5F depicts a perspective top view of an exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 5F, there is shown a waveguide antenna element based beam forming phased array 100A. The waveguide antenna element based beam forming phased array 100A may have a unitary body that comprises a plurality of radiating waveguide antenna cells 102 arranged in a certain layout for millimeter wave communication. The unitary body refers to one-piece structure of the waveguide antenna element based beam forming phased array 100A, where multiple antenna elements, such as the plurality of radiating waveguide antenna cells 102 may be fabricated as a single piece structure. In FIG. 5F, an example of eight-by-eight waveguide array comprising sixty four radiating waveguide antenna cells, such as the radiating waveguide antenna cell 1002A or 1012A, in the first layout, is shown. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be one-piece structure of four-by-four waveguide array comprising sixteen radiating waveguide antenna cells in the first layout. It is to be understood by one of ordinary skill in the art that the number of radiating waveguide antenna cells may vary, without departure from the scope of the present disclosure. For example, the waveguide antenna element based beam forming phased array 100A may be one-piece structure of N-by-N waveguide array comprising “M” number of radiating waveguide antenna cells arranged in certain layout, wherein “N” is a positive integer and “M” is N to the power of 2.



FIG. 5F illustrates the high band RF signal and the low band RF signal for the horizontal polarization pins and the high band RF signal and the low band RF signal for the vertical polarization pins. In accordance with an embodiment, the antenna element pitch may usually follow a half wavelength of the high band resonant frequency. In accordance with an embodiment, the antenna element pitch may follow a value between high and low band wavelength.



FIG. 6 illustrates radio frequency (RF) routings from a chip to an exemplary radiating waveguide antenna cell in the first exemplary antenna system of FIG. 5, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 6, there is shown a plurality of vertical routing connections 602 and a plurality of horizontal routing connections 604. The plurality of vertical routing connections 602 from the plurality of connection ports 606 provided on a chip (such as the chip 404 or one of the plurality of chips 502) are routed to a lower end 608 of a plurality of pins 610 of each radiating waveguide antenna cell. The plurality of pins 610 may correspond to the plurality of pins 206 of FIG. 2B.


In accordance with an embodiment, a vertical length 612 between the chip (such as the chip 404 or one of the plurality of chips 502) and a first end of each radiating waveguide antenna cell (such as the first end 210 of the radiating waveguide antenna cell 102A) of the plurality of radiating waveguide antenna cells 102, defines an amount of routing loss between each chip and the first end (such as the first end 210) of each radiating waveguide antenna cell. The first end of each radiating waveguide antenna cell (such as the first end 210 of the radiating waveguide antenna cell 102A) includes the lower end 608 of the plurality of pins 610 and the ground at the first end. When the vertical length 612 reduces, the amount of routing loss also reduces, whereas when the vertical length 612 increases, the amount of routing loss also increases. In other words, the amount of routing loss is directly proportional to the vertical length 612. Thus, in FIG. 5B, based on the positioning of the plurality of chips 502 and the waveguide antenna element based beam forming phased array 100A on the same side (i.e., the upper side 402A) of the first substrate 402, the vertical length 612 is negligible or reduced to minimum between the plurality of chips 502 and the first end 508 of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array 110A. The vertical length 612 may be less than a defined threshold to reduce insertion loss (or routing loss) for RF signals or power between the first end of each radiating waveguide antenna cell and the plurality of chips 502.


In FIG. 6, there is further shown a first positive terminal 610a and a first negative terminal 610b of a pair of vertical polarization pins of the plurality of pins 610. There is also shown a second positive terminal 610c and a second negative terminal 610d of a pair of horizontal polarization pins (such as the pins 512b and 512c of FIG. 5) of the plurality of pins 610. The positive and negative terminals of the plurality of connection ports 606 may be connected to a specific pin of specific and same polarization (as shown), to facilitate dual-polarization.



FIG. 7 illustrates protrude pins of an exemplary radiating waveguide antenna cell of an exemplary waveguide antenna element based beam forming phased array in an antenna system, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 7, there is shown a plurality of protrude pins 702 that slightly protrudes from a level of the body 704 of a radiating waveguide antenna cell of the waveguide antenna element based beam forming phased array 100A. The plurality of protrude pins 702 corresponds to the plurality of pins 206 (FIG. 2B) and the pins 512a to 512h (FIG. 5). The body 704 corresponds to the ground 208 (FIGS. 2A and 2B) and the ground 514a to 514d (FIG. 5). The plurality of protrude pins 702 in each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102 advantageously secures a firm contact of each radiating waveguide antenna cell with the first substrate 402 (FIGS. 4A and 5).



FIG. 8 illustrates a perspective bottom view of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A integrated with a first substrate and a plurality of chips and mounted on a board in an antenna system, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 8, there is shown the plurality of chips 502 connected to the lower side 402B of the first substrate 402. The plurality of chips 502 may be electrically connected with the plurality of pins (such as pins 512a to 512h) and the ground (ground 514a to 514d) of each of the plurality of radiating waveguide antenna cells 102. For example, in this case, each chip of the plurality of chips 502 may be connected to four radiating waveguide antenna cells of the plurality of radiating waveguide antenna cells 102, via a plurality of vertical routing connections and a plurality of horizontal routing connections. An example of the plurality of vertical routing connections 602 and the plurality of horizontal routing connections 604 for one radiating waveguide antenna cell (such as the radiating waveguide antenna cell 102A) has been shown and described in FIG. 6. The plurality of chips 502 may be configured to control beamforming through a second end (e.g., the open end 202 or the second end 516) of each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102 for the millimeter wave communication. The integrated assembly of the waveguide antenna element based beam forming phased array 100A with the first substrate 402 and the plurality of chips 502 may be mounted on a board 802 (e.g., an printed circuit board or an evaluation board) for quality control (QC) testing and to provide a modular arrangement that is easy-to-install.



FIG. 9 illustrates beamforming on an open end of the exemplary waveguide antenna element based beam forming phased array antenna system of FIG. 1A in the first exemplary antenna system of FIG. 5A or 5B, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 9, there is show a main lobe 902 of a RF beam and a plurality of side lobes 904 radiating from an open end 906 of each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102 of the waveguide antenna element based beam forming phased array 100A. The plurality of chips 502 may be configured to control beamforming through the open end 906 of each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102 for the millimeter wave communication. The plurality of chips 502 may include a set of receiver (Rx) chips, a set of transmitter (Tx) chips, and a signal mixer chip. In some implementation, among the plurality of chips 502, two or more chips (e.g. chips 502a, 502b, 502c, and 502d) may be the set of Rx chips and the set of Tx chips, and at least one chip (e.g. the chip 502e) may be the signal mixer chip. In some embodiments, each of the set of Tx chips may comprise various circuits, such as a transmitter (Tx) radio frequency (RF) frontend, a digital to analog converter (DAC), a power amplifier (PA), and other miscellaneous components, such as filters (that reject unwanted spectral components) and mixers (that modulates a frequency carrier signal with an oscillator signal). In some embodiments, each of the set of Rx chips may comprise various circuits, such as a receiver (Rx) RF frontend, an analog to digital converter (ADC), a low noise amplifier (LNA), and other miscellaneous components, such as filters, mixers, and frequency generators. The plurality of chips 502 in conjunction with the waveguide antenna element based beam forming phased array 100A of the antenna system 500A or 500B may be configured to generate extremely high frequency (EHF), which is the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz. Such radio frequencies have wavelengths from ten to one millimeter, referred to as millimeter wave (mmW).


In accordance with an embodiment, the plurality of chips 502 are configured to control propagation, a direction and angle (or tilt, such as 18, 22.5 or 45 degree tilt) of the RF beam (e.g. the main lobe 902 of the RF beam) in millimeter wave frequency through the open end 906 of the plurality of radiating waveguide antenna cells 102 for the millimeter wave communication between the antenna system 500A or 500B and a millimeter wave-based communication device. Example of the millimeter wave-based communication device may include, but are not limited to active reflectors, passive reflectors, or other millimeter wave capable telecommunications hardware, such as customer premises equipments (CPEs), smartphones, or other base stations. In this case, a 22.5 degree tilt of the RF beam is shown in FIG. 9 in an example. The antenna system 500A or 500B may be used as a part of communication device in a mobile network, such as a part of a base station or an active reflector to send and receive beam of RF signals for high throughput data communication in millimeter wave frequency (for example, broadband).



FIG. 10 depicts a perspective top view of an exemplary four-by-four waveguide antenna element based beam forming phased array antenna system with dummy elements, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 10, there is shown a waveguide antenna element based beam forming phased array 1000A. The waveguide antenna element based beam forming phased array 1000A is a one-piece structure that comprises a plurality of non-radiating dummy waveguide antenna cells 1002 arranged in a first layout 1004 in addition to the plurality of radiating waveguide antenna cells 102 (of FIG. 1A). The plurality of non-radiating dummy waveguide antenna cells 1002 are positioned at edge regions (including corners) surrounding the plurality of radiating waveguide antenna cells 102 in the first layout 1004, as shown. Such arrangement of the plurality of non-radiating dummy waveguide antenna cells 1002 at edge regions (including corners) surrounding the plurality of radiating waveguide antenna cells 102 is advantageous and enables even electromagnetic wave (or RF wave) radiation for the millimeter wave communication through the second end (such as the open end 906) of each of the plurality of radiating waveguide antenna cells 102 irrespective of positioning of the plurality of radiating waveguide antenna cells 102 in the first layout 1004. For example, radiating waveguide antenna cells that lie in the middle portion in the first layout 1004 may have same amount of radiation or achieve similar extent of tilt of a RF beam as compared to the radiating waveguide antenna cells that lie next to the plurality of non-radiating dummy waveguide antenna cells 1002 at edge regions (including corners).



FIG. 11 illustrates various components of a third exemplary antenna system, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 11, there is shown a cross-sectional side view of an antenna system 1100. The antenna system 1100 may comprise a plurality of radiating waveguide antenna cells (such as radiating waveguide antenna cells 1102a to 1102h) and a plurality of non-radiating dummy waveguide antenna cells (such as non-radiating dummy waveguide antenna cells 1104a and 1104b) in an waveguide antenna element based beam forming phased array. The waveguide antenna element based beam forming phased array may be an 8×8 (eight-by-eight) waveguide antenna element based beam forming phased array (shown in FIG. 12). In FIG. 11, a cross-sectional side view of the waveguide antenna element based beam forming phased array is shown in two dimension (2D).


The radiating waveguide antenna cells 1102a to 1102d may be mounted on a substrate module 1108a. The radiating waveguide antenna cells 1102e to 1102h may be mounted on a substrate module 1108b. The substrate modules 1108a and 1108b corresponds to the first substrate 402. The plurality of non-radiating dummy waveguide antenna cells (such as non-radiating dummy waveguide antenna cells 1104a and 1104b) are mounted on a second substrate (such as dummy substrates 1106a and 1106b). In some embodiments, the plurality of non-radiating dummy waveguide antenna cells may be mounted on the same type of substrate (such as the first substrate 402 or substrate modules 1108a and 1108b) as of the plurality of radiating waveguide antenna cells. In some embodiments, the plurality of non-radiating dummy waveguide antenna cells (such as non-radiating dummy waveguide antenna cells 1104a and 1104b) may be mounted on a different type of substrate, such as the dummy substrates 1106a and 1106b, which may be inexpensive as compared to first substrate the plurality of radiating waveguide antenna cells to reduce cost. The second substrate (such as dummy substrates 1106a and 1106b) may be different than the first substrate (such as the substrate modules 1108a and 1108b). This is a significant advantage compared to conventional approaches, where the conventional radiating antenna elements and the dummy antenna elements are on the same expensive substrate. The plurality of chips 502, the main system board 504, and the heat sink 506, are also shown, which are connected in a similar manner as described in FIG. 5.



FIG. 12 depicts a perspective top view of an exemplary eight-by-eight waveguide antenna element based beam forming phased array antenna system with dummy elements, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 12, there is shown a waveguide antenna element based beam forming phased array 1200A. The waveguide antenna element based beam forming phased array 1200A is a one-piece structure that comprises a plurality of non-radiating dummy waveguide antenna cells 1204 (such as the non-radiating dummy waveguide antenna cells 1104a and 1104b of FIG. 11) in addition to a plurality of radiating waveguide antenna cells 1202 (such as the radiating waveguide antenna cells 1102a to 1102h of FIG. 11). The plurality of non-radiating dummy waveguide antenna cells 1204 are positioned at edge regions (including corners) surrounding the plurality of radiating waveguide antenna cells 1202, as shown. Such arrangement of the plurality of non-radiating dummy waveguide antenna cells 1204 at edge regions (including corners) surrounding the plurality of radiating waveguide antenna cells 1202 is advantageous and enables even electromagnetic wave (or RF wave) radiation for the millimeter wave communication through the second end (such as an open end 1206) of each of the plurality of radiating waveguide antenna cells 1202 irrespective of positioning of the plurality of radiating waveguide antenna cells 1202 in the waveguide antenna element based beam forming phased array 1200A.



FIG. 13 illustrates various components of a fourth exemplary antenna system, in accordance with an exemplary embodiment of the disclosure. FIG. 13 is described in conjunction with elements of FIG. 11. With reference to FIG. 13, there is shown a cross-sectional side view of an antenna system 1300. The antenna system 1300 may be similar to the antenna system 1100. The antenna system 1300 further includes an interposer 1302 in addition to the various components of the antenna system 1100 as described in FIG. 11. The interposer 1302 may be positioned only beneath the edge regions of a waveguide antenna element based beam forming phased array (such as the waveguide antenna element based beam forming phased array 100A or the waveguide antenna element based beam forming phased array 1200A at a first end (such as the first end 210) to shield radiation leakage from the first end of the plurality of radiating waveguide antenna cells (e.g., the plurality of radiating waveguide antenna cells 1202) of the waveguide antenna element based beam forming phased array (such as the waveguide antenna element based beam forming phased arrays 100A, 1000A, 1200A). In some embodiments, interposer 1302 may facilitate electrical connection routing from one waveguide antenna element based beam forming phased array to another waveguide antenna element based beam forming phased array at the edge regions. The interposer 1302 may not extend or cover the entire area of the waveguide antenna element based beam forming phased array at the first end (i.e., the end that is mounted on the first substrate (such as the substrate modules 1108a and 1108b). This may be further understood from FIGS. 14 and 15.



FIG. 14 illustrates positioning of an interposer in an exploded view of an exemplary four-by-four waveguide antenna element based beam forming phased array antenna system module, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 14, there is shown a four-by-four waveguide antenna element based beam forming phased array module 1402 with the interposer 1302. The four-by-four waveguide antenna element based beam forming phased array module 1402 may correspond to the integrated assembly of the waveguide antenna element based beam forming phased array 100A with the first substrate 402 and the plurality of chips 502 mounted on the board, as shown and described in FIG. 8. The interposer 1302 may have a square-shaped or a rectangular-shaped hollow frame-like structure (for example a socket frame) with perforations to removably attach to corresponding protruded points on the four-by-four waveguide antenna element based beam forming phased array module 1402, as shown in an example.



FIG. 15 illustrates the interposer of FIG. 14 in an affixed state in an exemplary four-by-four waveguide antenna element based beam forming phased array antenna system module, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 15, there is shown the interposer 1302a in an affixed state on the four-by-four waveguide antenna element based beam forming phased array module 1402. As shown, the interposer 1302 may be positioned only beneath the edge regions of a waveguide antenna element based beam forming phased array, such as the four-by-four waveguide antenna element based beam forming phased array module 1402 in this case.



FIG. 16 illustrates various components of a fifth exemplary antenna system, in accordance with an exemplary embodiment of the disclosure. FIG. 16 is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, and 4 to 15. With reference to FIG. 16, there is shown a cross-sectional side view of an antenna system 1600. The antenna system 1600 may be similar to the antenna system 1100 of FIG. 11. The antenna system 1600 further includes a ground (gnd) layer 1602 in addition to the various components of the antenna system 1100 as described in FIG. 11. The gnd layer 1602 is provided between the first end (such as the first end 210) of the plurality of radiating waveguide antenna cells (such as the radiating waveguide antenna cells 1102a to 1102d) of a waveguide antenna element based beam forming phased array and the first substrate (such as the substrate modules 1108a and 1108b or the first substrate 402 (FIGS. 4A and 5) to avoid or minimize ground loop noise from the ground (such as the ground 1106) of each radiating waveguide antenna cell of the plurality of the radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array (such as the waveguide antenna element based beam forming phased array 100A or 1200A).


In accordance with an embodiment, the antenna system (such as the antenna system 500A, 500B, 1100, and 1300), may comprise a first substrate (such as the first substrate 402 or the substrate modules 1108a and 1108b), a plurality of chips (such as the chip 404 or the plurality of chips 502); and a waveguide antenna element based beam forming phased array (such as the waveguide antenna element based beam forming phased array 100A, 1000A, or 1200A) having a unitary body that comprises a plurality of radiating waveguide antenna cells (such as the plurality of radiating waveguide antenna cells 102, 1002, 1202, or 510), in a first layout (such as the first layout 1004 for millimeter wave communication. Each radiating waveguide antenna cell comprises a plurality of pins (such as the plurality of pins 206) that are connected with a body (such as the ground 208) of a corresponding radiating waveguide antenna cell that acts as ground for the plurality of pins. A first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array as the unitary body in the first layout is mounted on the first substrate. The plurality of chips may be electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end (such as the open end 202 or 906) of the plurality of radiating waveguide antenna cells for the millimeter wave communication.



FIG. 17 depicts schematic bottom views of different versions of the exemplary radiating waveguide antenna cell of the exemplary waveguide antenna element based beam forming phased array antenna system for millimeter wave communication of FIG. 1A, in accordance with an exemplary embodiment of the disclosure. With reference to FIG. 17, there are shown schematic bottom views of different versions of the radiating waveguide antenna cell 102A of FIG. 2B. There are shown four different variations of the radiating waveguide antenna cell 102A. In accordance with an embodiment, the plurality of pins 2006A in a first version of the radiating waveguide antenna cell 2002A includes a pair of vertical polarization pins 3002a and 3002b that acts as the first positive terminal and the first negative terminal. The plurality of pins 2006A in the radiating waveguide antenna cell 2002A further includes a pair of horizontal polarization pins 3004a and 3004b that acts as the second positive terminal and the second negative terminal. The pair of vertical polarization pins 3002a and 3002b and the pair of horizontal polarization pins 3004a and 3004b are utilized for dual-polarization. Thus, the waveguide antenna element based beam forming phased array 100A may be a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency (RF) waves for the millimeter wave communication in both horizontal and vertical polarizations. In accordance with an embodiment, the plurality of pins 2006B in a second version of the radiating waveguide antenna cell 2002B includes a vertical polarization pin 3002 that acts as a single-ended polarization pin. The plurality of pins 2006B in the radiating waveguide antenna cell 2002B further includes a pair of horizontal polarization pins 3004a and 3004b that acts as the positive terminal and the negative terminal. The pair of horizontal polarization pins 3004a and 3004b are utilized for dual-polarization and the vertical polarization pin 3002 may be utilized for single-ended antennas. Thus, the waveguide antenna element based beam forming phased array 100A may be a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency (RF) waves for the millimeter wave communication in horizontal polarization and integrated to single-ended antennas for vertical polarization. In accordance with an embodiment, the plurality of pins 2006C in a third version of the radiating waveguide antenna cell 2002C includes a horizontal polarization pin 3004 that acts as the single-ended polarization pin. The plurality of pins 2006C in the radiating waveguide antenna cell 2002C further includes a pair of vertical polarization pins 3002a and 3002b that acts as the positive terminal and the negative terminal. The pair of vertical polarization pins 3002a and 3002b are utilized for dual-polarization and the horizontal polarization pin 3004 may be utilized for single-ended antennas. Thus, the waveguide antenna element based beam forming phased array 100A may be a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency (RF) waves for the millimeter wave communication in vertical polarization and integrated to single-ended antennas for horizontal polarization. In accordance with an embodiment, the plurality of pins 2006D in a fourth version of the radiating waveguide antenna cell 2002D includes a vertical polarization pin 3002 and a horizontal polarization pin 3004. The vertical polarization pin 3002 and the horizontal polarization pin 3004 act as single-ended polarization pins and are utilized for single-ended antennas. Thus, the waveguide antenna element based beam forming phased array 100A may be integrated to single-ended antennas for vertical polarization and horizontal polarization.



FIG. 18A depicts a first exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure. FIG. 18A is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, and 4 to 17. With reference to FIG. 18A, there is shown an integration of various components of an antenna system to single-ended chips. The radiating waveguide antenna cell 2002A as described in FIG. 17 may be the dual-polarized open waveguide array antenna in both horizontal polarizations and vertical polarizations. Accordingly, an electrical transformer such as, a Balun may be provided between a single-ended Radio-Frequency Integrated Circuit (RFIC) and the radiating waveguide antenna cell 2002A of a waveguide antenna element based beam forming phased array to transform a differential output of the radiating waveguide antenna cell 2002A to a single-ended input for the single-ended RFIC. In accordance with an embodiment, balun 2000a may be provided between the single-ended RFIC 4000a and the radiating waveguide antenna cell 2002A of a waveguide antenna element based beam forming phased array to transform the differential output of the radiating waveguide antenna cell 2002A in vertical polarization to the single-ended input for the single-ended RFIC 4000a. The balun 2000b may be provided between the single-ended RFIC 4000b and the radiating waveguide antenna cell 2002A of a waveguide antenna element based beam forming phased array to transform the differential output of the radiating waveguide antenna cell 2002A in horizontal polarization to the single-ended input for the single-ended RFIC 4000b.



FIG. 18B depicts a second exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure. FIG. 18B is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, and 4 to 17. With reference to FIG. 18B, there is shown an integration of various components of an antenna system to single-ended chips. The radiating waveguide antenna cell 2002B as described in FIG. 17 may be the dual-polarized open waveguide array antenna in horizontal polarization and single-ended for vertical polarization. Accordingly, balun 2000b may be provided between the single-ended RFIC 4000b and the radiating waveguide antenna cell 2002B of a waveguide antenna element based beam forming phased array to transform the differential output of the radiating waveguide antenna cell 2002B in horizontal polarization to the single-ended input for the single-ended RFIC 4000b. In accordance with an embodiment, the single-ended RFIC 4000a may be configured to integrate with the radiating waveguide antenna cell 2002B for vertical polarization.



FIG. 18C depicts a third exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure. FIG. 18C is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, and 4 to 17. With reference to FIG. 18C, there is shown an integration of various components of an antenna system to single-ended chips. The radiating waveguide antenna cell 2002C as described in FIG. 17 may be the dual-polarized open waveguide array antenna in vertical polarization and integrated to single-ended antennas for horizontal polarization. Accordingly, balun 2000a may be provided between the single-ended RFIC 4000a and the radiating waveguide antenna cell 2002C of a waveguide antenna element based beam forming phased array to transform the differential output of the radiating waveguide antenna cell 2002C in vertical polarization to the single-ended input for the single-ended RFIC 4000a. In accordance with an embodiment, the single-ended RFIC 4000b may be configured to integrate with the radiating waveguide antenna cell 2002C for horizontal polarization.



FIG. 18D depicts a fourth exemplary integration of various components to single-ended chips, in accordance with an exemplary embodiment of the disclosure. FIG. 18D is described in conjunction with elements of FIGS. 1A, 1B, 2A, 2B, 3A, 3B, and 4 to 17. With reference to FIG. 18D, there is shown an integration of various components of an antenna system to single-ended chips. The radiating waveguide antenna cell 2002D as described in FIG. 17 may be single-ended antennas for vertical polarization and horizontal polarization. Accordingly, the single-ended RFIC 4000a may be configured to integrate with the radiating waveguide antenna cell 2002D for vertical polarization and the single-ended RFIC 4000b may be configured to integrate with the radiating waveguide antenna cell 2002D for horizontal polarization.


In accordance with an embodiment, the single-ended RFIC 4000a and the single-ended RFIC 4000b are separate chips. In accordance with an embodiment, the single-ended RFIC 4000a and the single-ended RFIC 4000b are two different terminals of a single chip.


In accordance with an embodiment, the waveguide antenna element based beam forming phased array may be a one-piece structure of four-by-four waveguide array comprising sixteen radiating waveguide antenna cells in the first layout, where the one-piece structure of four-by-four waveguide array corresponds to the unitary body of the waveguide antenna element based beam forming phased array. The waveguide antenna element based beam forming phased array may be one-piece structure of eight-by-eight waveguide array comprising sixty four radiating waveguide antenna cells in the first layout, where the one-piece structure of eight-by-eight waveguide array corresponds to the unitary body of the waveguide antenna element based beam forming phased array.


In accordance with an embodiment, the waveguide antenna element based beam forming phased array may be one-piece structure of N-by-N waveguide array comprising M number of radiating waveguide antenna cells in the first layout, wherein N is a positive integer and M is N to the power of 2. In accordance with an embodiment, the waveguide antenna element based beam forming phased array may further comprise a plurality of non-radiating dummy waveguide antenna cells (such as the plurality of non-radiating dummy waveguide antenna cells 1002 or 204 or the non-radiating dummy waveguide antenna cells 1104a and 1104b) in the first layout. The plurality of non-radiating dummy waveguide antenna cells may be positioned at edge regions surrounding the plurality of radiating waveguide antenna cells in the first layout to enable even radiation for the millimeter wave communication through the second end of each of the plurality of radiating waveguide antenna cells irrespective of positioning of the plurality of radiating waveguide antenna cells in the first layout.


In accordance with an embodiment, the antenna system may further comprise a second substrate (such as dummy substrates 1106a and 1106b). The plurality of non-radiating dummy waveguide antenna cells in the first layout are mounted on the second substrate that is different than the first substrate.


In accordance with an embodiment, the antenna system may further comprise a system board (such as the system board 504) having an upper surface and a lower surface. The upper surface of the system board comprises a plurality of electrically conductive connection points (such as the plurality of electrically conductive connection points 518) to connect to the ground of each of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array using electrically conductive wiring connections that passes through the first substrate, where the first substrate is positioned between the waveguide antenna element based beam forming phased array and the system board.


In accordance with an embodiment, the antenna system may further comprise a heat sink (such as the heat sink 506) that is attached to the lower surface of the system board. The heat sink have a comb-like structure in which a plurality of protrusions of the heat sink passes through a plurality of perforations in the system board such that the plurality of chips are in contact to the plurality of protrusions of the heat sink to dissipate heat from the plurality of chips through the heat sink. The first substrate may comprise an upper side and a lower side, where the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array may be mounted on the upper side of the first substrate, and the plurality of chips are positioned between the lower side of the first substrate and the upper surface of the system board.


In accordance with an embodiment, the first substrate may comprises an upper side and a lower side, where the plurality of chips and the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array are positioned on the upper side of the first substrate. A vertical length between the plurality of chips and the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array may be less than a defined threshold to reduce insertion or routing loss between the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the plurality of chips, based on the positioning of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the plurality of chips on a same side of the first substrate.


In accordance with an embodiment, the unitary body of the waveguide antenna element based beam forming phased array may have a metallic electrically conductive surface that acts as a heat sink to dissipate heat from the plurality of chips to atmospheric air through the metallic electrically conductive surface of the waveguide antenna element based beam forming phased array, based on a contact of the plurality of chips with the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array on the upper side of the first substrate. The plurality of pins in each radiating waveguide antenna cell may be protrude pins (such as the plurality of protrude pins 702) that protrude from the first end from a level of the body of the corresponding radiating waveguide antenna cell to establish a firm contact with the first substrate.


In accordance with an embodiment, the waveguide antenna element based beam forming phased array is a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency waves for the millimeter wave communication in both horizontal and vertical polarizations or as left hand circular polarization (LHCP) or right hand circular polarization (RHCP). The plurality of pins in each radiating waveguide antenna cell may include a pair of vertical polarization pins that acts as a first positive terminal and a first negative terminal and a pair of horizontal polarization pins that acts as a second positive terminal and a second negative terminal, wherein the pair of vertical polarization pins and the pair of horizontal polarization pins are utilized for dual-polarization. The plurality of chips comprises a set of receiver (Rx) chips, a set of transmitter (Tx) chips, and a signal mixer chip.


In accordance with an embodiment, the plurality of chips may be configured to control propagation and a direction of a radio frequency (RF) beam in millimeter wave frequency through the second end of the plurality of radiating waveguide antenna cells for the millimeter wave communication between the antenna system and a millimeter wave-based communication device, where the second end may be an open end of the plurality of radiating waveguide antenna cells for the millimeter wave communication. The propagation of the radio frequency (RF) beam in millimeter wave frequency may be controlled based on at least a flow of current in each radiating waveguide antenna cell, where the current flows from the ground towards a negative terminal of a first chip of the plurality of chips via at least a first pin of the plurality of pins, and from a positive terminal of the first chip towards the ground via at least a second pin of the plurality of pins in each corresponding radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells.


In accordance with an embodiment, the antenna system may further comprise an interposer (such as the interposer 1302) beneath the edge regions of the waveguide antenna element based beam forming phased array at the first end in the first layout to shield radiation leakage from the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array. In accordance with an embodiment, the antenna system may further comprise a ground (gnd) layer (such as the gnd layer 1602) between the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the first substrate to avoid or minimize ground loop noise from the ground of each radiating waveguide antenna cell of the plurality of the radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array.


The waveguide antenna element based beam forming phased arrays 100A, 110A, 1000A, 1200A may be utilized in, for example, active and passive reflector devices disclosed in, for example, U.S. application Ser. No. 15/607,743, and U.S. application Ser. No. 15/834,894.


While various embodiments described in the present disclosure have been described above, it should be understood that they have been presented by way of example, and not limitation. It is to be understood that various changes in form and detail can be made therein without departing from the scope of the present disclosure. In addition to using circuitry or hardware (e.g., within or coupled to a central processing unit (“CPU”), microprocessor, micro controller, digital signal processor, processor core, system on chip (“SOC”) or any other device), implementations may also be embodied in software (e.g. computer readable code, program code, and/or instructions disposed in any form, such as source, object or machine language) disposed for example in a non-transitory computer-readable medium configured to store the software. Such software can enable, for example, the function, fabrication, modeling, simulation, description and/or testing of the apparatus and methods describe herein. For example, this can be accomplished through the use of general program languages (e.g., C, C++), hardware description languages (HDL) including Verilog HDL, VHDL, and so on, or other available programs. Such software can be disposed in any known non-transitory computer-readable medium, such as semiconductor, magnetic disc, or optical disc (e.g., CD-ROM, DVD-ROM, etc.). The software can also be disposed as computer data embodied in a non-transitory computer-readable transmission medium (e.g., solid state memory any other non-transitory medium including digital, optical, analogue-based medium, such as removable storage media). Embodiments of the present disclosure may include methods of providing the apparatus described herein by providing software describing the apparatus and subsequently transmitting the software as a computer data signal over a communication network including the internet and intranets.


It is to be further understood that the system described herein may be included in a semiconductor intellectual property core, such as a microprocessor core (e.g., embodied in HDL) and transformed to hardware in the production of integrated circuits. Additionally, the system described herein may be embodied as a combination of hardware and software. Thus, the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims
  • 1. An antenna system, comprising: a first substrate;a plurality of chips; anda waveguide antenna element based beam forming phased array that comprises a plurality of radiating waveguide antenna cells for millimeter wave communication,wherein each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells comprises a plurality of pins,wherein a first pin of the plurality of pins is connected with a body of a corresponding radiating waveguide antenna cell, wherein the body corresponds to ground for the plurality of pins,wherein the first pin comprises a first current path and a second current path,wherein the first current path is longer than the second current path,wherein a first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array is mounted on the first substrate, andwherein the plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end of the plurality of radiating waveguide antenna cells for the millimeter wave communication.
  • 2. The antenna system according to claim 1, wherein each radiating waveguide antenna cell is configured to resonate at a first frequency range from 26.5 GigaHertz (GHz) to 29.5 GHz and a second frequency range from 37 GHz to 40.5 GHz.
  • 3. The antenna system according to claim 2, wherein the first current path is configured to generate a first RF current and the second current path is configured to generate a second RF current, andwherein the first RF current resonates at the first frequency range and the second RF current resonates at the second frequency range.
  • 4. The antenna system according to claim 1, wherein the chip is configured to: generate a high band Radio Frequency (RF) signal and a low band RF signal at a transmitter, andgenerate the high band Radio Frequency (RF) signal and the low band RF signal at a receiver.
  • 5. The antenna system according to claim 1, wherein a first direction of the first current path is same as a second direction of the second current path.
  • 6. The antenna system according to claim 1, wherein distance between two consecutive radiating waveguide antenna cells of the plurality of radiating waveguide antenna cells is based on the second current path.
  • 7. The antenna system according to claim 2, wherein distance between two consecutive radiating waveguide antenna cells of the plurality of radiating waveguide antenna cells is one of a half wavelength of the first frequency range or a value between the first frequency range and the second frequency range.
  • 8. The antenna system according to claim 1, wherein the waveguide antenna element based beam forming phased array further comprises a plurality of non-radiating dummy waveguide antenna cells in a first layout, wherein the plurality of non-radiating dummy waveguide antenna cells are at edge regions of the plurality of radiating waveguide antenna cells to enable even radiation for the millimeter wave communication through the second end of each of the plurality of radiating waveguide antenna cells.
  • 9. The antenna system according to claim 8, further comprising a second substrate, wherein the plurality of non-radiating dummy waveguide antenna cells are mounted on the second substrate that is different than the first substrate.
  • 10. The antenna system according to claim 8, wherein the first substrate comprises an upper side and a lower side, wherein the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array is mounted on the upper side of the first substrate, and the plurality of chips are between the lower side of the first substrate and the upper surface of a system board.
  • 11. The antenna system according to claim 1, wherein the first substrate comprises an upper side and a lower side, wherein the plurality of chips and the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array are on the upper side of the first substrate.
  • 12. The antenna system according to claim 11, wherein a vertical length between the plurality of chips and the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array is less than a threshold value to reduce insertion loss between the plurality of radiating waveguide antenna cells and the plurality of chips.
  • 13. The antenna system according to claim 11, wherein the waveguide antenna element based beam forming phased array has a metallic electrically conductive surface that acts as a heat sink to dissipate heat from the plurality of chips to atmospheric air through the metallic electrically conductive surface of the waveguide antenna element based beam forming phased array, and wherein the heat is dissipated based on a contact of the plurality of chips with the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array on the upper side of the first substrate.
  • 14. The antenna system according to claim 1, the waveguide antenna element based beam forming phased array is a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency waves for the millimeter wave communication in both horizontal and vertical polarizations or as left hand circular polarization (LHCP) or right hand circular polarization (RHCP).
  • 15. The antenna system according to claim 1, wherein the plurality of pins in each radiating waveguide antenna cell includes a pair of vertical polarization pins and a pair of horizontal polarization pins, wherein the pair of vertical polarization pins comprises a first positive terminal and a first negative terminal and the pair of horizontal polarization pins comprises a second positive terminal and a second negative terminal, and wherein the pair of vertical polarization pins and the pair of horizontal polarization pins are utilized for dual-polarization.
  • 16. The antenna system according to claim 1, wherein the plurality of chips comprises a set of receiver (Rx) chips, a set of transmitter (Tx) chips, and a signal mixer chip.
  • 17. The antenna system according to claim 1, wherein the plurality of chips are configured to control propagation and a direction of a radio frequency (RF) beam in millimeter wave frequency through the second end of the plurality of radiating waveguide antenna cells for the millimeter wave communication between the antenna system and a millimeter wave-based communication device, and wherein the second end is an open end of the plurality of radiating waveguide antenna cells for the millimeter wave communication.
  • 18. The antenna system according to claim 17, wherein the propagation of the radio frequency (RF) beam in millimeter wave frequency is controlled based on at least a flow of a first RF current and a second RF current in each radiating waveguide antenna cell, wherein the first RF current and the second RF current flows from the ground towards a negative terminal of a first chip of the plurality of chips via at least a first pin of the plurality of pins, and from a positive terminal of the first chip towards the ground via at least a second pin of the plurality of pins in each corresponding radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells.
  • 19. The antenna system according to claim 1, further comprising an interposer beneath an edge regions of the waveguide antenna element based beam forming phased array at the first end in a first layout to shield radiation leakage from the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array.
  • 20. The antenna system according to claim 1, further comprising a ground (gnd) layer between the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the first substrate.
  • 21. The antenna system according to claim 1, wherein the plurality of pins in each radiating waveguide antenna cell includes at least one single-ended polarization pin, and wherein the at least one single-ended polarization pin is configured to connect to a single-ended Radio-Frequency Integrated Circuit (RFIC).
  • 22. The antenna system according to claim 1, wherein the plurality of pins in each radiating waveguide antenna cell includes at least a pair of vertical polarization pins or a pair of horizontal polarization pins, wherein at least the pair of vertical polarization pins or the pair of horizontal polarization pins is configured to connect to a single-ended chip via a balun, andwherein the balun is configured to one of convert a single-ended input to a differential output or convert a differential input to a single-ended output.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 15/904,521, filed on Feb. 26, 2018. This application makes reference to: U.S. application Ser. No. 15/607,743, which was filed on May 30, 2017; and U.S. application Ser. No. 15/834,894, which was filed on Dec. 7, 2017. Each of the above referenced application is hereby incorporated herein by reference in its entirety.

US Referenced Citations (298)
Number Name Date Kind
3835469 Chen et al. Sep 1974 A
4799062 Sanderford et al. Jan 1989 A
5473602 McKenna et al. Dec 1995 A
5479651 Nakaguchi Dec 1995 A
5561850 Makitalo et al. Oct 1996 A
5598173 Forti et al. Jan 1997 A
5666124 Chethik et al. Sep 1997 A
5771017 Dean et al. Jun 1998 A
5883602 Volman Mar 1999 A
5905473 Taenzer May 1999 A
5940033 Locher et al. Aug 1999 A
6018316 Rudish et al. Jan 2000 A
6307502 Marti-Canales et al. Oct 2001 B1
6405018 Reudink et al. Jun 2002 B1
6433920 Welch et al. Aug 2002 B1
6456252 Goyette Sep 2002 B1
6577631 Keenan et al. Jun 2003 B1
6718159 Sato Apr 2004 B1
6804491 Uesugi Oct 2004 B1
6992622 Chiang et al. Jan 2006 B1
7020482 Medvedev et al. Mar 2006 B2
7058367 Luo et al. Jun 2006 B1
7187949 Chang et al. Mar 2007 B2
7206294 Garahi et al. Apr 2007 B2
7248841 Agee et al. Jul 2007 B2
7339979 Kelkar Mar 2008 B1
7363058 Gustaf Apr 2008 B2
7424225 Elliott Sep 2008 B1
7480486 Oh et al. Jan 2009 B1
7574236 Mansour Aug 2009 B1
7636573 Walton et al. Dec 2009 B2
7911985 Proctor, Jr. et al. Mar 2011 B2
7920889 Hoshino et al. Apr 2011 B2
7986742 Ketchum et al. Jul 2011 B2
8014366 Wax et al. Sep 2011 B2
8045638 Grant et al. Oct 2011 B2
8121235 Sun et al. Feb 2012 B1
8190102 Rofougaran May 2012 B2
8228188 Key et al. Jul 2012 B2
8314736 Moshfeghi Nov 2012 B2
8385305 Negus et al. Feb 2013 B1
8385452 Gorokhov Feb 2013 B2
8457798 Hackett Jun 2013 B2
8482462 Komijani et al. Jul 2013 B2
8570988 Wallace et al. Oct 2013 B2
8588193 Ho et al. Nov 2013 B1
8644262 Sun et al. Feb 2014 B1
8654815 Forenza et al. Feb 2014 B1
8744513 Chen et al. Jun 2014 B2
8885628 Palanki et al. Nov 2014 B2
9037094 Moshfeghi May 2015 B2
9065515 Pezennec et al. Jun 2015 B2
9225482 Moshfeghi Dec 2015 B2
9252908 Branlund Feb 2016 B1
9277510 Helmersson et al. Mar 2016 B2
9456354 Branlund Sep 2016 B2
9686060 Moshfeghi Jun 2017 B2
9698948 Moshfeghi Jul 2017 B2
9787103 Leabman et al. Oct 2017 B1
9829563 Kiao et al. Nov 2017 B2
10069555 Islam et al. Sep 2018 B2
10090887 Rofougaran et al. Oct 2018 B1
10103853 Moshfeghi Oct 2018 B2
10199717 Rofougaran et al. Feb 2019 B2
10277370 Moshfeghi Apr 2019 B2
10320090 Zou et al. Jun 2019 B2
10348371 Rofougaran et al. Jul 2019 B2
10355720 Shattil Jul 2019 B2
10560179 Gharavi et al. Feb 2020 B2
10587313 Yoon et al. Mar 2020 B2
10666326 Rofougaran et al. May 2020 B2
20020034958 Oberschmidt et al. Mar 2002 A1
20020132600 Rudrapatna Sep 2002 A1
20020193074 Squibbs Dec 2002 A1
20030012208 Bernheim et al. Jan 2003 A1
20030090418 Howell May 2003 A1
20030129989 Gholmieh et al. Jul 2003 A1
20030236109 Nagata Dec 2003 A1
20040077379 Smith et al. Apr 2004 A1
20040082356 Walton et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040110469 Judd et al. Jun 2004 A1
20040116129 Wilson Jun 2004 A1
20040127174 Frank et al. Jul 2004 A1
20040166808 Hasegawa et al. Aug 2004 A1
20040204114 Brennan et al. Oct 2004 A1
20050048964 Cohen et al. Mar 2005 A1
20050069252 Hwang et al. Mar 2005 A1
20050134517 Gottl Jun 2005 A1
20050136943 Banerjee et al. Jun 2005 A1
20050181755 Hoshino et al. Aug 2005 A1
20050232216 Webster et al. Oct 2005 A1
20050237971 Skraparlis Oct 2005 A1
20050243756 Cleveland et al. Nov 2005 A1
20050270227 Stephens Dec 2005 A1
20060063494 Zhang et al. Mar 2006 A1
20060205342 McKay et al. Sep 2006 A1
20060246922 Gasbarro et al. Nov 2006 A1
20060267839 Vaskelainen et al. Nov 2006 A1
20070001924 Hirabayashi Jan 2007 A1
20070040025 Goel et al. Feb 2007 A1
20070052519 Talty et al. Mar 2007 A1
20070066254 Tsuchie et al. Mar 2007 A1
20070100548 Small May 2007 A1
20070115800 Fonseka et al. May 2007 A1
20070116012 Chang et al. May 2007 A1
20070127360 Song et al. Jun 2007 A1
20070160014 Larsson Jul 2007 A1
20070280310 Muenter et al. Dec 2007 A1
20080025208 Chan Jan 2008 A1
20080026763 Rensburg et al. Jan 2008 A1
20080076370 Kotecha et al. Mar 2008 A1
20080117961 Han et al. May 2008 A1
20080167049 Karr et al. Jul 2008 A1
20080212582 Zwart et al. Sep 2008 A1
20080225758 Proctor et al. Sep 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080261509 Sen Oct 2008 A1
20080303701 Zhang et al. Dec 2008 A1
20080315944 Brown Dec 2008 A1
20090009392 Jacomb-Hood et al. Jan 2009 A1
20090010215 Kim et al. Jan 2009 A1
20090028120 Lee Jan 2009 A1
20090029645 Leroudier Jan 2009 A1
20090092120 Goto et al. Apr 2009 A1
20090093265 Kimura et al. Apr 2009 A1
20090136227 Lambert May 2009 A1
20090156227 Frerking et al. Jun 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090191910 Athalye et al. Jul 2009 A1
20090195455 Kim et al. Aug 2009 A1
20090224137 Hoermann Sep 2009 A1
20090233545 Sutskover et al. Sep 2009 A1
20090296846 Maru Dec 2009 A1
20090325479 Chakrabarti et al. Dec 2009 A1
20100042881 Wong Feb 2010 A1
20100046655 Lee et al. Feb 2010 A1
20100080197 Kanellakis et al. Apr 2010 A1
20100090898 Gallagher et al. Apr 2010 A1
20100105403 Lennartson et al. Apr 2010 A1
20100117890 Vook et al. May 2010 A1
20100124895 Martin et al. May 2010 A1
20100136922 Rofougaran Jun 2010 A1
20100149039 Komijani et al. Jun 2010 A1
20100167639 Ranson et al. Jul 2010 A1
20100172309 Forenza et al. Jul 2010 A1
20100208776 Song et al. Aug 2010 A1
20100220012 Reede Sep 2010 A1
20100265925 Liu et al. Oct 2010 A1
20100266061 Cheng et al. Oct 2010 A1
20100267415 Kakitsu et al. Oct 2010 A1
20100273504 Bull et al. Oct 2010 A1
20100284446 Mu et al. Nov 2010 A1
20100291918 Suzuki et al. Nov 2010 A1
20100304680 Kuffner et al. Dec 2010 A1
20100304770 Wietfeldt et al. Dec 2010 A1
20100328157 Culkin et al. Dec 2010 A1
20110002410 Forenza et al. Jan 2011 A1
20110003610 Key et al. Jan 2011 A1
20110045764 Maruyama et al. Feb 2011 A1
20110063181 Walker Mar 2011 A1
20110069773 Doron et al. Mar 2011 A1
20110081875 Imamura et al. Apr 2011 A1
20110105032 Maruhashi et al. May 2011 A1
20110105167 Pan et al. May 2011 A1
20110136478 Trigui Jun 2011 A1
20110140954 Fortuny-Guasch Jun 2011 A1
20110142104 Coldrey et al. Jun 2011 A1
20110149835 Shimada et al. Jun 2011 A1
20110164510 Zheng et al. Jul 2011 A1
20110190005 Cheon et al. Aug 2011 A1
20110194504 Gorokhov et al. Aug 2011 A1
20110212684 Nam et al. Sep 2011 A1
20110222616 Jiang et al. Sep 2011 A1
20110268037 Fujimoto Nov 2011 A1
20110299441 Petrovic et al. Dec 2011 A1
20120034924 Kalhan Feb 2012 A1
20120057508 Moshfeghi Mar 2012 A1
20120082070 Hart et al. Apr 2012 A1
20120082072 Shen Apr 2012 A1
20120083207 Rofougaran et al. Apr 2012 A1
20120083225 Rofougaran et al. Apr 2012 A1
20120083233 Rofougaran et al. Apr 2012 A1
20120083306 Rofougaran et al. Apr 2012 A1
20120093209 Schmidt et al. Apr 2012 A1
20120120884 Yu et al. May 2012 A1
20120129543 Patel et al. May 2012 A1
20120131650 Gutt et al. May 2012 A1
20120149300 Forster Jun 2012 A1
20120184203 Tulino et al. Jul 2012 A1
20120194385 Schmidt et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120224651 Murakami et al. Sep 2012 A1
20120230274 Xiao et al. Sep 2012 A1
20120238202 Kim et al. Sep 2012 A1
20120250659 Sambhwani Oct 2012 A1
20120257516 Pazhyannur et al. Oct 2012 A1
20120259547 Morlock et al. Oct 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20130027240 Chowdhury Jan 2013 A1
20130027250 Chen Jan 2013 A1
20130039342 Kazmi Feb 2013 A1
20130040558 Kazmi Feb 2013 A1
20130044028 Lea et al. Feb 2013 A1
20130057447 Pivit et al. Mar 2013 A1
20130072112 Gunnarsson et al. Mar 2013 A1
20130072113 Lee et al. Mar 2013 A1
20130089123 Rahul et al. Apr 2013 A1
20130094439 Moshfeghi Apr 2013 A1
20130094522 Moshfeghi Apr 2013 A1
20130094544 Moshfeghi Apr 2013 A1
20130095747 Moshfeghi Apr 2013 A1
20130095770 Moshfeghi Apr 2013 A1
20130095874 Moshfeghi Apr 2013 A1
20130114468 Hui et al. May 2013 A1
20130155891 Dinan Jun 2013 A1
20130272220 Li et al. Oct 2013 A1
20130272437 Eidson et al. Oct 2013 A1
20130286962 Heath, Jr. et al. Oct 2013 A1
20130287139 Zhu et al. Oct 2013 A1
20130322561 Abreu et al. Dec 2013 A1
20130324055 Kludt et al. Dec 2013 A1
20130343235 Khan Dec 2013 A1
20140003338 Rahul et al. Jan 2014 A1
20140010319 Baik et al. Jan 2014 A1
20140016573 Nuggehalli et al. Jan 2014 A1
20140035731 Chan et al. Feb 2014 A1
20140044041 Moshfeghi Feb 2014 A1
20140044042 Moshfeghi Feb 2014 A1
20140044043 Moshfeghi et al. Feb 2014 A1
20140045478 Moshfeghi Feb 2014 A1
20140045541 Moshfeghi et al. Feb 2014 A1
20140072078 Sergeyev et al. Mar 2014 A1
20140077875 Wang et al. Mar 2014 A1
20140079165 Kludt et al. Mar 2014 A1
20140104124 Chernokalov et al. Apr 2014 A1
20140125539 Katipally et al. May 2014 A1
20140161018 Chang et al. Jun 2014 A1
20140198696 Li et al. Jul 2014 A1
20140241296 Shattil Aug 2014 A1
20140266866 Swirhun et al. Sep 2014 A1
20150003307 Moshfeghi et al. Jan 2015 A1
20150011160 Jurgovan et al. Jan 2015 A1
20150031407 Moshfeghi Jan 2015 A1
20150042744 Ralston et al. Feb 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150123496 Leabman et al. May 2015 A1
20150229133 Reynolds et al. Aug 2015 A1
20150296344 Trojer et al. Oct 2015 A1
20150303950 Shattil Oct 2015 A1
20150318897 Hyde et al. Nov 2015 A1
20150318905 Moshfeghi et al. Nov 2015 A1
20150341098 Angeletti et al. Nov 2015 A1
20160014613 Ponnampalam et al. Jan 2016 A1
20160054440 Younis Feb 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160094318 Shattil Mar 2016 A1
20160192400 Sohn et al. Jun 2016 A1
20160203347 Bartholomew et al. Jul 2016 A1
20160211905 Moshfeghi et al. Jul 2016 A1
20160219567 Gil et al. Jul 2016 A1
20160285481 Cohen Sep 2016 A1
20170026218 Shattil Jan 2017 A1
20170062944 Zimmerman et al. Mar 2017 A1
20170078897 Duan et al. Mar 2017 A1
20170126374 Moshfeghi et al. May 2017 A1
20170156069 Moshfeghi et al. Jun 2017 A1
20170201437 Balakrishnan et al. Jul 2017 A1
20170212208 Baek et al. Jul 2017 A1
20170237290 Bakker et al. Aug 2017 A1
20170257155 Liang et al. Sep 2017 A1
20170264014 Le-Ngoc Sep 2017 A1
20170288727 Rappaport Oct 2017 A1
20170324480 Elmirghani et al. Nov 2017 A1
20170332249 Guey et al. Nov 2017 A1
20170339625 Stapleton Nov 2017 A1
20170353338 Amadjikpe et al. Dec 2017 A1
20180026586 Carbone et al. Jan 2018 A1
20180027471 Zhang et al. Jan 2018 A1
20180041270 Buer et al. Feb 2018 A1
20180048390 Palmer et al. Feb 2018 A1
20180063139 Day et al. Mar 2018 A1
20180090992 Shrivastava et al. Mar 2018 A1
20180109303 Yoo et al. Apr 2018 A1
20180115305 Islam et al. Apr 2018 A1
20180176799 Lange et al. Jun 2018 A1
20180183152 Turpin et al. Jun 2018 A1
20180220416 Islam et al. Aug 2018 A1
20190089434 Rainish et al. Mar 2019 A1
20190123866 Moshfeghi Apr 2019 A1
20190230626 Rune et al. Jul 2019 A1
20190319754 Moshfeghi Oct 2019 A1
20190319755 Moshfeghi Oct 2019 A1
20190319756 Moshfeghi Oct 2019 A1
20200076491 Zhang et al. Mar 2020 A1
20200145079 Marinier et al. May 2020 A1
20200204249 Pyun Jun 2020 A1
20200412519 Krishnaswamy et al. Dec 2020 A1
Foreign Referenced Citations (3)
Number Date Country
1890441 Mar 2013 EP
2008027531 Dec 2008 WO
2016115545 Oct 2016 WO
Non-Patent Literature Citations (245)
Entry
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Jan. 6, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 16/684,789 dated Jan. 11, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Dec. 31, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Feb. 1, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/129,413 dated Nov. 27, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/153,735 dated Nov. 18, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/364,956 dated Jan. 6, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/388,043 dated Dec. 24, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/388,043 dated Dec. 30, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/675,290 dated Dec. 16, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/684,789 dated Nov. 20, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Feb. 2, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Jan. 26, 2021.
International Preliminary Report on Patentability for International Application No. PCT/US2018/064184 dated Jan 21, 2021.
Morgan et al., “A Same-Frequency Cellular Repeater Using Adaptive Feedback Cancellation,” IEEE, Mar. 12, 2012, pp. 3825-3830.
Non-Final Office Action for U.S. Appl. No. 16/377,847 dated Dec. 14, 2020.
Non-Final Office Action for U.S. Appl. No. 16/666,680 dated Nov. 13, 2020.
Non-Final Office Action for U.S. Appl. No. 16/941,690 dated Nov. 12, 2020.
Notice of Allowability for U.S. Appl. No. 15/607,750 dated Jan. 11, 2021.
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Nov. 9, 2020.
Notice of Allowance for U.S. Appl. No. 16/204,397 dated Jan. 12, 2021.
Notice of Allowance for U.S. Appl. No. 16/364,956 dated Dec. 11, 2020.
Notice of Allowance for U.S. Appl. No. 16/388,043 dated Nov. 5, 2020.
Notice of Allowance for U.S. Appl. No. 16/451,998 dated Jan. 14, 2021.
Notice of Allowance for U.S. Appl. No. 16/452,023 dated Nov. 16, 2020.
Notice of Allowance for U.S. Appl. No. 16/675,290 dated Aug. 10, 2020.
Notice of Allowance for U.S. Appl. No. 16/689,758 dated Jan. 22, 2021.
Notice of Allowance for U.S. Appl. No. 16/819,388 dated Jan. 25, 2021.
Notice of Allowance for U.S. Appl. No. 16/866,536 dated Jan. 29, 2021.
Supplemental Notice of Allowability for U.S. Appl. No. 16/153,735 dated Jan. 11, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated Aug. 25, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/256,222 dated Oct. 28, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/836,198 dated Oct. 2, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/377,980 dated Oct. 5, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated Sep. 25, 2020.
Final Office Action for U.S. Appl. No. 16/364,956 dated Oct. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 16/204,397 dated Sep. 17, 2020.
Non-Final Office Action for U.S. Appl. No. 16/233,044 dated Oct. 14, 2020.
Non-Final Office Action for U.S. Appl. No. 16/388,043 dated Aug. 3, 2020.
Non-Final Office Action for U.S. Appl. No. 16/398,156 dated Oct. 15, 2020.
Non-Final Office Action for U.S. Appl. No. 16/451,998 dated Sep. 11, 2020.
Non-Final Office Action for U.S. Appl. No. 16/452,023 dated Sep. 9, 2020.
Non-Final Office Action for U.S. Appl. No. 16/461,980 dated Sep. 21, 2020.
Non-Final Office Action for U.S. Appl. No. 16/689,758 dated Sep. 29, 2020.
Non-Final Office Action for U.S. Appl. No. 16/866,536 dated Sep. 1, 2020.
Notice of Allowance for U.S. Appl. No. 16/125,757 dated Oct. 28, 2020.
Notice of Allowance for U.S. Appl. No. 16/129,413 dated Aug. 12, 2020.
Notice of Allowance for U.S. Appl. No. 16/927,470 dated Oct. 29, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/153,735 dated Oct. 9, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 16/111,326 dated Mar. 9, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/616,911 dated Jan. 24, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated Mar. 12, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,668 dated Mar. 23, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/111,326 dated Apr. 23, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/129,423 dated Jan. 23, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/382,386 dated Feb. 6, 2020.
Final Office Action for U.S. Appl. No. 16/377,980 dated Mar. 4, 2020.
Final Office Action for U.S. Appl. No. 16/388,043 dated Apr. 15, 2020.
Final Office Action for U.S. Appl. No. 16/526,544 dated Feb. 12, 2020.
Non-Final Office Action for U.S. Appl. No. 16/125,757 dated Mar. 23, 2020.
Non-Final Office Action for U.S. Appl. No. 16/129,413 dated Feb. 12, 2020.
Non-Final Office Action for U.S. Appl. No. 16/364,956 dated Apr. 10, 2020.
Non-Final Office Action for U.S. Appl. No. 16/377,847 dated Apr. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 16/666,680 dated Feb. 19, 2020.
Notice of Allowance for U.S. Appl. No. 15/836,198 dated Apr. 17, 2020.
Notice of Allowance for U.S. Appl. No. 16/231,903 dated Mar. 24, 2020.
Notice of Allowance for U.S. Appl. No. 16/377,980 dated Apr. 14, 2020.
Notice of Allowance for U.S. Appl. No. 16/526,544 dated Apr. 9, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/032,668 dated Feb. 14, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/129,423 dated Mar. 3, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/294,025 dated Mar. 25, 2020.
Baggett, Benjamin M.W. Optimization of Aperiodically Spaced Phased Arrays for Wideband Applications. MS Thesis. Virginia Polytechnic Institute and State University, 2011. pp. 1-137.
Corrected Notice of Allowability for U.S. Appl. No. 15/904,521 dated May 6, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/607,743 dated May 10, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated May 10, 2019.
Corrected Notice of Allowance in U.S. Appl. No. 15/607,743 dated Apr. 3, 2019.
K. Han and K. Huang, “Wirelessly Powered Backscatter Communication networks: Modeling, Coverage and Capacity,” Apr. 9, 2016, Arxiv.com.
Non-Final Office Action in U.S. Appl. No. 15/432,091 dated Nov. 22, 2017.
Non-Final Office Action in U.S. Appl. No. 16/111,326 dated Mar. 1, 2019.
Notice of Allowance in U.S. Appl. No. 15/432,091 dated Apr. 11, 2018.
Notice of Allowance in U.S. Appl. No. 15/607,743 dated Jan. 22, 2019.
Notice of Allowance in U.S. Appl. No. 15/834,894 dated Feb. 20, 2019.
Notice of Allowance in U.S. Appl. No. 15/835,971 dated Jul. 23, 2018.
Notice of Allowance in U.S. Appl. No. 15/835,971 dated May 29, 2018.
Notice of Allowance in U.S. Appl. No. 15/904,521 dated Mar. 20, 2019.
Response to Rule 312 Communication for U.S. Appl. No. 15/834,894 dated Apr. 19, 2019; Miscellaneous Communication to Applicant for U.S. Appl. No. 15/834,894 dated Apr. 19, 2019.
Shimin Gong et al., “Backscatter Relay Communications Powered by Wireless Energy Beamforming,” IEEE Trans. on Communication, 2018.
USPTO Miscellaneous communication for U.S. Appl. No. 15/834,894 dated Apr. 19, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/382,386 dated Dec. 30, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/616,911 dated Oct. 31, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/616,911 dated Dec. 12, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated Jan. 8, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Oct. 22, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,617 dated Jan. 9, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,617 dated Oct. 28, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/032,668 dated Dec. 30, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/129,423 dated Nov. 7, 2019.
Final Office Action for U.S. Appl. No. 16/125,757 dated Dec. 2, 2019.
Misc Communication from USPTO for U.S. Appl. No. 16/382,386 dated Oct. 8, 2019.
Non-Final Office Action for U.S. Appl. No. 16/388,043 dated Dec. 27, 2019.
Non-Final Office Action in U.S. Appl. No. 15/836,198 dated Oct. 31, 2019.
Notice of Allowance for U.S. Appl. No. 15/595,919 dated Oct. 25, 2019.
Notice of Allowance for U.S. Appl. No. 16/111,326 dated Oct. 10, 2019.
Notice of Allowance for U.S. Appl. No. 16/129,423 dated Nov. 27, 2019.
Notice of Allowance for U.S. Appl. No. 16/294,025 dated Jan. 13, 2020.
Non-Final Office Action for U.S. Appl. No. 16/125,757 dated Aug. 9, 2019.
Non-Final Office Action for U.S. Appl. No. 16/129,413 dated Feb. 4, 2019.
Non-Final Office Action for U.S. Appl. No. 16/129,423 dated Feb. 4, 2019.
Non-Final Office Action for U.S. Appl. No. 16/231,903 dated Sep. 18, 2019.
Non-Final Office Action for U.S. Appl. No. 16/294,025 dated Sep. 12, 2019.
Non-Final Office Action for U.S. Appl. No. 16/377,980 dated Aug. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 16/526,544 dated Sep. 18, 2019.
Notice of Allowance for U.S. Appl. No. 13/473,083 dated Jan. 7, 2015.
Notice of Allowance for U.S. Appl. No. 16/032,668 dated Sep. 20, 2019.
Notice of Allowance for U.S. Appl. No. 13/473,096 dated Apr. 17, 2015.
Notice of Allowance for U.S. Appl. No. 13/473,105 dated Jun. 10, 2014.
Notice of Allowance for U.S. Appl. No. 13/473,113 dated Aug. 10, 2015.
Notice of Allowance for U.S. Appl. No. 13/473,160 dated May 25, 2017.
Notice of Allowance for U.S. Appl. No. 13/473,180 dated May 1, 2014.
Notice of Allowance for U.S. Appl. No. 13/919,922 dated Oct. 27, 2015.
Notice of Allowance for U.S. Appl. No. 13/919,932 dated Feb. 28, 2018.
Notice of Allowance for U.S. Appl. No. 13/919,958 dated Sep. 2, 2015.
Notice of Allowance for U.S. Appl. No. 13/919,967 dated Jul. 29, 2019.
Notice of Allowance for U.S. Appl. No. 13/919,972 dated Dec. 20, 2016.
Notice of Allowance for U.S. Appl. No. 14/325,218 dated Dec. 19, 2016.
Notice of Allowance for U.S. Appl. No. 14/455,859 dated Apr. 20, 2016.
Notice of Allowance for U.S. Appl. No. 14/709,136 dated Feb. 16, 2017.
Notice of Allowance for U.S. Appl. No. 14/813,058 dated Nov. 7, 2016.
Notice of Allowance for U.S. Appl. No. 14/940,130 dated Feb. 1, 2017.
Notice of Allowance for U.S. Appl. No. 14/980,281 dated Feb. 7, 2017.
Notice of Allowance for U.S. Appl. No. 14/980,338 dated Feb. 22, 2018.
Notice of Allowance for U.S. Appl. No. 15/229,135 dated May 22, 2018.
Notice of Allowance for U.S. Appl. No. 15/372,417 dated Dec. 7, 2018.
Notice of Allowance for U.S. Appl. No. 15/441,209 dated Dec. 28, 2018.
Notice of Allowance for U.S. Appl. No. 15/472,148 dated Dec. 10, 2018.
Notice of Allowance for U.S. Appl. No. 15/595,919 dated Jun. 5, 2019.
Notice of Allowance for U.S. Appl. No. 15/595,940 dated May 1, 2018.
Notice of Allowance for U.S. Appl. No. 15/616,911 dated Jul. 24, 2019.
Notice of Allowance for U.S. Appl. No. 15/904,521 dated Sep. 20, 2019.
Notice of Allowance for U.S. Appl. No. 16/129,423 dated Jul. 15, 2019.
Notice of Allowance for U.S. Appl. No. 16/382,386 dated Jul. 24, 2019.
Notice of Allowance issued in U.S. Appl. No. 16/129,423 dated Jul. 15, 2019.
Patent Board Decision—Examiner Affirmed for U.S. Appl. No. 13/473,144 dated Jun. 4, 2018.
Patent Board Decision—Examiner Affirmed in Part for U.S. Appl. No. 13/473,160 dated Feb. 21, 2017.
Patent Board Decision—Examiner Reversed for U.S. Appl. No. 13/919,932 dated Dec. 19, 2017.
Restriction Requirement for U.S. Appl. No. 15/893,626 dated Aug. 12, 2016.
Non-Final Office Action for U.S. Appl. No. 16/016,619 dated Sep. 25, 2018.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Sep. 16, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Jul. 8, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521 dated Jun. 21, 2019.
Corrected Notice of Allowance for U.S. Appl. No. 13/473,180 dated Jun. 11, 2014.
Corrected Notice of Allowance for U.S. Appl. No. 15/904,521.
Corrected Notice of Allowance for U.S. Appl. No. 16/031,007 dated Aug. 5, 2019.
Ex Parte Quayle Action for U.S. Appl. No. 16/032,668 dated Jul. 10, 2019.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 13/473,144 dated Jul. 26, 2017.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 13/473,160 dated Dec. 24, 2015.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 13/919,932 dated Jan. 10, 2017.
Final Office Action for U.S. Appl. No. 13/473,144 dated Jul. 28, 2016.
Final Office Action for U.S. Appl. No. 13/473,144 dated Aug. 14, 2014.
Final Office Action for U.S. Appl. No. 13/919,932 dated Oct. 23, 2015.
Final Office Action for U.S. Appl. No. 13/919,972 dated Jan. 21, 2016.
Final Office Action for U.S. Appl. No. 14/940,130 dated Oct. 14, 2016.
Final Office Action for U.S. Appl. No. 16/129,413 dated Aug. 13, 2019.
Final Office Action for U.S. Application Serial No. dated Oct. 22, 2014.
International Preliminary Report on Patentability for International Patent PCT/US2012/058839, 5 pages, dated Apr. 22, 2014.
List of References and considered by Applicant for U.S. Appl. No. 14/325,218 dated Apr. 21, 2017.
Non-Final Office Action for U.S. Appl. No. 13/473,083 dated Mar. 3, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,096 dated Apr. 23, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,096 dated Dec. 9, 2013.
Non-Final Office Action for U.S. Appl. No. 13/473,096 dated Nov. 3, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,105 dated Nov. 25, 2013.
Non-Final Office Action for U.S. Appl. No. 13/473,113 dated Oct. 2, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,144 dated Feb. 6, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,144 dated Feb. 9, 2015.
Non-Final Office Action for U.S. Appl. No. 13/473,144 dated Oct. 7, 2015.
Non-Final Office Action for U.S. Appl. No. 13/473,160 dated Jan. 15, 2014.
Non-Final Office Action for U.S. Appl. No. 13/473,180 dated Sep. 12, 2013.
Non-Final Office Action for U.S. Appl. No. 13/919,922 dated Jan. 30, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,932 dated Feb. 6, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,958 dated Jan. 5, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,967 dated Feb. 9, 2015.
Non-Final Office Action for U.S. Appl. No. 13/919,972 dated Jun. 4, 2015.
Non-Final Office Action for U.S. Appl. No. 14/455,859 dated Nov. 13, 2015.
Non-Final Office Action for U.S. Appl. No. 14/709,136 dated Sep. 28, 2016.
Non-Final Office Action for U.S. Appl. No. 14/813,058 dated Jun. 10, 2016.
Non-Final Office Action for U.S. Appl. No. 14/940,130 dated Apr. 6, 2016.
Non-Final Office Action for U.S. Appl. No. 14/980,281 dated Apr. 20, 2016.
Non-Final Office Action for U.S. Appl. No. 14/980,338 dated Mar. 14, 2017.
Non-Final Office Action for U.S. Appl. No. 15/229,135 dated Dec. 21, 2017.
Non-Final Office Action for U.S. Appl. No. 15/372,417 dated May 3, 2018.
Non-Final Office Action for U.S. Appl. No. 15/441,209 dated Jul. 3, 2018.
Non-Final Office Action for U.S. Appl. No. 15/595,940 dated Nov. 17, 2017.
Non-Final Office Action for U.S. Appl. No. 15/616,911 dated Jan. 3, 2019.
Non-Final Office Action for U.S. Appl. No. 15/706,759 dated Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 15/893,626 dated Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 16/101,044 dated Dec. 26, 2018.
Corrected Notice of Allowability for U.S. Appl. No. 15/256,222 dated Jul. 10, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 16/377,980 dated Jul. 22, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 16/526,544 dated Jul. 16, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/526,544 dated May 13, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 15/836,198 dated May 22, 2020.
Corrected Notice of Allowance for U.S. Appl. No. 16/294,025 dated May 18, 2020.
Final Office Action for U.S. Appl. No. 15/256,222 dated Oct. 4, 2019.
Final Office Action for U.S. Appl. No. 16/125,757 dated Jul. 15, 2020.
Final Office Action for U.S. Appl. No. 16/377,847 dated Jul. 13, 2020.
Final Office Action for U.S. Appl. No. 16/666,680 dated Jun. 29, 2020.
Non-Final Office Action for U.S. Appl. No. 15/256,222 dated Aug. 27, 2018.
Non-Final Office Action for U.S. Appl. No. 15/256,222 dated Mar. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 16/153,735 dated May 13, 2020.
Non-Final Office Action for U.S. Appl. No. 16/675,290 dated Apr. 30, 2020.
Non-Final Office Action for U.S. Appl. No. 16/819,388 dated Jul. 2, 2020.
Notice of Allowance for U.S. Appl. No. 15/256,222 dated Apr. 3, 2020.
Notice of Allowance for U.S. Appl. No. 15/607,750 dated Jun. 1, 2020.
Notice of Allowance for U.S. Appl. No. 16/153,735 dated Jul. 2, 2020.
Notice of Allowance for U.S. Appl. No. 16/684,789 dated Jul. 10, 2020.
Supplemental Notice of Allowability for U.S. Appl. No. 16/153,735 dated Jul. 22, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/231,903 dated Apr. 30, 2020.
Supplemental Notice of Allowance for U.S. Appl. No. 16/231,903 dated Jul. 1, 2020.
Corrected Notice of Allowability for U.S. Appl. No. 16/125,757 dated Mar. 11, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 16/204,397 dated Mar. 11, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/204,397 dated Apr. 28, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/364,956 dated May 6, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/388,043 dated Apr. 15, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated Apr. 29, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated Apr. 7, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/866,536 dated Apr. 29, 2021.
Corrected Notice of Allowance for U.S. Appl. No. 16/927,470 dated Apr. 26, 2021.
Final Office Action for U.S. Appl. No. 16/233,044 dated Apr. 19, 2021.
Final Office Action for U.S. Appl. No. 16/398,156 dated Apr. 19, 2021.
Non-Final Office Action for U.S. Appl. No. 17/011,042 dated Mar. 23, 2021.
Notice of Allowability for U.S. Appl. No. 16/129,413 dated Feb. 18, 2021.
Notice of Allowability for U.S. Appl. No. 16/388,043 dated Mar. 11, 2021.
Notice of Allowability for U.S. Appl. No. 16/819,388 dated Apr. 28, 2021.
Notice of Allowability for U.S. Appl. No. 16/819,388 dated Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 16/377,847 dated Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 16/388,043 dated May 7, 2021.
Notice of Allowance for U.S. Appl. No. 16/391,628 dated Mar. 17, 2021.
Notice of Allowance for U.S. Appl. No. 16/451,980 dated Mar. 23, 2021.
Notice of Allowance for U.S. Appl. No. 16/666,680 dated Mar. 2, 2021.
Notice of Allowance for U.S. Appl. No. 16/941,690 dated May 5, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/452,023 dated Feb. 18, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/153,735 dated Feb. 24, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/451,998 dated Mar. 2, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/452,023 dated Apr. 30, 2021.
Supplemental Notice of Allowance for U.S. Appl. No. 16/866,536 dated Mar. 17, 2021.
Related Publications (1)
Number Date Country
20190267716 A1 Aug 2019 US
Continuation in Parts (1)
Number Date Country
Parent 15904521 Feb 2018 US
Child 16354390 US