Waveguide architectures and related methods of manufacturing

Abstract
Systems and methods for generating head-up displays (HUDs) using waveguides incorporating Bragg gratings in accordance with various embodiments of the invention are provided. The term HUD is typically utilized to describe a class of displays that incorporates a transparent display that presents data without requiring users to look away from their usual viewpoints. HUDs can be incorporated in any of a variety of applications including (but not limited to) vehicular and near-eye applications, such as googles, eyewear, etc. HUDs that utilize planar waveguides that incorporate Bragg gratings in accordance with various embodiments of the invention can achieve significantly larger fields of view and have lower volumetric requirements than HUDs implemented using conventional optical components.
Description
FIELD OF THE INVENTION

The present invention generally relates to apparatuses and methods for displays and more specifically to apparatuses and methods for waveguide displays.


BACKGROUND

Waveguides can be referred to as structures with the capability of confining and guiding waves (i.e., restricting the spatial region in which waves can propagate). One subclass includes optical waveguides, which are structures that can guide electromagnetic waves, typically those in the visible spectrum. Waveguide structures can be designed to control the propagation path of waves using a number of different mechanisms. For example, planar waveguides can be designed to utilize diffraction gratings to diffract and couple incident light into the waveguide structure such that the in-coupled light can proceed to travel within the planar structure via total internal reflection (“TIR”).


Fabrication of waveguides can include the use of material systems that allow for the recording of holographic optical elements within the waveguides. One class of such material includes polymer dispersed liquid crystal (“PDLC”) mixtures, which are mixtures containing photopolymerizable monomers and liquid crystals. A further subclass of such mixtures includes holographic polymer dispersed liquid crystal (“HPDLC”) mixtures. Holographic optical elements, such as volume phase gratings, can be recorded in such a liquid mixture by illuminating the material with two mutually coherent laser beams. During the recording process, the monomers polymerize and the mixture undergoes a photopolymerization-induced phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.


Waveguide optics, such as those described above, can be considered for a range of display and sensor applications. In many applications, waveguides containing one or more grating layers encoding multiple optical functions can be realized using various waveguide architectures and material systems, enabling new innovations in near-eye displays for augmented reality (“AR”) and virtual reality (“VR”), compact heads-up displays (“HUDs”) for aviation and road transport, and sensors for biometric and laser radar (“LIDAR”) applications.


SUMMARY OF THE INVENTION

One embodiment includes a waveguide display including a waveguide including a holographic polymer dispersed liquid crystal mixture (HPDLC) layer sandwiched between first and second transparent substrates, wherein the HPDLC layer includes an input grating, a fold grating, and an output grating, and an input image node optically coupled to the waveguide, wherein the input grating is configured to receive light from the input image node and to cause the light to travel within the waveguide via total internal reflection to the fold grating, the fold grating is configured to direct the light towards the output grating, and the output grating is configured to cause the light to exit the waveguide.


In another embodiment, the input image node is coupled to the waveguide by an opto-mechanical interface that allows the waveguide to be mechanically disconnected from the input image node.


In a further embodiment, the waveguide is configured to direct light received from the input image node towards a vehicular windshield.


In still another embodiment, the waveguide is configured to distort the light exiting the waveguide such that the distorted light compensates for the curvature of the vehicular windshield.


In a still further embodiment, the input grating and the output grating are configured to be reverse reciprocal of each other.


In yet another embodiment, the input image node includes a transparent prism for coupling light into the waveguide.


In a yet further embodiment, the transparent prism includes a first surface for coupling light from the input image node into the prism, a second surface for coupling light out of the prism towards the waveguide, a third surface for providing an internal reflection, and a fourth surface opposing the third surface.


In another additional embodiment, the third surface is configured to totally internally reflect the light, wherein the third and fourth surfaces provide a window for viewing an external scene.


In a further additional embodiment, the waveguide display further includes a second waveguide, wherein the two waveguides are configured to form a binocular waveguide display.


In another embodiment again, at least one of the input grating and the output grating is a multiplexed grating.


In a further embodiment again, the waveguide further includes a second fold grating, wherein the multiplexed grating is configured to direct a portion of incident light towards the first fold grating and to direct another portion of incident light towards the second fold grating.


In still yet another embodiment, the multiplexed gratings provided by at least one of the input grating and the output grating is configured to increase the field of view of the waveguide display by providing a first waveguide path for light forming a first portion of the field of view and a second waveguide path for light forming a second portion of the field of view.


In a still yet further embodiment, the input and output gratings each multiplex first and second gratings, wherein a second fold grating is provided, wherein the first grating multiplexed into the input grating, the fold grating and the first grating multiplexed into the output grating together provide a first waveguide path for in-coupling, beam expanding and extracting a first field of view portion, wherein the second grating multiplexed into the input grating, the second fold grating and the second grating multiplexed into the output grating together provide a second waveguide path for in-coupling, beam expanding, and extracting a second field of view portion.


In still another additional embodiment, the waveguide further includes a quarter wave coating for rotating polarization of incoming light.


In a still further additional embodiment, the fold grating is configured to provide pupil expansion in a first direction and the output grating is configured to provide pupil expansion in a second direction different than the first direction.


In still another embodiment again, at least one of the input grating, fold grating, and output grating includes a rolled K-vector grating.


In a still further embodiment again, the input image node includes a light source.


In yet another additional embodiment, the input image node further includes a microdisplay panel.


In a yet further additional embodiment, the waveguide display further includes an eye tracker.


Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings, which forms a part of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The description and claims will be more fully understood with reference to the following figures and data graphs, which are presented as exemplary embodiments of the invention and should not be construed as a complete recitation of the scope of the invention. It will apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description.



FIGS. 1A and 1B conceptually illustrate two volume Bragg grating configurations in accordance with various embodiments of the invention.



FIG. 2 conceptually illustrates a surface relief grating in accordance with an embodiment of the invention.



FIGS. 3A and 3B conceptually illustrate H PDLC SBG devices and the switching property of SBGs in accordance with various embodiments of the invention.



FIGS. 4A-4D conceptually illustrate two-beam recording processes in accordance with various embodiments of the invention.



FIG. 5 conceptually illustrates a single-beam recording process utilizing an amplitude grating in accordance with an embodiment of the invention.



FIGS. 6A and 6B conceptually illustrate two implementations of rolled K-vector gratings in accordance with various embodiments of the invention.



FIG. 7 conceptually illustrates a multiplexed K-vector grating in accordance with an embodiment of the invention.



FIG. 8 conceptually illustrates a waveguide utilizing coupling gratings to diffract light into and out of the waveguide in accordance with an embodiment of the invention.



FIGS. 9 and 10 conceptually illustrate waveguides utilizing an output grating for exit pupil expansion in one dimension in accordance with an embodiment of the invention.



FIG. 11 conceptually illustrates a waveguide system utilizing two planar waveguides to provide exit pupil expansion in two dimensions in accordance with an embodiment of the invention.



FIG. 12 conceptually illustrates a waveguide utilizing a three-grating structure to provide two dimensional exit pupil expansion in accordance with an embodiment of the invention.



FIG. 13 conceptually illustrates a profile view of an RGB stack of waveguides in accordance with an embodiment of the invention.



FIG. 14 conceptually illustrates a dual axis expansion waveguide display with two grating layers in accordance with an embodiment of the invention.



FIG. 15 conceptually illustrates a plan view of a single grating layer in accordance with an embodiment of the invention.



FIG. 16 conceptually illustrates a plan view of a two grating layer configuration in accordance with an embodiment of the invention.



FIG. 17 conceptually illustrates a dual axis expansion waveguide display in accordance with an embodiment of the invention.



FIG. 18 conceptually illustrates an eye tracker display in accordance with an embodiment of the invention.



FIG. 19 conceptually illustrates a dual expansion waveguide display with a dynamic focusing element and an eye tracker in accordance with an embodiment of the invention.



FIGS. 20A and 20B conceptually illustrate a waveguide display coupled to an input image node by an opto-mechanical interface in accordance with an embodiment of the invention.



FIGS. 21-24 conceptually illustrate various input image node configurations in accordance with various embodiments of the invention.



FIG. 25 conceptually illustrates a system diagram showing components for waveguide displays in accordance with an embodiment of the invention.



FIG. 26 is a conceptual illustration of a head-up display within an automobile in accordance with an embodiment of the invention.



FIGS. 27A and 27B conceptually illustrate the projection of light into an eyebox.



FIG. 28 is a conceptual illustration of the field of view and volumetric requirements of a HUD implemented in accordance with an embodiment of the invention.



FIG. 29 is a conceptual illustration of a waveguide assembly in accordance with an embodiment of an invention.



FIG. 30 is a conceptual illustration of a perspective view of a waveguide assembly in accordance with an embodiment of the invention.



FIGS. 31A-31C conceptually illustrate a stack up including input coupling gratings and waveguides within a waveguide assembly in accordance with an embodiment of the invention.



FIG. 32 conceptually illustrates pairs of input coupling gratings positioned adjacent to each of a Red, Green, and Blue waveguide in a waveguide assembly in accordance with an embodiment of the invention.



FIG. 33A conceptually illustrates use of a single coupling grating to couple light into a waveguide in accordance with an embodiment of the invention.



FIG. 33B conceptually illustrates use of waveguides incorporating input, fold, and coupling gratings into a single planar material to construct a waveguide assembly in accordance with an embodiment of the invention.



FIGS. 34A and 34B are conceptual illustrations of coupling of light reflected by a reflection surface from a projection system into input gratings of a waveguide assembly in accordance with an embodiment of the invention.



FIG. 35 is a schematic diagram of a waveguide in accordance with an embodiment of the invention.



FIG. 36 conceptually illustrates K-vector prescriptions for gratings in a waveguide implemented in accordance with an embodiment of the invention.



FIGS. 37A and 37B conceptually illustrate the manner in which modifying slant angle to increase diffraction efficiency can compensate for decrease in coupling efficiency across an output grating in accordance with an embodiment of the invention.



FIGS. 38A and 38B are conceptual illustrations of projection of light by a waveguide in accordance with an embodiment of the invention.



FIG. 39 is a conceptual illustration of reflection of light projected by a waveguide assembly off a windshield in accordance with an embodiment of the invention.



FIGS. 40A-40C conceptually illustrate corrections that can be applied to a rolled K-vector prescription for an output grating to correct for distortions introduced by a curved windshield in accordance with an embodiment of the invention.



FIG. 41A-41E conceptually illustrates simulations showing the impact of a fold grating of a waveguide upon vignetting in accordance with an embodiment of the invention.



FIG. 42A-42E conceptually illustrates simulations showing reduction of vignetting in accordance with an embodiment of the invention.



FIG. 43 conceptually illustrates simulations showing vignetting across an eyebox of a HUD that reflects light projected from a waveguide assembly off a surface in accordance with an embodiment of the invention.



FIG. 44 conceptually illustrates a waveguide that can be cut with a tapered outline in accordance with an embodiment of the invention.



FIG. 45 is a conceptual illustration of a HUD system in accordance with an embodiment of the invention.



FIGS. 46A and 46B conceptually illustrate the positioning of various components in a monocular display in accordance with an embodiment of the invention.



FIG. 47 conceptually illustrates a monocular display with a reverse reciprocal arrangement in accordance with an embodiment with the invention.



FIG. 48 conceptually illustrates a profile view of an exploded two—waveguide stack in accordance with an embodiment of the invention.



FIG. 49 conceptually illustrates a monocular display utilizing a prism and IIN module in accordance with an embodiment of the invention.



FIG. 50 shows a 3D illustration of a near display having an IIN and waveguide component in accordance with an embodiment of the invention.



FIG. 51 conceptually illustrates the ray propagation path of a monocular display in accordance with an embodiment of the invention.



FIG. 52 conceptually illustrates a waveguide assembly including three separate waveguides, an input, fold and output, implemented in accordance with various embodiments of the invention.



FIGS. 53A-53B conceptually illustrate embodiments of bifurcated input gratings in accordance with various embodiments of the invention.



FIG. 54 conceptually illustrates one or more of the gratings, including the input grating, including a rolled K-vector and/or a multiplexed K-vector in accordance with various embodiments of the invention.



FIGS. 55A-55D conceptually illustrate gratings incorporating specific K-vectors in accordance with various embodiments of the invention.



FIGS. 56A and 56B conceptually illustrate diffraction within a waveguide system in accordance with various embodiments of the invention.



FIGS. 57A-57C conceptually illustrate projected light reflected off a surface into an eyebox region in accordance with various embodiments of the invention.



FIG. 58 conceptually illustrates rolled K-vector prescriptions in accordance with various embodiments of the invention.



FIGS. 59A-59E conceptually illustrate variation of the slant angle of the fold grating in accordance with various embodiments of the invention.



FIG. 60 conceptually illustrates improvements to the FOV and reducing diffraction losses and vignetting in accordance with various embodiments of the invention.



FIGS. 61A and 61B conceptually illustrate bifurcation of the vertical and horizontal fields in accordance with various embodiments of the invention.



FIG. 62 conceptually illustrates polarization of light in accordance with various embodiments of the invention.



FIGS. 63A-63F conceptually illustrate the effect of polarization on the efficiency of the gratings in accordance with embodiments of the invention.



FIG. 64 conceptually illustrates an implementation of a HWP film in accordance with embodiments of the invention.



FIGS. 65A-65N conceptually illustrate embodiments of various waveguide architectures in accordance with embodiments of the invention.



FIGS. 66A-66C conceptually illustrate an implementation of a waveguide architecture in accordance with embodiments of the invention.



FIGS. 67A-67D conceptually illustrate methods of manufacturing multiplex (MUX) gratings in accordance with embodiments of the invention.





DETAILED DESCRIPTION

For the purposes of describing embodiments, some well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order to not obscure the basic principles of the invention. Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description the terms light, ray, beam, and direction may be used interchangeably and in association with each other to indicate the direction of propagation of electromagnetic radiation along rectilinear trajectories. The term light and illumination may be used in relation to the visible and infrared bands of the electromagnetic spectrum. Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design. As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments. For illustrative purposes, it is to be understood that the drawings are not drawn to scale unless stated otherwise.


Turning now to the drawings, systems and methods for generating displays using waveguides incorporating Bragg gratings in accordance with various embodiments of the invention are illustrated. In many embodiments, the waveguide structures are designed to be optical waveguides, which are structures that can confine and guide electromagnetic waves in the visible spectrum, or light. These optical waveguides can be implemented for use in a number of different applications, such as but not limited to helmet mounted displays, head mounted displays (“HMDs”), and HUDs. The term HUD is typically utilized to describe a class of devices that incorporates a transparent display that presents data without requiring users to change their usual visual field. Optical waveguides can integrate various optical functions into a desired form factor depending on the given application.


Optical waveguides in accordance with various embodiments can be designed to manipulate light waves in a controlled manner using various methods and waveguide optics. For example, optical waveguides can be implemented using materials with higher refractive indices than the surrounding environment to restrict the area in which light can propagate. Light coupled into optical waveguides made of such materials at certain angles can be confined within the waveguide via total internal reflection. In a planar waveguide, the angles at which total internal reflection occurs can be given by Snell's law, which can determine whether the light is refracted or entirely reflected at the surface boundary.


In many embodiments, waveguides incorporating Bragg gratings are implemented for HUD applications. HUDs can be incorporated in any of a variety of applications including (but not limited to) near-eye applications. HUDs that utilize planar waveguides incorporating Bragg gratings in accordance with various embodiments of the invention can achieve significantly larger fields of view and have lower volumetric requirements than HUDs implemented using conventional optical components. In some embodiments, the HUDs include at least one waveguide incorporating a number of gratings. In further embodiments, the waveguide incorporates at least three Bragg gratings that can be implemented to provide various optical functions, such as but not limited to dual-axis beam expansion. For example, in a number of embodiments, the waveguide incorporates an input grating, a fold grating, and an output grating. HUDs utilizing waveguides can be implemented using varying numbers of waveguide. In many embodiments, a HUD is implemented using a single waveguide. In other embodiments, the HUD is implemented using a stack of waveguides. Multiple waveguides can be stacked and implemented to provide different optical functions, such as but not limited to implementing color displays. In several embodiments, the HUDs incorporate three separate waveguides, one waveguide for each of a Red, Green, and Blue color channel.


Waveguides utilizing Bragg gratings in accordance with various embodiments of the invention can be designed to have different types of fringes. Use of multiple waveguides having the same surface pitch sizes but different grating slanted angles can increase the overall couple-in angular bandwidth of the waveguide. In a number of embodiments, one or more of the gratings within the waveguide incorporate a rolling K-vector and/or a slant angle that varies across the grating to modify the diffraction efficiency of the grating. The K-vector can be defined as a vector orthogonal to the plane of the associated grating fringe, which can determine the optical efficiency for a given range of input and diffracted angles. By incorporating a grating with rolled K-vectors (“RKVs”), the gratings can be designed to vary diffraction efficiency in a manner that achieves desirable characteristics across the eyebox of the HUD display. Configurations of grating fringes (such as RKVs) and other aspects relating to the structures and implementations of waveguides for use in HUDs are discussed below in further detail.


Diffraction Gratings

Optical waveguides can incorporate different optical elements to manipulate the propagation of light waves. As can readily be appreciated, the type of grating selected can depend on the specific requirements of a given application. Optical structures recorded in waveguides can include many different types of optical elements, such as but not limited to diffraction gratings. In many embodiments, the grating implemented is a Bragg grating (also referred to as a volume grating). Bragg gratings can have high efficiency with little light being diffracted into higher orders. The relative amount of light in the diffracted and zero order can be varied by controlling the refractive index modulation of the grating, a property that is can be used to make lossy waveguide gratings for extracting light over a large pupil. By strategically placing volume Bragg gratings within a waveguide, the propagation of light within the waveguide can be affected in a controlled manner to achieve various effects. The diffraction of light incident on the grating can be determined by the characteristic of the light and the grating. As can readily be appreciated, volume Bragg gratings can be constructed to have different characteristics depending on the specific requirements of the given application. In a number of embodiments, the volume Bragg grating is designed to be a transmission grating. In other embodiments, the volume Bragg grating is designed to be a reflection grating. In transmission gratings, incident light meeting the Bragg condition is diffracted such that the diffracted light exits the grating on the side which the incident light did not enter. For reflection gratings, the diffracted light exits on the same side of the grating as where the incident light entered.



FIGS. 1A and 1B conceptually illustrate two volume Bragg grating configurations in accordance with various embodiments of the invention. Depending on the side out of which a light ray exits after diffraction, the grating can be classified as either a reflection grating 100 or a transmission grating 150. The conditions for refraction/reflection, or Bragg condition, can depend several factors, such as but not limited to the refractive indices of the medium, the grating period, the wavelength of the incident light, and the angle of incidence. FIG. 1A shows a reflection grating 100 recorded in a transparent material. As shown, light rays 101, 102 are of different wavelengths and are incident at the same angle on the reflection grating 100, which has fringes 103 that are parallel to the grating surface. Light ray 101 does not meet the Bragg condition and is transmitted through the grating. On the other hand, light ray 102 does meet the Bragg condition and is reflected back through the same surface on which it entered. Another type of grating is a transmission grating, which is conceptually illustrated in FIG. 1B. In the illustrative embodiment, the transmission grating 150 has fringes 151 that are perpendicular to the grating surface. As shown, light rays 152, 153 with different wavelengths are incident on the transmission grating 150 at the same angle. Light ray 152 meets the Bragg condition and is refracted, exiting on the opposite side of the grating on which the light ray 152 entered. Light ray 153 does not meet the Bragg condition and is transmitted through with its original path of propagation. Depending on the efficiency of the grating, light can be partially reflected or refracted. Although FIGS. 1A and 1B illustrate specific volume grating structures, any type of grating structure can be recorded in a waveguide cell in accordance with various embodiments of the invention. For example, volume gratings can be implemented with fringes that are tilted and/slanted relative to the grating surface, which can affect the angles of diffraction/reflection. Although the discussions above denote the grating structures as either transmission or reflection, both types of gratings behave in the same manner according to the standard grating equation.


Waveguide structures in accordance with various embodiments of the invention can implement gratings in a number of different ways. In addition to volume gratings, gratings can be implemented as surface relief gratings. As the name suggests, surface relief gratings can be implemented by physically forming grooves or periodic patterns on the surface of the substrate. The periodicity and angles formed by the grooves can determine the efficiency and other characteristics of the grating. Any of a number of methods can be used to form these grooves, such as but not limited to etching and photolithography.



FIG. 2 conceptually illustrates a surface relief grating in accordance with an embodiment of the invention. As shown, the surface relief grating 200 contains periodic slanted grooves 201. When light is incident on the grooves 201, diffraction can occur under certain conditions. The slant and periodicity of the grooves 201 can be designed to achieve targeted diffraction behavior of incident light.


Although FIGS. 1A-1B and 2 show specific grating structures, it is readily appreciable that grating structures can be configured in a number of different ways depending on the specific requirements of a given application. Examples of such configurations are discussed in the sections below in further detail.


Switchable Bragg Gratings

One class of gratings used in holographic waveguide devices is the Switchable Bragg Grating (“SBG”). SBGs can be fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between glass plates or substrates. In many cases, the glass plates are in a parallel configuration. One or both glass plates can support electrodes, typically transparent tin oxide films, for applying an electric field across the film. The grating structure in an SBG can be recorded in the liquid material (often referred to as the syrup) through photopolymerization-induced phase separation using interferential exposure with a spatially periodic intensity modulation. Factors such as but not limited to control of the irradiation intensity, component volume fractions of the materials in the mixture, and exposure temperature can determine the resulting grating morphology and performance. As can readily be appreciated, a wide variety of materials and mixtures can be used depending on the specific requirements of a given application. In many embodiments, HPDLC material is used. During the recording process, the monomers polymerize and the mixture undergoes a phase separation. The LC molecules aggregate to form discrete or coalesced droplets that are periodically distributed in polymer networks on the scale of optical wavelengths. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating, which can produce Bragg diffraction with a strong optical polarization resulting from the orientation ordering of the LC molecules in the droplets.


The resulting volume phase grating can exhibit very high diffraction efficiency, which can be controlled by the magnitude of the electric field applied across the film. When an electric field is applied to the grating via transparent electrodes, the natural orientation of the LC droplets can change, causing the refractive index modulation of the fringes to lower and the hologram diffraction efficiency to drop to very low levels. Typically, the electrodes are configured such that the applied electric field will be perpendicular to the substrates. In a number of embodiments, the electrodes are fabricated from indium tin oxide (“ITO”). In the OFF state with no electric field applied, the extraordinary axis of the liquid crystals generally aligns normal to the fringes. The grating thus exhibits high refractive index modulation and high diffraction efficiency for P-polarized light. When an electric field is applied to the HPDLC, the grating switches to the ON state wherein the extraordinary axes of the liquid crystal molecules align parallel to the applied field and hence perpendicular to the substrate. In the ON state, the grating exhibits lower refractive index modulation and lower diffraction efficiency for both S- and P-polarized light. Thus, the grating region no longer diffracts light. Each grating region can be divided into a multiplicity of grating elements such as for example a pixel matrix according to the function of the HPDLC device. Typically, the electrode on one substrate surface is uniform and continuous, while electrodes on the opposing substrate surface are patterned in accordance to the multiplicity of selectively switchable grating elements.


Typically, the SBG elements are switched clear in 30 μs with a longer relaxation time to switch ON. Note that the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range. In many cases, the device exhibits near 100% efficiency with no voltage applied and essentially zero efficiency with a sufficiently high voltage applied. In certain types of HPDLC devices, magnetic fields can be used to control the LC orientation. In some HPDLC applications, phase separation of the LC material from the polymer can be accomplished to such a degree that no discernible droplet structure results. An SBG can also be used as a passive grating. In this mode, its chief benefit is a uniquely high refractive index modulation. SBGs can be used to provide transmission or reflection gratings for free space applications. SBGs can be implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. The glass plates used to form the HPDLC cell provide a total internal reflection (“TIR”) light guiding structure. Light can be coupled out of the SBG when the switchable grating diffracts the light at an angle beyond the TIR condition.



FIGS. 3A and 3B conceptually illustrate HPDLC SBG devices 300, 350 and the switching property of SBGs in accordance with various embodiments of the invention. In FIG. 3A, the SBG 300 is in an OFF state. As shown, the LC molecules 301 are aligned substantially normal to the fringe planes. As such, the SBG 300 exhibits high diffraction efficiency, and incident light can easily be diffracted. FIG. 3B illustrates the SBG 350 in an ON position. An applied voltage 351 can orient the optical axis of the LC molecules 352 within the droplets 353 to produce an effective refractive index that matches the polymer's refractive index, essentially creating a transparent cell where incident light is not diffracted. In the illustrative embodiment, an AC voltage source is shown. As can readily be appreciated, various voltage sources can be utilized depending on the specific requirements of a given application.


In waveguide cell designs, in addition to the components described above, adhesives and spacers can be disposed between the substrates to affix the layers of the elements together and to maintain the cell gap, or thickness dimension. In these devices, spacers can take many forms, such as but not limited to materials, sizes, and geometries. Materials can include, for example, plastics (e.g., divinylbenzene), silica, and conductive spacers. They can take any suitable geometry, such as but not limited to rods and spheres. The spacers can take any suitable size. In many cases, the sizes of the spacers range from 1 to 30 μm. While the use of these adhesive materials and spacers can be necessary in LC cells using conventional materials and methods of manufacture, they can contribute to the haziness of the cells degrading the optical properties and performance of the waveguide and device.


HPDLC Material Systems

HPDLC mixtures in accordance with various embodiments of the invention generally include LC, monomers, photoinitiator dyes, and coinitiators. The mixture (often referred to as syrup) frequently also includes a surfactant. For the purposes of describing the invention, a surfactant is defined as any chemical agent that lowers the surface tension of the total liquid mixture. The use of surfactants in PDLC mixtures is known and dates back to the earliest investigations of PDLCs. For example, a paper by R. L Sutherland et al., SPIE Vol. 2689, 158-169, 1996, the disclosure of which is incorporated herein by reference, describes a PDLC mixture including a monomer, photoinitiator, coinitiator, chain extender, and LCs to which a surfactant can be added. Surfactants are also mentioned in a paper by Natarajan et al, Journal of Nonlinear Optical Physics and Materials, Vol. 5 No. I 89-98, 1996, the disclosure of which is incorporated herein by reference. Furthermore, U.S. Pat. No. 7,018,563 by Sutherland; et al., discusses polymer-dispersed liquid crystal material for forming a polymer-dispersed liquid crystal optical element comprising: at least one acrylic acid monomer; at least one type of liquid crystal material; a photoinitiator dye; a coinitiator; and a surfactant. The disclosure of U.S. Pat. No. 7,018,563 is hereby incorporated by reference in its entirety.


The patent and scientific literature contains many examples of material systems and processes that can be used to fabricate SBGs, including investigations into formulating such material systems for achieving high diffraction efficiency, fast response time, low drive voltage, and so forth. U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. both describe monomer and liquid crystal material combinations suitable for fabricating SBG devices. Examples of recipes can also be found in papers dating back to the early 1990s. Many of these materials use acrylate monomers, including:

    • R.L. Sutherland et al., Chem. Mater. 5, 1533 (1993), the disclosure of which is incorporated herein by reference, describes the use of acrylate polymers and surfactants. Specifically, the recipe comprises a crosslinking multifunctional acrylate monomer; a chain extender N-vinyl pyrrolidinone, LC E7, photo-initiator rose Bengal, and coinitiator N-phenyl glycine. Surfactant octanoic acid was added in certain variants.
    • Fontecchio et al., SID 00 Digest 774-776, 2000, the disclosure of which is incorporated herein by reference, describes a UV curable HPDLC for reflective display applications including a multi-functional acrylate monomer, LC, a photoinitiator, a coinitiators, and a chain terminator.
    • Y.H. Cho, et al., Polymer International, 48, 1085-1090, 1999, the disclosure of which is incorporated herein by reference, discloses HPDLC recipes including acrylates.
    • Karasawa et al., Japanese Journal of Applied Physics, Vol. 36, 6388-6392, 1997, the disclosure of which is incorporated herein by reference, describes acrylates of various functional orders.
    • T.J. Bunning et al., Polymer Science: Part B: Polymer Physics, Vol. 35, 2825-2833, 1997, the disclosure of which is incorporated herein by reference, also describes multifunctional acrylate monomers.
    • G.S. Iannacchione et al., Europhysics Letters Vol. 36 (6). 425-430, 1996, the disclosure of which is incorporated herein by reference, describes a PDLC mixture including a penta-acrylate monomer, LC, chain extender, coinitiators, and photoinitiator.


Acrylates offer the benefits of fast kinetics, good mixing with other materials, and compatibility with film forming processes. Since acrylates are cross-linked, they tend to be mechanically robust and flexible. For example, urethane acrylates of functionality 2 (di) and 3 (tri) have been used extensively for HPDLC technology. Higher functionality materials such as penta and hex functional stems have also been used.


One of the known attributes of transmission SBGs is that the LC molecules tend to align with an average direction normal to the grating fringe planes (i.e., parallel to the grating or K-vector). The effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (i.e., light with a polarization vector in the plane of incidence), but have nearly zero diffraction efficiency for S polarized light (i.e., light with the polarization vector normal to the plane of incidence).


Recording Mechanisms for Volume Gratings

Volume gratings can be recorded in a waveguide cell using many different methods in accordance with various embodiments of the invention. The recording of optical elements in optical recording materials can be achieved using any number and type of electromagnetic radiation sources. Depending on the application, the exposure source(s) and/or recording system can be configured to record optical elements using varying levels of exposure power and duration. As discussed above with regards to SBGs, techniques for recording volume gratings can include the exposure of an optical recording material using two mutually coherent laser beams, where the superimposition of the two beams create a periodic intensity distribution along the interference pattern. The optical recording material can form grating structures exhibiting a refractive index modulation pattern matching the periodic intensity distribution. In HPDLC mixtures, the light intensity distribution results in diffusion and polymerization of monomers into the high intensity regions and simultaneous diffusion of liquid crystal into the dark regions. This phase separation creates alternating liquid crystal-rich and liquid crystal-depleted regions that form the fringe planes of the grating. The grating structures can be formed with slanted or non-slanted fringes depending on how the recording beams are configured. FIGS. 4A-4D conceptually illustrate two-beam recording processes in accordance with various embodiments of the invention. As shown, two methods can be used to create two different types of Bragg gratings—i.e., a transmission grating 400 and a reflection grating 401. Depending on how the two recording beams 402, 403 are positioned, the interference pattern 404 can record either a transmission or a reflection grating in an optical recording material 405. Differences between the two types of gratings can be seen in the orientation of the fringes (i.e., the fringes of a reflection volume grating are typically substantially parallel to the surface of the substrate, and the fringes of a transmission grating are typically substantially perpendicular to the surface of the substrate). During playback, a beam 406 incident on the transmission grating 400 can result in a diffracted beam 407 that is transmitted. On the other hand, a beam 408 that is incident on the reflection grating 401 can result in a beam 409 that is reflected.


Another method for recording volume gratings in an optical recording material includes the use of a single beam to form an interference pattern onto the optical recording material. This can be achieved through the use of a master grating. In many embodiments, the master grating is a volume grating. In some embodiments, the master grating is an amplitude grating. Upon interaction with the master grating, the single beam can diffract. The first order diffraction and the zero order beam can overlap to create an interference pattern, which can then expose the optical recording material to form the desired volume grating. A single-beam recording process utilizing an amplitude grating in accordance with an embodiment of the invention is conceptually illustrated in FIG. 5. As shown, a beam 500 from a single laser source (not shown) is directed through an amplitude grating 501. Upon interaction with the grating 501, the beam 500 can diffract as, for example, in the case of the rays interacting with the black shaded region of the amplitude grating, or the beam 500 can propagated through the amplitude grating without substantial deviation as a zero-order beam as, for example, in the case of the rays interacting with the cross-hatched region of the amplitude grating. The first order diffraction beams 502 and the zero order beams 503 can overlap to create an interference pattern that exposes the optical recording layer 504 of a waveguide cell. In the illustrative embodiment, a spacer block 505 is positioned between the grating 501 and the optical recording layer 504 in order to alter the distance between the two components.


Although specific methods of recording volume gratings are discussed and shown in FIGS. 4A-4D and 5, recording systems in accordance with various embodiments of the invention can be configured to implement any of a number of methods for recording volume gratings.


Rolled K-Vector Gratings and Multiplexed K-Vector Gratings

In addressing the limited range of wavelengths and angles over which diffraction occurs in volume Bragg gratings, several methods can be utilized to increase the diffraction bandwidth of the gratings. In many embodiments, gratings can employ fringes that vary with respect to their K-vectors. In a number of embodiments, the change across the rolled K-vectors is typically such that the direction of the change in K-vectors is out of plane with the waveguide or grating element. Varying fringes, or rolled K-vectors, can be implemented in a number of different ways. In some embodiments, fringes of gratings are designed to vary in a progressive manner across the grating. In other embodiments, different discrete sets of gratings with different fringes are place serially. Gratings with rolled K-vectors can be designed and configured in a variety of ways. In many embodiments, the rolled K-vectors are designed such that the peak diffraction efficiency of each grating segment is optimized for its corresponding output angle at that position. In some embodiments, the peak diffraction efficiency of each grating at different positions is at an offset with its corresponding output angle at that position. It has been shown that by introducing this offset, eyebox homogeneity can be improved. In several embodiments, offsets can improve total image brightness by a factor of two compared to just matching the peak diffraction efficiencies at different positions.


Rolled K-vector gratings can be used to maximize the peak diffraction efficiency of in-couple light in accordance with an embodiment of the invention. The use of rolled k-vectors enables high efficiency input coupling into a grating, and also allows the beam spread angle to be optimized to minimize the thickness of the waveguide; this may need balancing the waveguide thickness, the angular bandwidth of the grating, and the spread of field angles at any given point on the grating. The low angular response of gratings as the K-vector is rolled (and surface pitch maintained) can prevent output coupling, allowing the waveguide thickness to be minimized. In a number of embodiments, the design aim is to ensure maximum input coupling at a point and to minimize the angular diversity such that the grating thickness can be minimized without reciprocally out-coupling at different point.



FIGS. 6A and 6B conceptually illustrate two implementations of rolled K-vector gratings in accordance with various embodiments of the invention. Referring first to FIG. 6A, in some embodiments a rolled K-vector grating can be implemented as a waveguide portion containing discrete grating elements 600 having different K-vectors. Referring next to FIG. 6B, in several embodiments a rolled K-vector grating can be implemented as a waveguide portion containing grating elements 601 within which the K-vectors undergoes a smooth monotonic variation in direction. As illustrated, the change in the direction of the K-vectors is out of plane with the waveguide.


In many embodiments, different sets of discrete fringes are superimposed into the same grating, creating a multiplexed grating with essentially multiple gratings inside the same volume that work independently and without interfering with each other. For example, if two volume gratings are recorded in the same device for two different Bragg wavelengths at the same incidence angle, the device can diffract the two selected wavelengths into different output directions with limited crosstalk. Multiplexing can be used to produce improved angular profiles by combining two gratings of similar prescription to extend the diffraction efficiency angular bandwidth and give better luminance uniformity and color balance across the exit pupil and field of view. Multiplexing can also be used to encode two distinct diffraction prescriptions which can be design to project light into distinct field of regions or diffract light of two different wavelengths into a given field of view region. Steps can be taken to ensure that there is no competition between gratings during recording leading to unequal diffraction efficiencies and crosstalk between gratings in playback. Multiplexing can also offer the significant benefit of reducing the number of layers in the waveguide structure. In some embodiments, at least one of the input, fold, or output gratings can combine two or more angular diffraction prescriptions to expand the angular bandwidth. Similarly, in several embodiments, at least one of the input, fold, or output gratings can combine two or more spectral diffraction prescriptions to expand the spectral bandwidth. For example, a color multiplexed grating may be used to diffract two or more of the primary colors.



FIG. 7 conceptually illustrates a multiplexed K-vector grating in accordance with an embodiment of the invention. As illustrated, the multiplexed grating 700 contains two sets of fringes 701, 702. The first set 701 is depicted by solid diagonal lines and has K-vector K1 and period Λ1. The second multiplexed grating 702 is illustrated by dot-dash lines and has K-vector K2 and period Λ2. In the illustrated embodiment, the two grating periods are the same, but the K-vectors differ in direction. In operation, both of the multiplexed gratings 701, 702 are active and can provide broader incidence and diffraction bandwidths. The angular bandwidth of incidence θi for the multiplexed gratings covers the angular range including the overlapping θi1 and θi2.The angular bandwidth of diffraction θd for the multiplexed gratings 701, 702 covers the angular range including the overlapping θd1 and θd2. In some embodiments, more than two gratings are multiplexed.


Although specific grating structures with varying fringes are discussed above, any of a number of fringe configurations can be utilized in accordance with specific requirements of a given application. For example, any number of gratings can be multiplexed as allowed by manufacturing constraints. Rolled K-vector gratings can be designed to have K-vectors rolled in any discrete unit.


Waveguides Implementing Pupil Expansion

Gratings can be implemented in waveguides in a variety of different ways. In some embodiments, the gratings reside on the outer surface of the waveguide. In other embodiments, volume gratings are implemented inside the waveguide. Gratings can also be implemented to perform different optical functions, such as but not limited to coupling light, directing light, and preventing the transmission of light. FIG. 8 conceptually illustrates a waveguide utilizing coupling gratings to diffract light into and out of the waveguide in accordance with an embodiment of the invention. As shown, the waveguide 800 includes a first surface 801, a second surface 802, an input grating element 803, and an output grating element 804. Collimated light 805 from a projection lens enters the waveguide through the first surface 801 at an orthogonal angle. The light travels through the waveguide 800 at its original angle and, before reaching the second surface 802 at the other side of the waveguide 800, interacts with an input grating element 803. The input grating element 803 can be designed to diffract the light 805 at an oblique angle such that the refracted light 806 is incident on the second surface 802 at an angle at which total internal reflection can occur. As such, the light 805 is coupled into the waveguide and is confined within the first and second surfaces 801, 802 of the waveguide 800. In the illustrative embodiment, the light travels within the waveguide 800 until it interacts with an output grating 804, which refracts and couples the light out of the waveguide 800 and into a user's eye 807.


In many embodiments, diffraction gratings can be used to preserve eye box size while reducing lens size by effectively expanding the exit pupil of a collimating optical system. The exit pupil can be defined as a virtual aperture where only the light rays which pass though this virtual aperture can enter a user's eyes. FIGS. 9 and 10 conceptually illustrate waveguides utilizing an output grating for exit pupil expansion in one dimension in accordance with an embodiment of the invention. The waveguide 900 in FIG. 9 includes a first surface 901, a second surface 902, an input grating element 903, and an output grating element 904. As shown, light 905 is coupled into the waveguide 900 by the input grating 902 and can travel through the waveguide 900 via total internal reflection. In the illustrative embodiment, the output grating 904 is extended and designed to refract a portion of the waveguided light. The light can be refracted such that the refracted light 906 is incident on the second surface 902 at an angle at which total internal reflection does not occur, allowing the light 906 to couple out of the waveguide 900. This lossy extraction permits exit pupil expansion as the remaining light can continue to travel within the waveguide 900 and, once the light is again incident on the output grating 904, the scenario described above can occur again. Utilizing this technique, a continuous expanded exit pupil can also be achieved with the correct design, as shown in FIG. 10.


Expanding upon the ideas in FIGS. 9 and 10, an optical waveguide can be designed to expand the exit pupil in two dimensions. In many embodiments, two waveguides can be stacked together to create a system where light coupled into the waveguide stack can achieve exit pupil expansion in two dimensions. FIG. 11 conceptually illustrates a waveguide system utilizing two planar waveguides to provide exit pupil expansion in two dimensions in accordance with an embodiment of the invention. As shown, the system 1100 includes a first waveguide 1101 and a second waveguide 1102. The first waveguide 1101 can include a first input coupling grating 1103 and a first output coupling grating 1104, and the second waveguide 1102 can include a second input coupling grating 1105 and a second output coupling grating 1106. The first input coupling grating 1103 can be designed to couple collimated light 1107 from an image source 1108 into the first waveguide 1101. Similar to the systems as described in FIGS. 9 and 10, the confined light can travel through the first waveguide 1101 via total internal reflection until the light reaches the first output coupling grating 1104. In the illustrative embodiment, the first output coupling grating 1104 is designed to provide lossy exit pupil expansion in a first dimension and to couple the light out of the first waveguide 1101. The second input coupling grating 1105 can be designed to receive light outputted from the first waveguide 1101, which is expanded in the first dimension, and refract the received light such that the received light travels through the second waveguide 1102 via total internal reflection. In many embodiments, the first output coupling grating 1104 and the second input coupling grating 1106 are extended in a similar manner. The light traveling through the second waveguide 1102 can then interact with the second output coupling grating 1106. In the illustrative embodiment, the second output coupling grating 1106 is designed to provide lossy exit pupil expansion in a second dimension that is different from the first dimension and to couple the light out of the second waveguide 1102. As a result, the exit pupil is expanded in two dimensions, allowing for a smaller lens size with respect to the eye box size 1109.


In many embodiments, the optical waveguide utilizes a fold grating, which can provide exit pupil expansion in one dimension while directing the light within the waveguide. In further embodiments, the fold grating directs the light towards an output grating, which can provide exit pupil expansion in a second dimension that is different from the first direction and also couples the light out of the waveguide. By using the fold grating, the waveguide display can require fewer layers than other systems and methods of displaying information. In addition, by using fold grating, light can travel by total internal refection within the waveguide in a single rectangular prism defined by the waveguide outer surfaces while achieving dual pupil expansion. As a result, a two-dimension exit pupil expansion can be achieved using a single waveguide. FIG. 12 conceptually illustrates a waveguide utilizing a three-grating structure to provide two dimensional exit pupil expansion in accordance with an embodiment of the invention. As shown, the waveguide 1200 includes an input grating 1201, a fold grating 1202, and an output grating 1203. Arrows 1204-1206 on the gratings 1201-1203 show the k-vector associated with each grating. In many embodiments, the fold grating 1202 can be designed to provide exit pupil expansion in one dimension and to redirect the direction of light propagating via total internal reflection from the input grating 1201. In the illustrative embodiment, the fringes of the fold gratings 1202 are at a 45 degree offset from either of the other two gratings 1201, 1203. Light incident on the fold grating is redirected 1207, 1208 to propagate towards the output grating 1203, which provides exit pupil expansion in a second dimension and couples the light out of the waveguide 1200.


Although the discussions above relating to FIGS. 8-12 describe specific waveguide structures, it is readily appreciated that any number of waveguide structure configurations can be utilized in accordance with specific requirements of a given application. For example, gratings providing exit pupil expansion can be designed with a gradient efficiency such that the portion of light refracted changes depending on the area of incident.


Waveguide Layer Stacks

Waveguides in accordance with various embodiments of the invention can be stacked together to implement certain optical functions. For example, in many embodiments, the device can include a stack of RGB diffracting layers, each layer comprising input and output gratings. In each layer the SBGs are recorded to provide peak diffraction efficiency vs. wavelength characteristics (along the waveguide) shifted by small increments from the peak wavelength. In some embodiments, RGB SBG layers are used and can be switched sequentially and synchronously with RGB LEDs image sources. FIG. 13 conceptually illustrates a profile view of an RGB stack of waveguides 1300 in accordance with an embodiment of the invention. In the illustrative embodiment, wavelength selective absorptive layers 1301-1303 are used to selectively absorb unwanted light in each waveguide layer 1304-1306. Dashed lines represent weak coupling due to either off-polarization or off Bragg. The stack of waveguides further includes various filters and waveplates 1307-1311. Polarization orientations are depicted with respect to the input grating.


Although FIG. 13 illustrates a specific structure of a waveguide stack, any of a number of stacking configuration can be used in accordance with specific requirements of a given application. For example, in many embodiments, only two layers, red and blue/green, are used to implement an RGB stack. Such a system can be achieved using several methods. In some embodiments, multiplexed gratings containing different sets of gratings, each correlating with an RGB color, are used to implement multiple color waveguides in one waveguide layer.


Waveguide Displays

Waveguide displays in accordance with various embodiments of the invention can be implemented and constricted in many different ways. For example, waveguide displays can contain a varying number of waveguide layers and different exit pupil expansion scheme. FIG. 14 conceptually illustrates a dual axis expansion waveguide display with two grating layers in accordance with an embodiment of the invention. As shown, the waveguide display 1400 includes a light source 1401, a microdisplay panel 1402, and an input image node (“IIN”) 1403 optically coupled to a waveguide 1404 having two grating layers. In some embodiments, the waveguide is formed by sandwiched the grating layers between glass or plastic substrates to form a stack within which total internal reflection occurs at the outer substrate and air interfaces. In several embodiments, the stack can further comprise additional layers such as beam splitting coatings and environmental protection layers. In the illustrative embodiment, each grating layer contains an input grating 1405A, 1405B, a fold grating exit pupil expander 1406A, 1406B, and an output grating 1407A, 1407B where characters A and B refer to the first and second waveguide layers. The input grating, fold grating, and the output grating can be holographic gratings, such as a switchable or non-switchable SBG. As used herein, the term grating may encompass a grating can include a set of gratings, such as multiplexed gratings or sets of discrete rolled K-vector gratings. In the illustrative embodiment, the IIN 1403 integrates the microdisplay panel 1402, the light source 1401, and optical components needed to illuminate the display panel, separate the reflected light, and collimate it into the required FOV. In the embodiment of FIG. 14 and in the embodiments to be described below, at least one of the input, fold, and output gratings can be electrically switchable. In many embodiments, all three grating types are passive (i.e., non-switching). In a number of embodiments, the IIN can project the image displayed on the microdisplay panel such that each display pixel is converted into a unique angular direction within the substrate waveguide. The collimation optics contained in the IIN can include lens and mirrors. In further embodiments, the lens and mirrors are diffractive lenses and mirrors.


In the illustrative embodiment, the light path from the source to the waveguide via the IIN is indicated by rays 1408-1411. The input grating 1405A, 1405B of each grating layer can couple a portion of the light into a TIR path in the waveguide 1404, such path being represented by the rays 1412, 1413. The output gratings 1407A, 1407B can diffract light out of the waveguide into angular ranges of collimated light 1414, 1415 respectively for viewing by the eye 1416. The angular ranges, which correspond to the field of view of the display, can be defined by the IIN optics. In some embodiments, the waveguide gratings can encode optical power for adjusting the collimation of the output. In several embodiments, the output image is at infinity. In other embodiments, the output image may be formed at distances of several meters from the eye box. Typically, the eye is positioned within the exit pupil or eye box of the display.


Different IIN implementations and embodiments can be utilized as discussed and taught in U.S. patent application Ser. No. 13/869,866, entitled Holographic Wide Angle Display, and U.S. patent application Ser. No. 13/844,456, entitled Transparent Waveguide Display, the disclosures of which are hereby incorporated by reference in their entireties. In some embodiments, the IIN contains a beamsplitter for directing light onto a microdisplay and transmitting the reflected light towards the waveguide. In many embodiments, the beamsplitter is a grating recorded in HPDLC and uses the intrinsic polarization selectivity of such gratings to separate the light illuminating the display and the image modulated light reflected off the display. In several embodiments, the beam splitter is a polarizing beam splitter cube. In a number of embodiments, the IIN incorporates a despeckler. Despecklers are discussed in U.S. Pat. No. 8,565,560, entitled Laser Illumination Device, the disclosure of which is hereby incorporated by reference in its entirety.


The light source can be a laser or LED and can include one or more lenses for modifying the illumination beam angular characteristics. The image source can be a micro-display or laser based display. LED can provide better uniformity than laser. If laser illumination is used, there is a risk of illumination banding occurring at the waveguide output. In many embodiments, laser illumination banding in waveguides can be overcome using the techniques and teachings disclosed in U.S. patent application Ser. No. 15/512,500, entitled Method and Apparatus for Generating Input Images for Holographic Waveguide Displays, the disclosure of which is hereby incorporated by reference in its entirety. In some embodiments, the light from the light source is polarized. In several embodiments, the image source is a liquid crystal display (LCD) micro display or liquid crystal on silicon (LCoS) micro display.


In some embodiments, similar to the one shown in FIG. 14, each grating layer addresses half the total field of view. Typically, the fold gratings are clocked (i.e., tilted in the waveguide plane) at 45 degrees to ensure adequate angular bandwidth for the folded light. In other embodiments, other clock angles can be used to satisfy spatial constraints on the positioning of the gratings that can arise in the ergonomic design of the display. In some embodiments, at least one of the input and output gratings have rolled k-vectors. Rolling the K-vectors can allow the angular bandwidth of the grating to be expanded without the need to increase the waveguide thickness.


In many embodiments, the fold grating's angular bandwidth can be enhanced by designing the grating prescription to provide dual interaction of the guided light with the grating. Exemplary embodiments of dual interaction fold gratings are disclosed in U.S. patent application Ser. No. 14/620,969, entitled Waveguide Grating Device, the disclosure of which is hereby incorporated in its entirety.



FIG. 15 conceptually illustrates a plan view 1500 of a single grating layer similar to the ones used in FIG. 14 in accordance with an embodiment of the invention. The grating layer 1501, which is optically coupled to the IIN 1502, includes input grating 1503, a first beamsplitter 1504, a fold grating 1505, a second beamsplitter 1506, and an output grating 1507. The beamsplitters can be partially transmitting coatings which homogenize the waveguided light by providing multiple reflection paths within the waveguide. Each beamsplitter can include more than one coating layer with each coating layer being applied to a transparent substrate. Typical beam paths from the IIN up to the eye 1508 are indicated by the rays 1509-1513.



FIG. 16 conceptually illustrates a plan view 1600 of a two grating layer configuration in accordance with an embodiment of the invention. As shown, the grating layers 1601A, 1601B, which are optically coupled to the IIN 1602, includes input gratings 1603A, 1603B, first beamsplitters 1604A, 1604B, fold gratings 1605A, 1605B, second beamsplitters 1606A, 1606B and output gratings 1607A, 1607B, where the characters A, B refer to the first and second grating layers, respectively. In the illustrated embodiment, the gratings and beams splitters of the two layers substantially overlap.


In many embodiments, the grating layer can be broken up into separate layers. For example, in some embodiments, a first layer includes the fold grating while a second layer includes the output grating. In further embodiments, a third layer can include the input grating. In such embodiments, the number of layers can then be laminated together into a single waveguide substrate. In several embodiments, the grating layer includes a number of pieces, including the input coupler, the fold grating, and the output grating (or portions thereof) that are laminated together to form a single substrate waveguide. The pieces can be separated by optical glue or other transparent material of refractive index matching or substantially similar that of the pieces.


In many embodiments, the grating layer can be formed via a cell making process by creating cells of the desired grating thickness and vacuum filling each cell with SBG material for each of the input coupler, the fold grating, and the output grating. In some embodiments, the cell can be formed by positioning multiple plates of glass with gaps between the plates of glass that define the desired grating thickness for the input coupler, the fold grating, and the output grating. In several embodiments, one cell can be made with multiple apertures such that the separate apertures are filled with different pockets of SBG material. Any intervening spaces can then be separated by a separating material (e.g., glue, oil, etc.) to define separate areas. In a number of embodiments, the SBG material can be spin-coated onto a substrate and then covered by a second substrate after curing of the material.


In many embodiments, the input coupler, the fold grating, and the output grating can be created by interfering two waves of light at an angle within the substrate to create a holographic wave front, thereby creating light and dark fringes that are set in the waveguide substrate at a desired angle. Additional, such optical elements can also be fabricated using any of the various methods described in the above sections.


In one embodiment, the input coupler, the fold grating, and the output grating embodied as SBGs can be Bragg gratings recorded in a holographic polymer dispersed liquid crystal (HPDLC) (e.g., a matrix of liquid crystal droplets), although SBGs may also be recorded in other materials. In one embodiment, SBGs are recorded in a uniform modulation material, such as POLICRYPS or POLIPHEM having a matrix of solid liquid crystals dispersed in a liquid polymer. The SBGs can be switching or non-switching in nature. In its non-switching form a SBG has the advantage over conventional holographic photopolymer materials of being capable of providing high refractive index modulation due to its liquid crystal component. Exemplary uniform modulation liquid crystal-polymer material systems are disclosed in United State Patent Application Publication No.: US2007/0019152 by Caputo et al and PCT Application No.: PCT/EP2005/006950 by Stumpe et al. both of which are incorporated herein by reference in their entireties. Uniform modulation gratings are characterized by high refractive index modulation (and hence high diffraction efficiency) and low scatter.


In many embodiments, the input coupler, the fold grating, and the output grating is made of a reverse mode HPDLC material. Reverse mode HPDLC differs from conventional HPDLC in that the grating is passive when no electric field is applied and becomes diffractive in the presence of an electric field. The reverse mode HPDLC may be based on any of the recipes and processes disclosed in PCT Application No. PCT/GB2012/000680, entitled Improvements to Holographic Polymer Dispersed Liquid Crystal Materials and Devices, the disclosure of which is hereby incorporated in its entirety. The grating can be recorded in any of the above material systems but used in a passive (non-switching) mode. The fabrication process is identical to that used for switched but with the electrode coating stage being omitted. LC polymer material systems are highly desirable in view of their high index modulation. In some embodiments, the gratings are recorded in HPDLC but are not switched.


In many embodiments, the input grating can be replaced by another type of input coupler, such as but not limited to a prism and a reflective surface. In some embodiments, the input coupler can be a holographic grating, such as an SBG grating or a passive grating, which can be a passive SBG grating. The input coupler can be configured to receive collimated light from a display source and to cause the light to travel within the waveguide via total internal reflection between the first surface and the second surface to the fold grating. The input coupler can be orientated directly towards or at an angle relative to the fold grating. For example, in several embodiments, the input coupler can be set at a slight incline in relation to the fold grating. In a number of embodiments, the fold grating can be oriented in a diagonal direction. The fold grating can be configured to provide pupil expansion in a first direction and to direct the light to the output grating via total internal reflection inside the waveguide.


In many embodiments, a longitudinal edge of each fold grating is oblique to the axis of alignment of the input coupler such that each fold grating is set on a diagonal with respect to the direction of propagation of the display light. The fold grating can be angled such that light from the input coupler is redirected to the output grating. In some embodiments, the fold grating is set at a forty-five-degree angle relative to the direction that the display image is released from the input coupler. This feature can cause the display image propagating down the fold grating to be turned into the output grating. For example, in several embodiments, the fold grating can cause the image to be turned 90 degrees into the output grating. In this manner, a single waveguide can provide dual axis pupil expansion in both the horizontal and vertical directions. In a number of embodiments, each of the fold grating can have a partially diffractive structure. In some embodiments, each of the fold gratings can have a fully diffractive structure.


The output grating can be configured to provide pupil expansion in a second direction different than the first direction and to cause the light to exit the waveguide from the first surface or the second surface. The output grating can receive the display image from the fold grating via total internal reflection and can provide pupil expansion in a second direction. In many embodiments, the output grating includes multiple layers of substrate, thereby comprising multiple layers of output gratings. Accordingly, there is no requirement for gratings to be in one plane within the waveguide, and gratings may be stacked on top of each other (e.g., cells of gratings stacked on top of each other).


In many embodiments, a quarter wave plate on the substrate waveguide rotates polarization of a light ray to maintain efficient coupling with the SBGs. The quarter wave plate can be coupled to or adhered to the surface of substrate waveguide. For example, in some embodiments, the quarter wave plate is a coating that is applied to substrate waveguide. The quarter wave plate can provide light wave polarization management. Such polarization management can help light rays retain alignment with the intended viewing axis by compensating for skew waves in the waveguide. The quarter wave plate is optional and can increase the efficiency of the optical design in implementations. In several embodiments, the waveguide does not include the quarter wave plate. The quarter wave plate may be provided as multi-layer coating.


In many embodiments, the waveguide display can be operated in monochrome. In some embodiments, the waveguide display can be operated in color. Operating in color can be achieved using a stack of monochrome waveguides of similar design to the one in FIG. 14. The design can use red, green, and blue waveguide layers as shown or, alternatively, red and blue/green layers. FIG. 17 conceptually illustrates a dual axis expansion waveguide display 1700 that includes a light source 1701, a microdisplay panel 1702, and an IIN 1703 optically coupled to red, green, and blue waveguides 1704R, 1704G, 1704B, with each waveguide including two grating layers in accordance with an embodiment of the invention. In the illustrative embodiment, the three waveguides are separated by air gaps. In some embodiments, the waveguides are separated by a low index material such as a nanoporous film. As shown, the red grating layer labelled by R includes an input grating 1705R, 1706R, a fold grating exit pupil expander 1707R, 1708R, and an output grating 1709R, 1710R. The grating elements of the blue and green waveguides are labeled using the same numerals with B, G designating blue and green. In some embodiments, the input, fold, and output gratings are all passive, that is non-switching. In several embodiments, at least one of the gratings is switching. In a number of embodiments, the input gratings in each layer are switchable to avoid color crosstalk between the waveguide layers. In many embodiments, color crosstalk can be avoided by disposing dichroic filters 1711, 1712 between the input grating regions of the red and blue and the blue and green waveguides. In a variety of embodiments, a color waveguide can be implemented using just one grating layer in each monochromatic waveguide



FIG. 18 conceptually illustrates an eye tracker display in accordance with an embodiment of the invention. Waveguide device based eye trackers are discussed in PCT Application No. PCT/GB2014/000197, entitled Holographic Waveguide Eye Tracker, PCT Application No. PCT/GB2015/000274, entitled Holographic Waveguide Optical Tracker, and PCT Application No. PCT/GB2013/000210, entitled Apparatus for Eye Tracking, the disclosures of which are hereby incorporated in their entireties. Turning again to FIG. 18, the eye tracked display 1800 includes a dual axis expansion waveguide display based on any of the embodiments described above. The waveguide display can include a waveguide 1801 containing at least one grating layer incorporating an input fold and output grating, the IIN 1802, an eye tracker including waveguide 1803, infrared detector 1804, and infrared source 1805. The eye tracker and display waveguides can be separated by an air gap or by a low refractive material. As explained in the above references, the eye tracker can comprise separate illumination and detector waveguides. In the illustrative embodiment, the optical path from the infrared source to the eye is indicated by the rays 1806-1808, and the backscattered signal from the eye is indicated by the rays 1809, 1810. The optical path from the input image node through the display waveguide to the eye box is indicated by the rays 1811-1813.


In many embodiments, a dual expansion waveguide display can further include a dynamic focusing element. FIG. 19 conceptually illustrates a dual expansion waveguide display 1900 with a dynamic focusing element 1901 disposed in proximity to a principal surface of the waveguide display and an eye tracker in accordance with an embodiment of the invention. In some embodiments, the dynamic focusing element is an LC device. In several embodiments, the LC device combines an LC layer and a diffractive optical element. In a number of embodiments, the diffractive optical element is an electrically controllable LC-based device. In various embodiments, the dynamic focusing element is disposed between the waveguide display and the eye tracker. In a variety of embodiments, the dynamic focusing element can be disposed in proximity to the surface of the display waveguide furthest from the eye.


The dynamic focus device can provide a multiplicity of image surfaces 1902. In light field display applications, at least four image surfaces can be used. The dynamic focusing element can be based on dynamic focusing elements described in U.S. patent application Ser. No. 15/553,120 entitled, Electrically Focus Tunable Lens, the disclosure of which is hereby incorporated in its entirety. In some embodiments, a dual expansion waveguide display having a dynamic focusing element and an eye tracker can provide a light field display, such as those based on the teachings disclosed in U.S. patent application Ser. No. 15/543,013, entitled Holographic Waveguide Light Field Displays, the disclosure of which is hereby incorporated by reference in its entirety.


Although specific waveguide structures are discussed above, any of a number of waveguide structures can be implemented depending on the specific requirements of a given application. For example, in many waveguide configurations, the input, fold, and output gratings are formed in a single layer sandwiched by transparent substrates. Such a configuration is shown in FIG. 14, where two layers are stacked as such. In some embodiments, the waveguide includes just one grating layer. In several embodiments, switching transparent electrodes are applied to opposing surfaces of the substrate layers sandwiching the switching grating. In a number of embodiments, the cell substrates can be fabricated from glass. One glass substrate that can be used is standard Corning Willow glass substrate (index 1.51) which is available in thicknesses down to 50 micrometers. In other embodiments, the cell substrates can be optical plastics.


In many embodiments, the waveguide display is coupled to the IIN by an opto-mechanical interface that allows the waveguide to be easily retracted from the IIN assembly. The basic principle is conceptually illustrated in FIG. 20A. FIG. 20A shows a dual axis expansion waveguide display 2000 including a waveguide 2001 containing an input grating 2002, a fold grating 2003, an output grating 2004, and an IIN 2005. The apparatus further includes an optical link 2006 connected to the waveguide, a first optical interface 2007 terminating the optical link, and a second optical interface 2008 forming the exit optical port of the IIN. The first and second optical interfaces can be decoupled as indicated by gap 2009 shown in FIG. 20B. In some embodiments, the optical link is a waveguide. In several embodiments, the optical link is curved. In a number of embodiments, the optical link is a GRIN image relay device. In a variety of embodiments, the optical connection is established using a mechanical mechanism. In some embodiments, the optical connection is established using a magnetic mechanism. The advantage of decoupling the waveguide from the IIN in helmet mounted display applications is that the near eye portion of the display can be removed when not in used. In some embodiments where the waveguide includes passive gratings, the near eye optics can be disposable.



FIG. 21 conceptually illustrates an IIN 2100 having a microdisplay panel 2101, a spatially-varying NA component 2102, and microdisplay optics 2103 in accordance with an embodiment of the invention. As shown, the microdisplay optics 2103 accepts light 2104 from an illumination source (not illustrated) and deflects the light onto the microdisplay in the direction indicated by ray 2105. The light reflected from the microdisplay is indicated by the divergent ray pairs 2106-2108 with numerical aperture (“NA”) angles varying along the X axis. In the illustrative embodiment, the spatially-varying NA component is disposed between the microdisplay optics and the microdisplay. In other embodiments, the spatially-varying NA component is disposed adjacent the output surface of the microdisplay optics. FIG. 22 conceptually illustrates such an embodiment, shown by spatially-varying NA component 2200.


In many embodiments, the microdisplay is a reflective device. In some embodiments, the microdisplay is a transmission device, typically a transmission LCoS device. FIG. 23 conceptually illustrates an IIN 2300 including a backlight 2301, a microdisplay 2302, and a variable NA component 2303 in accordance with an embodiment of the invention. Light from the backlight indicated by the rays 2304-2306, which typically has a uniform NA across the backlight, illuminates the back surface of the microdisplay and, after propagation through the variable NA component, is converted into output image modulated light indicated by the divergent ray pairs 2307-2309 with NA angles varying along the X axis.


In many embodiments, the principles of the invention may be applied to an emissive display. Examples of emissive displays for use with the invention include ones based on LED arrays and light emitting polymers arrays. FIG. 24 conceptually illustrates an IIN 2400 having an emissive microdisplay 2401 and a spatially-varying NA component 2402 in accordance with an embodiment of the invention. Light from the microdisplay indicated by rays 2403-2405, which typically has a uniform NA across the emitting surface of the display, illuminates the spatially-varying NA component and is converted into output image modulated light indicated by divergent ray pairs 2406-2408 with NA angles varying along the X axis.


In many embodiments, the microdisplay optics includes a polarizing beam splitter cube. In some embodiments, the microdisplay optics includes an inclined plate to which a beam splitter coating has been applied. In a number of embodiments, the microdisplay optics includes a waveguide device comprising a SBG, which acts as a polarization selective beam splitter. Details relating to such embodiments are discussed U.S. patent application Ser. No. 13/869,866, entitled Holographic Wide Angle Display, and U.S. patent application Ser. No. 13/844,456, entitled Transparent Waveguide Display, the disclosures of which are hereby incorporated in their entireties. In several embodiments, the microdisplay optics contains at least one of a refractive component and curved reflecting surfaces or a diffractive optical element for controlling the numerical aperture of the illumination light. In some embodiments, the microdisplay optics contains spectral filters for controlling the wavelength characteristics of the illumination light. In a number of embodiments, the microdisplay optics contains apertures, masks, filter, and coatings for controlling stray light. In many embodiments, the microdisplay optics incorporate birdbath optics.


Although FIGS. 14-24 describe specific waveguide displays and structures, any waveguide display system and configuration can be used as appropriate to the specific requirements of a given application. At its core, waveguides are simply used to manipulate the direction of light. This property can be used generally in a variety of different systems. An example of a general system that can utilize waveguides is shown in FIG. 25. FIG. 25 conceptually illustrates a system diagram showing components for waveguide displays in accordance with various embodiments of the invention. As shown, the system 2500 utilizes a light source 2501 that can output light into a waveguide 2502. Light sources used can be a variety of different systems. In some embodiments, the light source 2501 is from a projector. In many embodiments, the light source 2501 further includes a microdisplay panel and optical components needed to illuminate the display panel. In further embodiments, the light source 2501 includes collimators and other optical components for manipulating the light into a desired form before entry into the waveguide. In other embodiments, the light source 2501 is natural light. Once the light source 2501 outputs light into the waveguide 2502, the waveguide 2502 can then manipulate and redirect light in a desired manner out and into a receiver 2503. Waveguides can be any general waveguides known within the art and/or one of the waveguides as described above. A receiver can be any of a number of components capable of receiving light from the waveguide. In many embodiments, the receiver 2503 is a user's eye(s). In some embodiments, the receiver 2503 is another waveguide. In several embodiments, the receiver 2503 is a display capable of displaying the light from the waveguide 2502. In further embodiments, the display is simply glass that can reflect the light onto another receiver. The system 2500 can optionally include a switching device 2504 and electrical components for use in conjunction with SBGs. In many embodiments, the switching device 2504 can optionally receive data from the light source in order to introduce a voltage to turn the SBGs in an ON position at the appropriate times.


Head-Up Displays

Waveguides incorporating Bragg gratings similar to those described above can be utilized in a variety of applications including (but not limited to) HUDs in vehicular applications such as automotive and aerospace applications. In many embodiments, a waveguide is utilized to direct light incident on the waveguide from one or more projection sources toward a windshield, where the light is reflected toward the operator of the vehicle. Windshields are often curved. In several embodiments, the waveguides transmit incident light to compensate for distortions introduced by the curvature of a windshield (or other surface onto which light from the waveguide is projected). As is discussed further below, distortions introduced by curvature of a surface onto which light is projected can be compensated for by selection of the K-vector across the output grating of the waveguide and/or computationally by modifying the manner in which an input image is projected into the waveguide.


An HUD for vehicular applications in accordance with an embodiment of the invention is conceptually illustrated in FIG. 26. The HUD 2600 is located within the dashboard 2601 of a vehicle. A projection system 2602 and a waveguide 2603 are contained within the dashboard and light is projected from the waveguide through a transparent aperture 2604 in the dashboard onto the windshield 2605. The light is reflected off the curved surface 2606 of the windshield 2605 into a region that is commonly referred to as the eyebox 2607 of the HUD. The term eyebox is generally utilized to refer to a region in which the display is visible to the eye 2608 of a viewer. The display appears to the viewer as a virtual display 2609 on the opposite side of the windshield to the viewer. The location of the display can be determined based upon projective geometry 2610, 2611. Placement of the display within the field of view of the vehicle enables the driver to view the road ahead and projected information simultaneously.


Projection of light into an eyebox by reflection off a curved windshield using a HUD system in accordance with an embodiment of the invention is conceptually illustrated in FIGS. 27A and 27B.


Use of flat waveguides that incorporate Bragg gratings can significantly reduce the volumetric requirements of a HUD compared to conventional HUDs implemented using conventional refractive and/or reflective optical components. Furthermore, the field of view of a HUD that can be achieved using a waveguide can be significantly greater despite the reduction in volumetric requirements compared to a conventional HUD. A comparison of the field of view and volumetric requirements of a HUD implemented using a waveguide incorporating Bragg gratings and a conventional HUD is shown in FIG. 28.


While various embodiments of HUDs incorporating waveguides including Bragg gratings are described above with reference to FIGS. 26-28, any of a variety of planar waveguides and/or HUD system configurations can be utilized to implement a HUD for use in a vehicle and/or any other display that projects on a planar and/or curved surface as appropriate to the requirements of a given application. Various waveguides that can be utilized in HUDs in accordance with a number of embodiments of the invention are discussed further below.


Waveguides incorporating Bragg gratings can provide significant advantages when used in HUDs including (but not limited to) wide field of view displays and reduced volumetric requirements compared to HUDs implemented using conventional reflective and refractive optical components. In many embodiments, vehicular HUDS are implemented using one or more planar waveguides fabricated to incorporate at least volumetric Bragg gratings that couple incident light into the waveguide, fold the light within the waveguide and direct light from the waveguide. As noted above, the gratings can provide two dimensional exit pupil expansion.


A waveguide assembly including three separate waveguides for each of a Red, Green, and Blue color channel implemented in accordance with an embodiment of the invention is illustrated in FIG. 29. The waveguide assembly includes a stack of three (3) waveguides that receive light incident on the bottom surface of the waveguide assembly. Each of a Red, Green, and Blue spectral band is coupled into the Red, Green, and Blue waveguides respectively. Input coupling can be achieved by a pair of input gratings that are provided for each waveguide. The two input coupling gratings have the same surface pitch sizes but different grating slanted angles, which can increase the overall couple-in angular bandwidth of the waveguide. Light coupled into a waveguide is diffracted within the waveguide by a fold grating. In the illustrated embodiment, the width of the fold gratings expand with increased distance from the input grating. As is discussed further below, increasing the width of the fold grating can address Vignetting. The fold grating also includes a tapered diffraction efficiency (DE) profile to increase uniformity of the display across the light box. As noted above, the fold grating performs one dimensional pupil expansion. The expansion of the second dimension of the pupil is achieved in the output grating. In the illustrated embodiment, the output grating also includes a rolled K-vector to taper the DE profile of the grating. As is discussed further below, the K-vector across the output grating can also correct for distortions introduced due to the curvature of a surface (e.g. a windshield) onto which light is projected by the waveguide. Each of the input, fold, and output gratings are discussed in additional detail below.


Input Coupling Gratings for Vehicular Waveguide Displays

Input coupling gratings couple light from one or more illumination sources into a waveguide. Referring again to FIG. 29, each waveguide receives light from two input coupling gratings that are separate from the planar material that incorporates the fold and output gratings. The two input coupling gratings have the same surface pitch sizes but different grating slanted angles, which can increase the overall couple-in angular bandwidth of the waveguide. Each of the input gratings that couple light into the waveguides are plane gratings. In many embodiments, one or more of the input gratings can include a rolled K-vector and/or a multiplexed K-vector as appropriate to the requirements of a specific application.


A perspective view of a waveguide assembly incorporating separate input gratings for each waveguide is shown in FIG. 30. A side view of a similar waveguide assembly is shown in FIGS. 31A-31C showing the various layers utilized within the waveguide assembly and their relative thicknesses. The gratings are formed in layers of polymer using techniques similar to those described in U.S. PCT Application Serial No. PCT/GB2012/000680, the relevant disclosure from which is incorporated by reference herein in its entirety. In many embodiments, the polymer layers that contain the waveguides are separated by layers of glass or other appropriate optically transparent material.


The input gratings for each of the waveguides can be slightly offset within the waveguide assembly as can be appreciated from the conceptual illustration of the placement of the input gratings relative to the waveguides shown in FIG. 32. The inclusion of the staggered offsets allows for better capture of the transmitted light, which will be diffracted at different angles by the gratings as a result of the different wavelengths of the light being coupled into the waveguide.


While the waveguide assemblies illustrated above in FIGS. 29-32 include multiple input gratings per waveguide, waveguide assemblies in accordance with several embodiments of the invention utilize a single input coupling grating in a manner similar to the configuration shown in FIG. 33A. In several embodiments, the waveguide assembly does not include separate input gratings. Instead, the waveguide can incorporate at least the input, fold, and output gratings in a planar material in a manner similar to that illustrated in FIG. 33B.


Coupling of light from a projection system into input gratings of a waveguide assembly in accordance with an embodiment of the invention is conceptually illustrated in FIGS. 34A and 34B. The projector directs light toward a mirror that reflects the light into the input gratings. In other embodiments, the projector can directly project light into the input gratings, and/or a waveguide can be utilized to direct light from the projection system into the input gratings.


Fold and Output Gratings

Referring again to FIG. 29, each waveguide in the waveguide assembly includes a fold grating designed for the specific bandwidth of light coupled into the waveguide by the input coupling gratings. The fold and output gratings together provide two dimensional pupil expansion of the light coupled into the waveguide.


The dimensions of the fold and output gratings of a waveguide that can be utilized in a vehicular HUD in accordance with an embodiment of the invention is illustrated in FIG. 35. In the illustrated embodiment, the gratings support a 15×5 degree Field of view using an output grating having an aperture size of 380 mm×190 mm at a 1 meter relief from the eyebox (reflected via a curved windshield). As is discussed further below modification of the K-vector and/or slant angle across one or more of the fold and/or output gratings can increase the homogeneity of the display generated by the HUD within an eyebox region. Specific K-vectors that can be utilized within a waveguide in accordance with an embodiment of the invention are illustrated in FIG. 36. The K-vector shown for the fold grating can be varied to modify diffraction efficiency across the grating with the goal of attaining homogeneity of the projected display across the light box. The K-vector and/or the slant angle of the grating can be similarly modified across the output grating to achieve desired characteristics of the HUD system including (but not limited to) increased homogeneity. Furthermore, the K-vector can be modified using a correction function that accounts for distortion introduced by reflection off a curved surface such as (but not limited to) a windshield.


Impact of varying output grating slant angle in the manner shown in FIG. 37A upon output power for different field angles can be appreciated from FIG. 37B. FIG. 37B illustrates the extent to which the energy coupled into the waveguide decreases across the output grating. FIG. 37B also illustrates that modification of the slant angle of the output grating can increase diffraction efficiency across the waveguide to compensate for the decrease in energy. As can readily be appreciated, the manner in which slant angle can be modified across the output grating (and/or any other gratings within a waveguide) can largely be determined based upon the desired output characteristics of a given HUD system.


HUD systems in accordance with several embodiments of the invention reflect light off a curved surface such as (but not limited to a windshield). Projection of light by a waveguide similar to the waveguide shown in FIG. 29 is conceptually illustrated in FIGS. 38A and 38B. The manner in which projected light can be reflected off a surface into an eyebox region in which a viewer can see the display across a field of view is conceptually illustrated in FIG. 39. The ability of the output grating to diffract light across the grating into the eyebox increases the field of view of the display. As noted above, the field of view of the display can be increased by adding additional waveguides that project light into eyebox region across a wider field of view. The field of view into which light can be projected is typically limited by the HUD form factor requirements of a given application.


As noted above, the K-vectors and slant angles of the fringes within an output Bragg grating can be chosen to correct for curvature of the surface onto which the display is projected by the output grating. A windshield correction function that is utilized to modify the rolled K-vector prescription of an output grating in accordance with an embodiment of the invention is illustrated in FIGS. 40A-40C. The effect of the correction function is to cause the output grating to modify the projected light so that light reflected from the specific curved surface used to derive the correction function will appear undistorted within the eyebox region of the HUD system. As can readily be appreciated, the specific manner in which the K-vector and/or slant angle of a grating is modified across a waveguide to accommodate curvature of a windshield and/or other surface upon which light is projected is largely dependent upon the requirements of a given application.


Referring again to FIG. 29, the path length for light projected into the eyebox from each of the three waveguides have different path lengths and wavelengths. Accordingly, the gratings in each of the waveguides in a waveguide assembly are separately configured for each color channel. While specific waveguide configurations incorporating specific grating implementations are described above, any of a variety of Bragg grating combinations can be utilized within waveguides including (but not limited to) multiplexed K-vector gratings, gratings that include varying slant angles and/or gratings that are electronically switchable as appropriate to the requirements of a given application in accordance with various embodiments of the invention.


Addressing Vignetting Through Fold Grating Design

Referring again to FIG. 35, the width of the fold grating increases with distance from the input coupling grating. Increasing the width of the fold grating can address vignetting. The term vignetting is commonly used to refer to a reduction of an image's brightness or saturation toward the periphery compared to the image center. The roll that the fold grating can play with respect to the unwanted introduction of vignetting within a display produced by a HUD system can be readily appreciated with respect to the simulations illustrated in FIG. 41A-41E. The region of the fold grating closest to the input grating can introduce cropping and the region of the fold grating furthest from the input grating can introduce vignetting. The artifacts introduced by the fold grating are significantly reduced in the simulation illustrated in FIG. 42A-42E. In the simulation illustrated in FIG. 46, the fold grating is designed to increase in width with increased distance from the input grating. The result is a significant reduction in vignetting. The impact of utilizing a fold grating similar to the grating shown in FIG. 42A-42E on vignetting across the eyebox of a HUD in accordance with an embodiment of the invention can be appreciated from the simulation shown in FIG. 43. In many embodiments, the input grating is slightly offset from the center line of the fold grating in a direction away from the output grating to further improve the output performance of the HUD system.


In many embodiments, incorporation of a fold grating that increases in width with distance from the input grating can enable the construction of a variety of waveguide shapes. Many of the waveguides illustrated above are largely rectangular. In many embodiments, the form factor of the waveguide can be reduced. A waveguide in which the output grating is contained within a region that can be cut with a taper (indicated with dashed lines) in accordance with an embodiment of the invention is illustrated in FIG. 44. As can readily be appreciated, any of a variety of shapes for waveguides can be utilized as appropriate to the requirements of specific applications in accordance with various embodiments of the invention.


HUD Projection Systems

A variety of illumination sources can be utilized to implement HUDs in accordance with various embodiments of the invention including (but not limited to) LED based and laser based projection systems. A HUD projection system that couples Red, Green, and Blue laser pulses into the respective Red, Green, and Blue waveguides of a waveguide assembly in accordance with an embodiment of the invention is conceptually illustrated in FIG. 45.


Although specific projection systems are described above with reference to FIG. 45, any of a variety of projection systems can be utilized to generate light that can be coupled into one or more waveguides within a waveguide assembly of a HUD in accordance with the requirements of specific applications in accordance with various embodiments of the invention.


Monocular Displays

Waveguides incorporating Bragg gratings similar to those described above can be utilized in a variety of applications, such as but not limited to monocular displays. Monocular displays can be implemented in a variety of different ways, including through the use of methods, components, and structures as described above. Additionally, it should be readily apparent that various aspects can be modified as appropriate to the specific requirements of a given application. For example, in many embodiments, it can be desirable for the monocular display to have an optical element that can facilitate the redirection of light from the light source onto the waveguide. This can be due to the spatial and angle positioning of the various components. In a number of embodiments, the monocular display is designed to be compact, resulting in forced positioning for the various components. An optical element used for redirecting light in such embodiments can include, but are not limited to, a prism. In several embodiments, a prism is used for PGU coupling and TIR redirection. FIGS. 46A and 46B conceptually illustrate the positioning of various components in a monocular display in accordance with an embodiment of the invention. FIG. 46A shows a side view of the monocular display along with the position of a user's right eye, and FIG. 46B shows a top view of the same system. As shown, the system includes a projector and a TIR prism for manipulating the light before it enters the waveguide. FIGS. 46A and 46B also depict angle conventions with regards to elevation and azimuth angles, shown by arrows calling out the angular position of the waveguide with respect to a certain axis. Although FIGS. 46A and 46B illustrates a specific monocular display system with specific elevation and azimuth angles, it is readily apparent that these angles can vary across various embodiments of the invention and can depend on the specific requirements of a given application.


In many embodiments, the monocular display includes a waveguide implementing at least an input grating, a fold grating, and an output grating. In some embodiments, the waveguide includes reciprocal grating prescriptions designed for zero-dispersion. Monocular displays can be designed to implement a variety of different types of gratings, including those described in the previous sections of this application. Positioning and orientation of the gratings can depend on the specific requirements of a given application. For example, in several embodiments, the gratings are designed such that the monocular display can implement a reverse reciprocal dual axis pupil expansion architecture where the waveguide receives and outputs light from the same side. FIG. 47 conceptually illustrates a monocular display with a reverse reciprocal arrangement in accordance with an embodiment with the invention. As shown, the input and output of light occurs on the same side of the waveguide. In some embodiments, the slant angles of the input and output gratings are reversed in order to implement reverse reciprocity. In further embodiments, the slant angles are equivalent, but reversed. This reverse reciprocity property can be implemented in both 1-axis and 2-axis expansion waveguides. Although FIG. 47 illustrates a specific monocular display implementation, reverse reciprocity can be implemented in a number of different monocular displays. For example, monocular displays with different azimuth rake angles can also implement reverse reciprocity. As can readily be appreciated, the specific design of a particular monocular display can depend on the specific requirements of a given application.


Monocular displays can be implemented using waveguides with properties described above, such as, and including, stacking waveguide layers in order to implement RGB color. As such, in many embodiments, the implemented waveguide can be made up of a stack of waveguide layers. In further embodiments, the waveguide stack includes two waveguide layers implementing a three-color system. FIG. 48 conceptually illustrates such a stack. In other embodiments, the waveguide stack includes three waveguide layers implementing a three-color system. In several embodiments, the waveguide includes dichroic filters for inter-waveguide color management


In many embodiments, the monocular display includes a compact PGU optical interface. In some embodiments, the monocular display utilizes a projector as a PGU. In several embodiments, the PGU can be an IIN module composed of several components. FIG. 49 conceptually illustrates a monocular display utilizing a prism and IIN module in accordance with an embodiment of the invention. In the illustrative embodiment, the monocular display 4900 includes an IIN module 4901, a waveguide eyepiece 4902, and prismatic relay optics 4903. In many embodiments, the IIN contains at least the microdisplay panel 4901A illuminated by a light source, which is not shown, and projection optics 4904, which typically includes refractive optics. The IIN module can be coupled to the prismatic relay optics by a mechanical assembly 4905 which provides mechanical support and an optical port to admit light from the IIN module into the prismatic relay optics.


The prismatic relay optics 4903 includes side walls 4903A, 4903B, an input surface 4903C and the output surface 4903D. The reflective surface 4903A can be a TIR surface or can alternatively support a reflection coating. The prismatic relay optics 4903 can guide light from the IIN towards the waveguide eye piece along ray paths that are refracted through the input surface (4903C), reflected at the surface 4903A and refracted through the output surface (4903D). Hence, the prismatic surface 4903A, 4903C, 4903D serve to steer the input beam into the waveguide eyepiece along a path that can be designed to be conformal with any display mounting arrangement while delivering the beam at the correct angle for diffraction at the input grating. When the surface 4903A is configured as a TIR surface, the side walls provide a window for viewing an external scene without obscuration.


Light from the prismatic relay optics can be coupled into the waveguide via the optical interface layer 4906, which in some embodiments provides polarization selectivity. In several embodiments, the optical interface layer provides one of spectral or angular selectivity. In a number of embodiments, the optical interface layer 4906 is a diffractive optical element. In a variety of embodiments, at least one of the transmitting or reflecting surfaces of the prismatic relay optics has optical power. In some embodiments, at least one of the transmitting or reflecting surfaces of the prismatic relay optics supports at least one coating for controlling at least one of polarization, reflection or transmission as a function of wavelength or angle. The image light from the IIN can be expanded in the prism to produce sufficient beam width aperture to enable a high efficiency RKV input aperture—thus preserving efficiency and brightness.


In some embodiments, the waveguide 4902 includes input, fold and output gratings disposes in separate red, green and blue diffracting layers or multiplexed into fewer layer as discussed above or disclosed in the references. For simplicity, the gratings in FIG. 49 are represented by the input grating 4902A, fold grating 4902B, and output grating 4902C. The light path from the projector through the prismatic relay optics and the waveguide is represented by the rays 4907-4909. The output image light viewed by the eye 4910 is represented by the rays 4911, 4912. The rays 4913, 4914 show the transparent of the waveguide to external light forward of the eyepiece and the transparency of the prismatic relay optics to external light in the periphery of the display wearer's field of view. This enhance external field of view capability can be of great importance in safety critical applications such as motorcycle helmet HUDs.


Utilizing the techniques and methods as discussed above, monocular displays can be implemented in a wide variety of applications using various designs. FIG. 50 conceptually illustrates one implementation of a monocular display. FIG. 50 shows a 3D illustration of a near display having an IIN and waveguide component. The display 5000 includes an IIN 5001, waveguide 5002 containing in a single layer an input grating 5003, a fold grating 5004, and an output 5005. The waveguide path from entrance pupil 5006 through the input grating, fold grating, and output grating and up to the eye box 5007 is represented by the rays 5008-5011. FIG. 51 conceptually illustrates the ray propagation path of a monocular display in accordance with an embodiment of the invention. In the illustrative embodiment, the ray propagation path from the projector to the eyebox is shown. Although specific monocular display designs are shown in FIGS. 50 and 51, any of a number of designs can be used as appropriate to the specific requirements of a given application.


Near-Eye Head-Up Displays

Waveguides incorporating Bragg gratings similar to those described above can be utilized in a variety of applications including (but not limited to) HUDs in wearable near-eye display applications such as eyeglasses, monocles, and visors. In many embodiments, a waveguide is utilized to direct light incident on the waveguide from one or more projection sources toward one or more lenses, where the light is reflected toward the wearer of the lens. In such embodiments, an important figure of merit is out-couple efficiency of the light in the eyebox. In several embodiments, the waveguides are configured to transmit incident light to maximize out-coupling of light onto the lens and to improve uniformity across the entire field of view (FOV) of the wearable device (or other surface onto which light from the waveguide is projected). As is discussed further below, out-couple efficiency can be maximized by selection of the features of the K-vectors across the output grating of the waveguide and/or implementing polarization recycling. Similarly, the uniformity of illumination across the FOV may be maximized by optimizing RKV slant angle and modulation.


An HUD in accordance with various embodiments of the invention can be implemented to be located within a near-eye display device, such as glasses or monocle. A projection system and a waveguide can be contained within the wearable device and light can be projected from the waveguide onto the lens of the near-eye display. The light can be reflected off the surface of the near-eye display device into a region that is commonly referred to as the eyebox of the HUD. The term eyebox is generally utilized to refer to a region in which the display is visible to the eye of a viewer. The display appears to the viewer as a virtual display on the opposite side of the lens of the near-eye display device to the viewer. The location of the display can be determined based upon projective geometry. Placement of the display within the field of view of the near-eye display device enables the wearer to view the surrounding environment and projected information simultaneously.


Use of flat waveguides that incorporate Bragg gratings can significantly reduce the volumetric requirements of a HUD compared to conventional HUDs implemented using conventional optical components. Furthermore, the field of view of a HUD that can be achieved using a waveguide can be significantly greater despite the reduction in volumetric requirements compared to a conventional HUD.


Near-Eye HUD Waveguides

Waveguides incorporating Bragg gratings can provide significant advantages when used in HUDs including (but not limited to) wide field of view displays and reduced volumetric requirements compared to HUDs implemented using conventional reflective and refractive optical components. In many embodiments, near-eye wearable HUDS are implemented using one or more planar waveguides fabricated to incorporate at least volume Bragg gratings that couple incident light into the waveguide, fold the light within the waveguide and direct light from the waveguide. As noted above, the gratings can provide two dimensional exit pupil expansion.


A waveguide assembly including three types of gratings, an input, fold and output, implemented in accordance with an embodiment of the invention is illustrated in FIG. 52. The waveguide assembly may be monochromatic, or may include a stack of waveguides that receive light incident on the bottom surface of the waveguide assembly such that each of a Red, Green, and Blue spectral band is coupled into the Red, Green, and Blue waveguides respectively, as shown schematically in FIG. 52. As shown in FIG. 52, input coupling is achieved by one or more input gratings. The one or more input coupling gratings may be of a single or multilayer design, and the multiple layers may be configured to bifurcate the input illumination (this can be accomplished, for example, by maintaining the surface pitch sizes but implementing different grating slanted angles). Such input grating variation can increase the overall couple-in angular bandwidth of the waveguide. Light coupled into a waveguide is diffracted within the waveguide by a fold grating. As noted above, the fold grating may be configured to perform one dimensional pupil expansion. The expansion of the second dimension of the pupil may be achieved in the output grating. In the illustrated embodiments, the gratings may also include a rolled K-vector (RKV) to taper the DE profile of the grating. As is discussed further below, rolling and/or varying the slant of the K-vector across the fold grating can also be implemented improve diffraction efficiency and/or field-of-view uniformity. Each of the input, fold, and output gratings are discussed in additional detail below.


Input Coupling Gratings for Near-Eye Applications

Input coupling gratings couple light from one or more illumination sources into a waveguide. Referring again to FIG. 52, the input coupling gratings may be of a single or multilayer design, as will be described in greater detail below. In some such embodiments, the different layers of the input gratings may be configured to bifurcate the light (either or both in a horizontal or vertical plane) to allow for the coupling of different polarizations of light, which can increase the overall couple-in angular bandwidth and efficiency of the waveguide. Embodiments of such bifurcated input gratings are shown in FIGS. 53A and 53B, and are discussed in greater detail below. Each of the input gratings that couple light into the waveguides are plane gratings. In many embodiments, as shown in FIG. 54, one or more of the gratings, including the input grating, can include a rolled K-vector and/or a multiplexed K-vector as appropriate to the requirements of a specific application.


Regardless of the specific input grating design the gratings may be formed in layers of polymer using techniques similar to those described in PCT Application Serial No. PCT/GB2012/000680, the relevant disclosure from which is incorporated by reference herein in its entirety. In many embodiments, the polymer layers that contain the waveguides are separated by layers of glass.


Coupling of light from a projection system into input gratings of a waveguide assembly can be implemented in many different ways. The projector can direct light toward a mirror or prism that reflects the light into the input gratings. In other embodiments, the projector can directly project light into the input gratings, and/or a waveguide can be utilized to direct light from the projection system into the input gratings.


Fold and Output Gratings for Near-Eye Applications

Referring again to FIG. 52, each waveguide in the waveguide assembly includes a fold grating designed for the specific bandwidth of light coupled into the waveguide by the input coupling gratings. The fold and output gratings together provide two dimensional pupil expansion of the light coupled into the waveguide.


Gratings and exemplary dimensions thereof, according to embodiments capable of supporting 25 degree and 50 degree Field of view using an output grating having an aperture size of 25 mm×25 mm at a near-eye relief from the eyebox (reflected via a transparent lens element) are shown in FIG. 55A. As is discussed further below modification of the K-vector and/or slant angle across one or more of the fold and/or output gratings can increase the homogeneity of the display generated by the HUD within an eyebox region. Specific K-vectors that can be utilized within a waveguide in accordance with an embodiment of the invention are illustrated in FIGS. 55B-55D. A conceptual drawing showing effective (e.g., light with will hit the eyebox) and ineffective (e.g., light which will be diffracted by the fold) diffraction within a waveguide system is shown in FIGS. 56A and 56B. The K-vector shown for the fold grating can be varied to modify diffraction efficiency across the grating with the goal of attaining homogeneity of the projected display across the light box. The K-vector and/or the slant angle of the grating can be similarly modified across the output grating to achieve desired characteristics of the HUD system including (but not limited to) increased homogeneity. Furthermore, the K-vector can be modified using a correction function that accounts for distortion introduced by reflection off a curved surface such as (but not limited to) a windshield.


HUD systems in accordance with several embodiments of the invention reflect light off a curved surface such as (but not limited to a wearable lens). Projection of light by a waveguide is conceptually illustrated in FIG. 52. The manner in which projected light can be reflected off a surface into an eyebox region in which a viewer can see the display across a field of view is conceptually illustrated in FIGS. 57A-57C. The ability of the output grating to diffract light across the grating into the eyebox increases the field of view of the display. However, large fields of view pose challenges to the formation of the exit pupil at the eyebox. As shown in FIG. 57A, in the vertical field of view, the rays coming from the top of the waveguide to the eyebox need to propagate across the output grating resulting in losses. Similarly, as shown in FIGS. 57B-57C in the horizontal field of view, the rays coming from the right of the waveguide eyebox need to propagate across the fold grating which also results in losses. As noted above, the field of view of the display can be increased by adding additional waveguides that project light into eyebox region across a wider field of view. The field of view in to which light can be projected is typically limited by the HUD form factor requirements of a given application.


As noted above, the K-vectors and slant angles of the fringes within an output Bragg grating can also be chosen to correct for curvature of the surface onto which the display is projected by the output grating. Rolled K-vector prescriptions for all three gratings in accordance with an embodiment of the invention is illustrated in FIG. 58. The effect of the correction is to cause the input grating to modify the coupling of the light to improve efficiency, to modify the fold RKV for horizontal pupil formation, and to modify the output RKV for vertical pupil formation. As can readily be appreciated, the specific manner in which the K-vector and/or slant angle of a grating is modified across a waveguide to improve diffraction efficiency is largely dependent upon the requirements of a given application.


Referring again to FIG. 52, the path length for light projected into the eyebox from each of the three waveguides have different path lengths and wavelengths. Accordingly, the gratings in each of the waveguides in a waveguide assembly are separately configured for each color channel. While specific waveguide configurations incorporating specific grating implementations are described above, any of a variety of Bragg grating combinations can be utilized within waveguides including (but not limited to) multiplexed K-vector gratings, gratings that include varying slant angles and/or gratings that are electronically switchable as appropriate to the requirements of a given application in accordance with various embodiments of the invention. Moreover, although the figure shows a number of separate fold grating locations, it will be understood that these could be of a continuous nature.


Referring again to FIGS. 59A-59E, the slant angle of the fold grating may be varied with distance from the input coupling grating to address the vertical FOV. The roll that the fold grating can play with respect to improving the FOV and reducing diffraction losses and vignetting can be readily appreciated with respect to the simulations illustrated in FIG. 60. The diffraction losses introduced by the fold grating (as shown in FIGS. 57A-57C) are significantly reduced in the simulation illustrated in FIG. 60. The impact of utilizing a fold grating similar to the grating on diffraction loss and uniformity of FOV across the eyebox of a HUD in accordance with an embodiment of the invention can be appreciated from the simulation shown in FIG. 60.


As shown in FIGS. 59A-59E the vertical and horizontal fields of the fold grating can be bifurcated (as illustrated in FIGS. 61A and 61B) such that the positive and negative fields of the coupled light travel along different paths in the fold grating. Using such a system, it is possible to narrow the fold grating such that the overlap of incoming light can be reduced and efficiency increased. Although specific bifurcation arrangements are shown, it should be understood that any suitable arrangements for bifurcating and narrowing the fold grating maybe implemented in accordance with embodiments.


Polarization Effects

Depending on nature of the grating, light may be p or s polarized, and the nature of that polarization can have an effect on the efficiency of overall coupling efficiency, and therefore overall efficiency of the waveguide embodiments, as shown in FIG. 62. For example, due to the birefringent nature of the RMLM materials used to form waveguides in accordance with embodiments, interactions with the gratings will gradually rotate the polarization of the light into a more circular state, however, each interaction will have its p-component extracted.


Once again it is to be noted that the out-couple efficiency of the light that finally hits the eyebox is the important metric to determine efficiency of the waveguide system. This value can be characterized by a percentage of coupled light. Turning to FIGS. 63A-63F, the effect of polarization on the efficiency of the gratings is considered. In the idealized case (FIG. 63B) where the polarization of light inside the waveguide is always in p-pol direction according to the grating vector the overall efficiency is determined by the diffraction efficiency of the grating (this can be considered the upper limit). In the realistic case (FIG. 63C) where there is random polarization of light within the waveguide, the overall out-couple efficiency drops significantly due to the disability of the grating to diffract s-pol light. Using a birefringent material (FIG. 63D) (where the optical axis is perpendicular to the fringes) the optical axis of the fold grating layer may have a 60° clocking angle compared to light in the propagation direction hence it will act as a thin waveplate and change the polarization of the transmitted light. As a result, some of the s-pol light is rotated to a p-pol state and will get diffracted out resulting in an efficiency enhancement. Note that this effect will not occur in an O/P grating because the optical axis is the same as the light propagation direction. To address this deficiency in the O/P and optimize the gating a QWP film may be applied (FIG. 63E) to recycle the s-pol light thus boosting efficiency. Although specific birefringence values are shown with relation to FIGS. 63A-63D, further optimization of the birefringence (e.g. by biasing the preferred birefringent axis towards the positive field angles), may allow one side of the field of view to be traded off to balance the other.


In addition to these birefringence effects, coatings and films may be implemented in embodiments of the invention to increase the capture of light that might be rejected because of the polarization selectivity of the waveguide. For example, in some embodiments a QWP film may be implemented to suppress odd interactions. In other embodiments, a HWP film may be implemented to collect s-polarized light. Such implementations may be referred to as polarization recycling. A conceptual illustration of an implementation of such a coating is provided in FIG. 64.


Waveguide Architectures to Enhance Efficiency

Embodiments of near-eye waveguide devices may incorporate one or more of the input, output and fold grating structures discussed above. Embodiments may comprise any number of input and output layers, these layers may be bifurcated, and these layers may incorporate other optical features such as QWP or HWP films, MUX gratings, and combinations thereof. Exemplary embodiments of various combinations may be found in FIGS. 46A-46N. Although specific architectures and combinations are shown, it will be understood that other variations may be implemented in accordance with the principals set forth herein.



FIG. 65A provides a conceptual illustration of a 1-axis expansion waveguide architecture implementing a single layer input and single layer output with QWP films disposed in association with such input and output gratings to suppress odd interactions (input) and allow s-polarization extraction (output).



FIG. 65B provides a conceptual illustration of a 1-axis expansion waveguide architecture implementing a single layer input and single layer output without the implementation of polarization recycling films.



FIG. 65C provides a conceptual illustration of a 1-axis expansion waveguide architecture implementing a dual layer input and single layer output with an HWP film disposed in association with the input grating to capture s-polarization in the second grating layer, and QWP film in association with the output grating to allow s-polarization extraction.



FIG. 65D provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a dual layer input and single layer output with an HWP film disposed in association with the input grating to capture s-polarization in the second grating layer, and QWP film in association with the output grating to allow s-polarization extraction. This embodiment also implements a fold grating to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction.



FIG. 65E provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a single layer MUX input and single layer MUX output at 60° with QWP films disposed in association with the input (to suppress odd interactions) and output gratings (to rotate the polarization from the fold). This embodiment also implements two fold gratings to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction. In this embodiment loss occurs from inefficient capture from the MUX input grating at 60°.



FIG. 65F provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a single layer MUX input and single layer MUX output both at 90° with QWP films disposed in association with the input (to suppress odd interactions) and output gratings (to rotate the polarization from the fold). This embodiment also implements two fold gratings to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction.



FIG. 65G provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a single layer MUX input and dual layer MUX output both at 90° with QWP films disposed in association with the input (to suppress odd interactions) and output gratings (to rotate the polarization from the fold). This embodiment also implements two fold gratings to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction. The dual layer output grating doubles the number of interactions, improving polarization efficiency.



FIG. 65H provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a bifurcated dual layer input where each layer is bifurcated to respond to half the horizontal FOV, and a dual layer MUX output at 90°. A HWP film is associated with the input grating and is required to couple the light of the same field angles to the same fold grating layers. This embodiment also implements two fold gratings to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction. A QWP film disposed in association with one of the fold gratings to extract the light from both polarizations. The dual layer output grating doubles the number of interactions, improving polarization efficiency.



FIG. 65I provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a dual layer input (at 60°) and output gratings. This embodiment also implements two fold gratings to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction. A QWP film is disposed in association with the output grating to rotate the polarization of the fold.



FIG. 65J provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a dual layer input (at 90°) and output gratings. This embodiment also implements two fold gratings to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction. A QWP film is disposed in association with the output grating to rotate the polarization of the fold.



FIG. 65K provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a bifurcated single layer input (at 60°) and an output MUX grating. This embodiment also implements two fold gratings on a single layer to capture half the FOV. QWP films are disposed in association with the input and output gratings to suppress odd interactions and rotate the polarization of the fold, respectively.



FIG. 65L provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a single layer input and output gratings. This embodiment also implements one fold grating to capture beams from both gratings. A QWP film is disposed in association with the output grating to rotate the polarization of the fold.



FIG. 65M provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a bifurcated single layer input (at 90°) and an output MUX grating. This embodiment also implements two fold gratings on a single layer to capture half the FOV. QWP films are disposed in association with the input and output gratings to suppress odd interactions and rotate the polarization of the fold, respectively.



FIG. 65N provides a conceptual illustration of a 2-axis expansion waveguide architecture implementing a bifurcated dual layer input at (90°) where each layer is bifurcated to respond to half the horizontal FOV, and a dual layer MUX output. A HWP film is associated with the input grating and is required to couple the light of the same field angles to the same fold grating layers. This embodiment also implements two fold gratings in each layer to capture beams from the gratings and rotate the input polarization to p-polarization for diffraction. A QWP film disposed in association with one of the fold gratings to extract the light from both polarizations. A HWP is also disposed in association with the input grating to couple light of the same field angles to the same fold grating layers. The dual layer output grating doubles the number of interactions, improving polarization efficiency.


One exemplary embodiment of an implementation of an architecture according to the above is illustrated in FIGS. 66A-66C. As shown, in the embodiment the input grating (FIG. 66A) consists of one RKV grating on each surface of the substrate. Each grating is designed to capture the entire field of view (i.e., not bifurcated). The fold grating (FIG. 66B) consists of a single RKV grating where the RKV slant angle varies going from left to right of grating and the RKV slant angle is constant going from top to bottom of grating. Finally, the output grating (FIG. 66C) consists of one plane grating on each surface of the substrate. Each grating may be provided with a different prescription, and is designed to respond to a certain range field angles.


Methods of Implementing Multiplex Gratings

Embodiments are also directed to methods of manufacturing multiplex (MUX) gratings. In many embodiments a multiplex grating comprises multiple prescriptions disposed in the same grating. As shown in FIGS. 67A and 67B in one exemplary embodiment two master plates (67A & 67B) are provided. As shown in FIG. 67C, the mastering plate RMLCM material and waveguide substrate are disposed in relation to each other and a rotatory aperture system (FIG. 67D) is disposed between this mastering rig and the illumination source. During operation (as shown in FIG. 67D) the chopper wheel allows only on pair/set of beams to be incident at one instant in time. This prevents simultaneous exposure of the mastering pairs, which would cause unwanted diffraction grating vectors to be imprinted. It will be understood that the specific mastering patterns and chopper apertures shown are merely exemplary, any suitable arrangement could be provided to allow for the fabrication of desired MUX gratings.


Doctrine of Equivalents

Although specific systems and methods are discussed above, many different embodiments can be implemented in accordance with the invention. It is therefore to be understood that the present invention can be practiced in ways other than specifically described, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents. Although specific embodiments have been described in detail in this disclosure, many modifications are possible (for example, variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.

Claims
  • 1. A waveguide display comprising: a waveguide comprising a holographic polymer dispersed liquid crystal mixture (HPDLC) layer sandwiched between first and second transparent substrates, wherein the HPDLC layer comprises: an input grating;a fold grating; andan output grating; andan input image node optically coupled to the waveguide;wherein: the input grating is configured to receive light from the input image node and to cause the light to travel within the waveguide via total internal reflection to the fold grating;the fold grating is configured to direct the light towards the output grating;the output grating is configured to cause the light to exit the waveguide; andwherein at least one of the input grating and the output grating is a multiplexed grating;wherein the multiplexed gratings provided by at least one of the input grating and the output grating is configured to increase the field of view of the waveguide display by providing a first waveguide path for light forming a first portion of the field of view and a second waveguide path for light forming a second portion of the field of view; andwherein the input and output gratings each multiplex first and second gratings, wherein a second fold grating is provided, wherein the first grating multiplexed into the input grating, the fold grating and the first grating multiplexed into the output grating together provide a first wavequide path for in-coupling, beam expanding and extracting a first field of view portion, wherein the second grating multiplexed into the input grating, the second fold grating and the second grating multiplexed into the output grating together provide a second waveguide path for in-coupling, beam expanding, and extracting a second field of view portion.
  • 2. The waveguide display of claim 1, wherein the input image node is coupled to the waveguide by an opto-mechanical interface that allows the waveguide to be mechanically disconnected from the input image node.
  • 3. The waveguide display of claim 1, wherein the waveguide is configured to direct light received from the input image node towards a vehicular windshield.
  • 4. The waveguide display of claim 3, wherein the waveguide is configured to distort the light exiting the waveguide such that the distorted light compensates for the curvature of the vehicular windshield.
  • 5. The waveguide display of claim 1, wherein the input grating and the output grating are configured to be reverse reciprocal of each other.
  • 6. The waveguide display of claim 1, wherein the input image node comprises a transparent prism for coupling light into the waveguide.
  • 7. The waveguide display of claim 6, wherein the transparent prism comprises a first surface for coupling light from the input image node into the prism, a second surface for coupling light out of the prism towards the waveguide, a third surface for providing an internal reflection, and a fourth surface opposing the third surface.
  • 8. The waveguide display of claim 7, wherein the third surface is configured to totally internally reflect the light, wherein the third and fourth surfaces provide a window for viewing an external scene.
  • 9. The waveguide display of claim 1, further comprising a second waveguide, wherein the two waveguides are configured to form a binocular waveguide display.
  • 10. The waveguide display of claim 1, wherein the waveguide further comprises a second fold grating, wherein the multiplexed grating is configured to direct a portion of incident light towards the first fold grating and to direct another portion of incident light towards the second fold grating.
  • 11. The waveguide display of claim 1, wherein the waveguide further comprises a quarter wave coating for rotating polarization of incoming light.
  • 12. The waveguide display of claim 1, wherein the fold grating is configured to provide pupil expansion in a first direction and the output grating is configured to provide pupil expansion in a second direction different than the first direction.
  • 13. The waveguide display of claim 1, wherein at least one of the input grating, fold grating, and output grating comprises a rolled K-vector grating.
  • 14. The waveguide display of claim 1, wherein the input image node comprises a light source.
  • 15. The waveguide display of claim 14, wherein the input image node further comprises a microdisplay panel.
  • 16. The waveguide display of claim 1, further comprising an eye tracker.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a continuation of U.S. patent application Ser. No. 17/167,903 entitled “Waveguide Architectures and Related Methods of Manufacturing,” filed Feb. 4, 2021, which is a continuation of U.S. patent application Ser. No. 16/242,979 entitled “Waveguide Architectures and Related Methods of Manufacturing,” filed Jan. 8, 2019, which claims the benefit of and priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/614,947 entitled “Monocular Waveguide Displays,” filed Jan. 8, 2018, U.S. Provisional Patent Application No. 62/614,949 entitled, “Vehicular Waveguide Displays,” filed Jan. 8, 2018, and U.S. Provisional Patent Application No. 62/615,000 entitled “Near-Eye Waveguide Displays,” filed Jan. 8, 2018, the disclosures which are incorporated herein by reference in their entireties.

US Referenced Citations (1416)
Number Name Date Kind
1043938 Huttenlocher Nov 1912 A
2141884 Sonnefeld Dec 1938 A
3482498 Becker Dec 1969 A
3620601 Leonard et al. Nov 1971 A
3741716 Johne et al. Jun 1973 A
3843231 Borel et al. Oct 1974 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
3965029 Arora Jun 1976 A
3975711 McMahon Aug 1976 A
4035068 Rawson Jul 1977 A
4066334 Fray et al. Jan 1978 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4248093 Andersson et al. Feb 1981 A
4251137 Knop et al. Feb 1981 A
4309070 St. Leger Searle Jan 1982 A
4322163 Schiller Mar 1982 A
4386361 Simmonds May 1983 A
4389612 Simmonds et al. Jun 1983 A
4403189 Simmonds Sep 1983 A
4418993 Lipton Dec 1983 A
4472037 Lipton Sep 1984 A
4523226 Lipton et al. Jun 1985 A
4544267 Schiller Oct 1985 A
4562463 Lipton Dec 1985 A
4566758 Bos et al. Jan 1986 A
4583117 Lipton et al. Apr 1986 A
4643515 Upatnieks Feb 1987 A
4647967 Kirschner et al. Mar 1987 A
4688900 Doane et al. Aug 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4728547 Vaz et al. Mar 1988 A
4729640 Sakata et al. Mar 1988 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4765703 Suzuki et al. Aug 1988 A
4775218 Wood et al. Oct 1988 A
4790613 Moss Dec 1988 A
4791788 Simmonds et al. Dec 1988 A
4792850 Liptoh et al. Dec 1988 A
4799765 Ferrer Jan 1989 A
4811414 Fishbine et al. Mar 1989 A
4848093 Simmonds et al. Jul 1989 A
4854688 Hayford et al. Aug 1989 A
4884876 Lipton et al. Dec 1989 A
4890902 Doane et al. Jan 1990 A
4900137 Carter Feb 1990 A
4928301 Smoot May 1990 A
4933976 Fishbine et al. Jun 1990 A
4938568 Margerum et al. Jul 1990 A
4946245 Chamberlin et al. Aug 1990 A
4960311 Moss et al. Oct 1990 A
4964701 Dorschner et al. Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4970129 Ingwall et al. Nov 1990 A
4971719 Vaz et al. Nov 1990 A
4994204 Doane et al. Feb 1991 A
5004323 West Apr 1991 A
5007711 Wood et al. Apr 1991 A
5009483 Rockwell et al. Apr 1991 A
5016953 Moss et al. May 1991 A
5033814 Brown et al. Jul 1991 A
5035734 Honkanen et al. Jul 1991 A
5053834 Simmonds Oct 1991 A
5063441 Lipton et al. Nov 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5096282 Margerum et al. Mar 1992 A
5099343 Margerum et al. Mar 1992 A
5109465 Klopotek Apr 1992 A
5110034 Simmonds et al. May 1992 A
5117285 Nelson et al. May 1992 A
5117302 Lipton May 1992 A
5119454 McMahon et al. Jun 1992 A
5124821 Antier et al. Jun 1992 A
5139192 Simmonds et al. Aug 1992 A
5142357 Lipton et al. Aug 1992 A
5142644 Vansteenkiste et al. Aug 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5181133 Lipton Jan 1993 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5198912 Ingwall et al. Mar 1993 A
5200861 Moskovich et al. Apr 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5239372 Lipton Aug 1993 A
5240636 Doane et al. Aug 1993 A
5241337 Betensky et al. Aug 1993 A
5242476 Bartel et al. Sep 1993 A
5243413 Gitlin et al. Sep 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5284499 Harvey et al. Feb 1994 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5296967 Moskovich et al. Mar 1994 A
5299289 Omae et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315324 Kubelik et al. May 1994 A
5315419 Saupe et al. May 1994 A
5315440 Betensky et al. May 1994 A
5317405 Kuriki et al. May 1994 A
5327269 Tilton et al. Jul 1994 A
5329363 Moskovich et al. Jul 1994 A
5341230 Smith Aug 1994 A
5343147 Sager et al. Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5368770 Saupe et al. Nov 1994 A
5369511 Amos Nov 1994 A
5371626 Betensky Dec 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5410370 Janssen Apr 1995 A
5416510 Lipton et al. May 1995 A
5416514 Janssen et al. May 1995 A
5418584 Larson May 1995 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5437811 Doane et al. Aug 1995 A
5438357 McNelley Aug 1995 A
5452385 Izumi et al. Sep 1995 A
5453863 West et al. Sep 1995 A
5455693 Wreede et al. Oct 1995 A
5455713 Kreitzer et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5476611 Nolan et al. Dec 1995 A
5481321 Lipton Jan 1996 A
5485313 Betensky Jan 1996 A
5493430 Lu et al. Feb 1996 A
5493448 Betensky et al. Feb 1996 A
5496621 Makita et al. Mar 1996 A
5499140 Betensky Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5500769 Betensky Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5516455 Jacobine et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5530566 Kumar Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5532875 Betemsky Jul 1996 A
5537232 Biles Jul 1996 A
RE35310 Moskovich Aug 1996 E
5543950 Lavrentovich et al. Aug 1996 A
5559637 Moskovich et al. Sep 1996 A
5572248 Allen et al. Nov 1996 A
5572250 Lipton et al. Nov 1996 A
5576888 Betensky Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5585035 Nerad et al. Dec 1996 A
5593615 Nerad et al. Jan 1997 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5619586 Sibbald et al. Apr 1997 A
5621529 Gordon et al. Apr 1997 A
5621552 Coates et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668614 Chien et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5677797 Betensky et al. Oct 1997 A
5680231 Grinberg et al. Oct 1997 A
5682255 Friesem et al. Oct 1997 A
5686931 Fuenfschilling et al. Nov 1997 A
5686975 Lipton Nov 1997 A
5691795 Doane et al. Nov 1997 A
5694230 Welch Dec 1997 A
5695682 Doane et al. Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5706136 Okuyama et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5710645 Phillips et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5724463 Deacon et al. Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5745266 Smith et al. Apr 1998 A
5745301 Betensky et al. Apr 1998 A
5748272 Tanaka et al. May 1998 A
5748277 Huang et al. May 1998 A
5751452 Tanaka et al. May 1998 A
5757546 Lipton et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5790314 Duck et al. Aug 1998 A
5798641 Spagna et al. Aug 1998 A
5808804 Moskovich Sep 1998 A
5812608 Valimaki et al. Sep 1998 A
5822089 Phillips et al. Oct 1998 A
5822127 Chen et al. Oct 1998 A
5825448 Bos et al. Oct 1998 A
5831700 Li et al. Nov 1998 A
5835661 Tai et al. Nov 1998 A
5841507 Barnes Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5856842 Tedesco Jan 1999 A
5867238 Miller et al. Feb 1999 A
5868951 Schuck, III et al. Feb 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5877826 Yang et al. Mar 1999 A
5886822 Spitzer Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5892599 Bahuguna Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5903395 Rallison et al. May 1999 A
5903396 Rallison May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5929960 West et al. Jul 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5949508 Kumar et al. Sep 1999 A
5956113 Crawford Sep 1999 A
5962147 Shalhub et al. Oct 1999 A
5963375 Kreitzer Oct 1999 A
5966223 Friesem et al. Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5974162 Metz et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5986746 Metz et al. Nov 1999 A
5991087 Rallison Nov 1999 A
5999089 Carlson et al. Dec 1999 A
5999282 Suzuki et al. Dec 1999 A
5999314 Asakura et al. Dec 1999 A
6014187 Taketomi et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6046585 Simmonds Apr 2000 A
6052540 Koyama Apr 2000 A
6061107 Yang May 2000 A
6061463 Metz et al. May 2000 A
6069728 Huignard et al. May 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6104448 Doane et al. Aug 2000 A
6107943 Schroeder Aug 2000 A
6115152 Popovich et al. Sep 2000 A
6118908 Bischel et al. Sep 2000 A
6121899 Theriault Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6128058 Walton et al. Oct 2000 A
6133971 Silverstein et al. Oct 2000 A
6133975 Li et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer et al. Oct 2000 A
6151142 Phillips et al. Nov 2000 A
6154190 Yang et al. Nov 2000 A
6167169 Brinkman et al. Dec 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6185016 Popovich Feb 2001 B1
6188462 Lavrentovich et al. Feb 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195206 Yona et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6204835 Yang et al. Mar 2001 B1
6211976 Popovich et al. Apr 2001 B1
6222297 Perdue Apr 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6268839 Yang et al. Jul 2001 B1
6269203 Davies et al. Jul 2001 B1
6275031 Simmonds et al. Aug 2001 B1
6278429 Ruth et al. Aug 2001 B1
6285813 Schultz et al. Sep 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6317228 Popovich et al. Nov 2001 B2
6320563 Yang et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6323970 Popovich Nov 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6330109 Ishii et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6356674 Davis et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366281 Lipton et al. Apr 2002 B1
6366369 Ichikawa et al. Apr 2002 B2
6366378 Tervonen et al. Apr 2002 B1
6377238 McPheters Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6388797 Lipton et al. May 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6437563 Simmonds et al. Aug 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6457834 Cotton et al. Oct 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6473209 Popovich Oct 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6483303 Simmonds et al. Nov 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6518747 Sager et al. Feb 2003 B2
6519088 Lipton Feb 2003 B1
6522794 Bischel et al. Feb 2003 B1
6524771 Maeda et al. Feb 2003 B2
6529336 Kreitzer et al. Mar 2003 B1
6534977 Duncan et al. Mar 2003 B1
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6552789 Modro Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6559813 DeLuca et al. May 2003 B1
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567014 Hansen et al. May 2003 B1
6567573 Domash et al. May 2003 B1
6577411 David et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6583838 Hoke et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6597176 Simmonds et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6598987 Parikka Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6618104 Date et al. Sep 2003 B1
6625381 Roddy et al. Sep 2003 B2
6646772 Popovich et al. Nov 2003 B1
6646810 Harter, Jr. et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6667134 Sutherland et al. Dec 2003 B1
6674578 Sugiyama et al. Jan 2004 B2
6677086 Sutehrland et al. Jan 2004 B1
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6690516 Aritake et al. Feb 2004 B2
6692666 Sutherland et al. Feb 2004 B2
6699407 Sutehrland et al. Mar 2004 B1
6706086 Emig et al. Mar 2004 B2
6706451 Sutherland et al. Mar 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6730442 Sutherland et al. May 2004 B1
6731434 Hua et al. May 2004 B1
6738105 Hannah et al. May 2004 B1
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6804066 Ha et al. Oct 2004 B1
6805490 Levola Oct 2004 B2
6821457 Natarajan et al. Nov 2004 B1
6822713 Yaroshchuk et al. Nov 2004 B1
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6830789 Doane et al. Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853491 Ruhle et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6867888 Sutherland et al. Mar 2005 B2
6873443 Joubert et al. Mar 2005 B1
6878494 Sutehrland et al. Apr 2005 B2
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6927570 Simmonds et al. Aug 2005 B2
6927694 Smith et al. Aug 2005 B1
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6952435 Lai et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6958868 Pender Oct 2005 B1
6963454 Martins et al. Nov 2005 B1
6972788 Robertson et al. Dec 2005 B1
6975345 Lipton et al. Dec 2005 B1
6980365 Moskovich Dec 2005 B2
6985296 Lipton et al. Jan 2006 B2
6987908 Bond et al. Jan 2006 B2
6999239 Martins et al. Feb 2006 B1
7002618 Lipton et al. Feb 2006 B2
7002753 Moskovich et al. Feb 2006 B2
7003187 Frick et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7018563 Sutherland et al. Mar 2006 B1
7018686 Sutehrland et al. Mar 2006 B2
7018744 Otaki et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7053991 Sandusky May 2006 B2
7054045 McPheters et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7072020 Sutherland et al. Jul 2006 B1
7075273 O'Gorman et al. Jul 2006 B2
7077984 Natarajan et al. Jul 2006 B1
7081215 Natarajan et al. Jul 2006 B2
7088457 Zou et al. Aug 2006 B1
7088515 Lipton Aug 2006 B2
7095562 Peng et al. Aug 2006 B1
7099080 Lipton et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7108383 Mitchell et al. Sep 2006 B1
7110184 Yona et al. Sep 2006 B1
7119965 Rolland et al. Oct 2006 B1
7123418 Weber et al. Oct 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7133084 Moskovich et al. Nov 2006 B2
7139109 Mukawa Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7167286 Anderson et al. Jan 2007 B2
7175780 Sutherland et al. Feb 2007 B1
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184002 Lipton et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7186567 Sutherland et al. Mar 2007 B1
7190849 Katase Mar 2007 B2
7198737 Natarajan et al. Apr 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7212175 Magee et al. May 2007 B1
7230767 Walck et al. Jun 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7256915 Sutherland et al. Aug 2007 B2
7259906 Islam Aug 2007 B1
7265882 Sutherland et al. Sep 2007 B2
7265903 Sutherland et al. Sep 2007 B2
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
RE39911 Moskovich Nov 2007 E
7299983 Piikivi Nov 2007 B2
7301601 Lin et al. Nov 2007 B2
7312906 Sutherland et al. Dec 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7333685 Stone et al. Feb 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7369911 Volant et al. May 2008 B1
7375870 Schorpp May 2008 B2
7375886 Lipton et al. May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7413678 Natarajan et al. Aug 2008 B1
7413679 Sutherland et al. Aug 2008 B1
7415173 Kassamakov et al. Aug 2008 B2
7416818 Sutherland et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7420733 Natarajan et al. Sep 2008 B1
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
7447967 Onggosanusi et al. Nov 2008 B2
7453612 Mukawa Nov 2008 B2
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7477206 Cowan et al. Jan 2009 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7500104 Goland Mar 2009 B2
7511891 Messerschmidt Mar 2009 B2
7513668 Peng et al. Apr 2009 B1
7522344 Curatu et al. Apr 2009 B1
7525448 Wilson et al. Apr 2009 B1
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570322 Sutherland et al. Aug 2009 B1
7570405 Sutherland et al. Aug 2009 B1
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7583423 Sutherland et al. Sep 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7605719 Wenger et al. Oct 2009 B1
7605774 Brandt et al. Oct 2009 B1
7605882 Sutherland et al. Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7617022 Wood et al. Nov 2009 B1
7618750 Ueda et al. Nov 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7619825 Peng et al. Nov 2009 B1
7629086 Otaki et al. Dec 2009 B2
7639208 Ha et al. Dec 2009 B1
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7672549 Ghosh et al. Mar 2010 B2
7710622 Takabayashi et al. May 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733571 Li Jun 2010 B1
7733572 Brown et al. Jun 2010 B1
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7843642 Shaoulov et al. Nov 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7866869 Karakawa Jan 2011 B2
7872707 Sutherland et al. Jan 2011 B1
7872804 Moon et al. Jan 2011 B2
7884593 Simmonds et al. Feb 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7928862 Matthews Apr 2011 B1
7936519 Mukawa et al. May 2011 B2
7944428 Travis May 2011 B2
7944616 Mukawa May 2011 B2
7949214 DeJong et al. May 2011 B2
7961117 Zimmerman et al. Jun 2011 B1
7969644 Tilleman et al. Jun 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7984884 Iliev et al. Jul 2011 B1
7999982 Endo et al. Aug 2011 B2
8000020 Amitai et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8014050 McGrew Sep 2011 B2
8016475 Travis Sep 2011 B2
8018579 Krah Sep 2011 B1
8022942 Bathiche et al. Sep 2011 B2
8023783 Mukawa et al. Sep 2011 B2
RE42992 David Dec 2011 E
8073296 Mukawa et al. Dec 2011 B2
8077274 Sutherland et al. Dec 2011 B2
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8093451 Spangenberg et al. Jan 2012 B2
8098439 Amitai et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8120548 Barber Feb 2012 B1
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8134434 Diederichs et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8142016 Legerton et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8159752 Wertheim et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8167173 Simmonds et al. May 2012 B1
8186874 Sinbar et al. May 2012 B2
8188925 DeJean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8194325 Levola et al. Jun 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8264498 Vanderkamp et al. Sep 2012 B1
8294749 Cable Oct 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8310327 Willers et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8321810 Heintze Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8329773 Fäcke et al. Dec 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8384504 Diederichs et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8384730 Vanderkamp et al. Feb 2013 B1
8396339 Mukawa et al. Mar 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8447365 Imanuel May 2013 B1
8466953 Levola Jun 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8481130 Harding et al. Jul 2013 B2
8482858 Sprague Jul 2013 B2
8488246 Border et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8494229 Jarvenpaa et al. Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8520309 Sprague Aug 2013 B2
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8634120 Popovich et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
D701206 Luckey et al. Mar 2014 S
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8698705 Burke Apr 2014 B2
8731350 Lin et al. May 2014 B1
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8742952 Bold Jun 2014 B1
8746008 Mauritsen et al. Jun 2014 B1
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8786923 Chuang et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8816578 Peng et al. Aug 2014 B1
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama Sep 2014 B2
8830143 Pitchford et al. Sep 2014 B1
8830584 Saarikko et al. Sep 2014 B2
8830588 Brown et al. Sep 2014 B1
8842368 Simmonds et al. Sep 2014 B2
8859412 Jain Oct 2014 B2
8872435 Kreitzer et al. Oct 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
8885112 Popovich et al. Nov 2014 B2
8885997 Nguyen et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8906088 Pugh et al. Dec 2014 B2
8913324 Schrader Dec 2014 B2
8913865 Bennett Dec 2014 B1
8917453 Bohn Dec 2014 B2
8937771 Robbins et al. Jan 2015 B2
8937772 Burns et al. Jan 2015 B1
8938141 Magnusson Jan 2015 B2
8950867 Macnamara Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
8965152 Simmonds Feb 2015 B2
8985803 Bohn Mar 2015 B2
8989535 Robbins Mar 2015 B2
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9035344 Jain May 2015 B2
9075184 Popovich et al. Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9097890 Miller et al. Aug 2015 B2
9128226 Fattal et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9164290 Robbins et al. Oct 2015 B2
9176324 Scherer et al. Nov 2015 B1
9201270 Fattal et al. Dec 2015 B2
9215293 Miller Dec 2015 B2
9244275 Li Jan 2016 B1
9244280 Tiana et al. Jan 2016 B1
9244281 Zimmerman et al. Jan 2016 B1
9269854 Jain Feb 2016 B2
9274338 Robbins et al. Mar 2016 B2
9274339 Brown et al. Mar 2016 B1
9310566 Valera et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9335604 Popovich et al. May 2016 B2
9341846 Popovich et al. May 2016 B2
9354366 Jain May 2016 B2
9366862 Haddick et al. Jun 2016 B2
9366864 Brown et al. Jun 2016 B1
9372347 Levola et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9377852 Shapiro et al. Jun 2016 B1
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Kostamo et al. Aug 2016 B1
9429692 Saarikko et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9456744 Popovich et al. Oct 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9464779 Popovich et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9465227 Popovich et al. Oct 2016 B2
9494799 Robbins et al. Nov 2016 B2
9507150 Stratton et al. Nov 2016 B1
9513480 Saarikko et al. Dec 2016 B2
9519089 Brown et al. Dec 2016 B1
9523852 Brown et al. Dec 2016 B1
9535253 Levola et al. Jan 2017 B2
9541383 Abovitz et al. Jan 2017 B2
9541763 Heberlein et al. Jan 2017 B1
9547174 Gao et al. Jan 2017 B2
9551874 Amitai Jan 2017 B2
9551880 Amitai Jan 2017 B2
9599813 Stratton et al. Mar 2017 B1
9612403 Abovitz et al. Apr 2017 B2
9632226 Waldern et al. Apr 2017 B2
9635352 Henry et al. Apr 2017 B1
9648313 Henry et al. May 2017 B1
9651368 Abovitz et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9671612 Kress et al. Jun 2017 B2
9674413 Tiana et al. Jun 2017 B1
9678345 Melzer et al. Jun 2017 B1
9679367 Wald Jun 2017 B1
9715067 Brown et al. Jul 2017 B1
9715110 Brown et al. Jul 2017 B1
9726540 Popovich et al. Aug 2017 B2
9727772 Popovich et al. Aug 2017 B2
9733475 Brown et al. Aug 2017 B1
9746688 Popovich et al. Aug 2017 B2
9754507 Wenger et al. Sep 2017 B1
9762895 Henry et al. Sep 2017 B1
9766465 Tiana et al. Sep 2017 B1
9785231 Zimmerman Oct 2017 B1
9791694 Haverkamp et al. Oct 2017 B1
9791703 Vallius Oct 2017 B1
9804389 Popovich et al. Oct 2017 B2
9823423 Waldern et al. Nov 2017 B2
9874931 Koenck et al. Jan 2018 B1
9933684 Brown et al. Apr 2018 B2
9977247 Brown et al. May 2018 B1
10089516 Popovich et al. Oct 2018 B2
10156681 Waldern et al. Dec 2018 B2
10185154 Popovich et al. Jan 2019 B2
10569449 Curts et al. Feb 2020 B1
10578876 Lam et al. Mar 2020 B1
10598938 Huang et al. Mar 2020 B1
10613268 Colburn et al. Apr 2020 B1
10649119 Mohanty et al. May 2020 B2
10690831 Calafiore Jun 2020 B2
10732351 Colburn et al. Aug 2020 B2
10823887 Calafiore et al. Nov 2020 B1
10914950 Waldern et al. Feb 2021 B2
10983257 Colburn et al. Apr 2021 B1
11103892 Liao et al. Aug 2021 B1
11107972 Diest et al. Aug 2021 B2
11137603 Zhang Oct 2021 B2
11243333 Ouderkirk et al. Feb 2022 B1
11256155 Popovich et al. Feb 2022 B2
11306193 Lane et al. Apr 2022 B1
11307357 Mohanty Apr 2022 B2
11340386 Ouderkirk et al. May 2022 B1
11391950 Calafiore Jul 2022 B2
20010024177 Popovich Sep 2001 A1
20010043163 Waldern et al. Nov 2001 A1
20010050756 Lipton et al. Dec 2001 A1
20020003509 Lipton et al. Jan 2002 A1
20020009299 Lipton Jan 2002 A1
20020011969 Lipton et al. Jan 2002 A1
20020012064 Yamaguchi Jan 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020036825 Lipton et al. Mar 2002 A1
20020047837 Suyama et al. Apr 2002 A1
20020075240 Lieberman et al. Jun 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20020126332 Popovich Sep 2002 A1
20020127497 Brown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20020196332 Lipton et al. Dec 2002 A1
20030007070 Lipton et al. Jan 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030063884 Smith et al. Apr 2003 A1
20030067685 Niv Apr 2003 A1
20030086670 Moridaira et al. May 2003 A1
20030107809 Chen et al. Jun 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030197154 Manabe et al. Oct 2003 A1
20030197157 Sutherland et al. Oct 2003 A1
20030202247 Niv et al. Oct 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040004767 Song Jan 2004 A1
20040089842 Sutehrland et al. May 2004 A1
20040109234 Levola Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040130797 Leigh Jul 2004 A1
20040141217 Endo et al. Jul 2004 A1
20040174348 David Sep 2004 A1
20040175627 Sutherland et al. Sep 2004 A1
20040179764 Melikechi et al. Sep 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20040263971 Lipton et al. Dec 2004 A1
20050018304 Lipton et al. Jan 2005 A1
20050079663 Masutani et al. Apr 2005 A1
20050105909 Stone May 2005 A1
20050122395 Lipton et al. Jun 2005 A1
20050134404 Kajiya et al. Jun 2005 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050141066 Ouchi Jun 2005 A1
20050180687 Amitai Aug 2005 A1
20050195276 Lipton et al. Sep 2005 A1
20050232530 Kekas Oct 2005 A1
20050259217 Lin et al. Nov 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050265585 Rowe Dec 2005 A1
20050269481 David et al. Dec 2005 A1
20050271258 Rowe Dec 2005 A1
20050286133 Lipton Dec 2005 A1
20060012878 Lipton et al. Jan 2006 A1
20060013977 Duke et al. Jan 2006 A1
20060043938 O'Gorman et al. Mar 2006 A1
20060055993 Kobayashi et al. Mar 2006 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119837 Raguin et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060126179 Levola Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060159864 Natarajan et al. Jul 2006 A1
20060164593 Peyghambarian et al. Jul 2006 A1
20060171647 Ye et al. Aug 2006 A1
20060177180 Tazawa et al. Aug 2006 A1
20060191293 Kuczma Aug 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060221063 Ishihara Oct 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060268104 Cowan et al. Nov 2006 A1
20060268412 Downing et al. Nov 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285205 Lipton et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20060291052 Lipton et al. Dec 2006 A1
20070012777 Tsikos et al. Jan 2007 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070070476 Yamada et al. Mar 2007 A1
20070070504 Akutsu et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070097502 Lipton et al. May 2007 A1
20070109401 Lipton et al. May 2007 A1
20070116409 Bryan et al. May 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070154153 Fomitchov et al. Jul 2007 A1
20070159673 Freeman et al. Jul 2007 A1
20070160325 Son et al. Jul 2007 A1
20070177007 Lipton et al. Aug 2007 A1
20070182915 Osawa et al. Aug 2007 A1
20070183650 Lipton et al. Aug 2007 A1
20070188602 Cowan et al. Aug 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070206155 Lipton Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070236560 Lipton et al. Oct 2007 A1
20070237456 Blauvelt et al. Oct 2007 A1
20070247687 Handschy et al. Oct 2007 A1
20070258138 Cowan et al. Nov 2007 A1
20070263169 Lipton Nov 2007 A1
20080001909 Lim Jan 2008 A1
20080018851 Lipton et al. Jan 2008 A1
20080024598 Perlin et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080049100 Lipton et al. Feb 2008 A1
20080062259 Lipton et al. Mar 2008 A1
20080106775 Amitai et al. May 2008 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080136916 Wolff Jun 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080138013 Parriaux Jun 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080143965 Cowan et al. Jun 2008 A1
20080149517 Lipton et al. Jun 2008 A1
20080151370 Cook et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186573 Lipton Aug 2008 A1
20080186574 Robinson et al. Aug 2008 A1
20080186604 Amitai Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080226281 Lipton Sep 2008 A1
20080239067 Lipton Oct 2008 A1
20080239068 Lipton Oct 2008 A1
20080273081 Lipton Nov 2008 A1
20080278812 Amitai Nov 2008 A1
20080285137 Simmonds et al. Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080298649 Ennis et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080303896 Lipton et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20080309586 Vitale Dec 2008 A1
20080316303 Chiu et al. Dec 2008 A1
20080316375 Lipton et al. Dec 2008 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052017 Sasaki Feb 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128495 Kong et al. May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090136246 Murakami May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090242021 Petkie et al. Oct 2009 A1
20090296218 Ryytty Dec 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100014312 Travis et al. Jan 2010 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100165660 Weber et al. Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100202725 Popovich et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100220293 Mizushima et al. Sep 2010 A1
20100231532 Nho et al. Sep 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100299814 Celona et al. Dec 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110001895 Dahl Jan 2011 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110032602 Rothenberg et al. Feb 2011 A1
20110032618 Handerek et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110102711 Sutherland et al. May 2011 A1
20110109880 Nummela May 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110187293 Travis et al. Aug 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110236803 Weiser et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20110274435 Fini et al. Nov 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120027347 Mathal et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120092632 McLeod et al. Apr 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120162549 Gao et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176665 Song et al. Jul 2012 A1
20120183888 Oliveira et al. Jul 2012 A1
20120194420 Osterhout et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large Aug 2012 A1
20120214089 Hönel et al. Aug 2012 A1
20120214090 Weiser et al. Aug 2012 A1
20120218481 Popovich et al. Aug 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235886 Border et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120281943 Popovich et al. Nov 2012 A1
20120290973 Robertson et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130016324 Travis Jan 2013 A1
20130016362 Gong et al. Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130039619 Laughlin Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130059233 Askham Mar 2013 A1
20130069850 Mukawa et al. Mar 2013 A1
20130077049 Bohn Mar 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130117377 Miller May 2013 A1
20130125027 Abovitz et al. May 2013 A1
20130128230 Macnamara May 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130143336 Jain Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130176704 Lanman et al. Jul 2013 A1
20130184904 Gadzinski Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130207887 Raffle et al. Aug 2013 A1
20130224634 Berneth et al. Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130235331 Heinrich Sep 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins et al. Oct 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130277890 Bowman et al. Oct 2013 A1
20130305437 Weller et al. Nov 2013 A1
20130312811 Aspnes et al. Nov 2013 A1
20130314789 Saarikko et al. Nov 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20130342525 Benko et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140024159 Jain Jan 2014 A1
20140027006 Foley et al. Jan 2014 A1
20140037242 Popovich et al. Feb 2014 A1
20140043689 Mason Feb 2014 A1
20140055845 Jain Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140064655 Nguyen et al. Mar 2014 A1
20140071538 Muller Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140118647 Momonoi et al. May 2014 A1
20140130132 Cahill et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140160576 Robbins et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140168783 Luebke et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140198128 Hong et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218468 Gao et al. Aug 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason Aug 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140266987 Magyari Sep 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300960 Santori et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140327970 Bohn Nov 2014 A1
20140330159 Costa et al. Nov 2014 A1
20140367719 Jain Dec 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150001677 Palumbo et al. Jan 2015 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150015946 Muller Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150035744 Robbins et al. Feb 2015 A1
20150036068 Fattal et al. Feb 2015 A1
20150058791 Robertson et al. Feb 2015 A1
20150062675 Ayres et al. Mar 2015 A1
20150062707 Simmonds et al. Mar 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150107671 Bodan et al. Apr 2015 A1
20150109763 Shinkai et al. Apr 2015 A1
20150125109 Robbins et al. May 2015 A1
20150148728 Sallum et al. May 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150167868 Boncha Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150235448 Schowengerdt et al. Aug 2015 A1
20150243068 Solomon Aug 2015 A1
20150247975 Abovitz et al. Sep 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20150285682 Popovich et al. Oct 2015 A1
20150288129 Jain Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150309264 Abovitz et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20150346490 Tekolste et al. Dec 2015 A1
20150346495 Welch et al. Dec 2015 A1
20150355394 Leighton et al. Dec 2015 A1
20160003847 Ryan et al. Jan 2016 A1
20160004090 Popovich et al. Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160033705 Fattal Feb 2016 A1
20160033706 Fattal et al. Feb 2016 A1
20160038992 Arthur et al. Feb 2016 A1
20160041387 Valera et al. Feb 2016 A1
20160077338 Robbins Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160116739 TeKolste et al. Apr 2016 A1
20160124223 Shinbo et al. May 2016 A1
20160132025 Taff et al. May 2016 A1
20160195664 Fattal et al. Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160231569 Levola Aug 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160274362 Tinch et al. Sep 2016 A1
20160283773 Popovich et al. Sep 2016 A1
20160291328 Popovich Oct 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Simmonds et al. Nov 2016 A1
20160327705 Simmonds et al. Nov 2016 A1
20160341964 Amitai Nov 2016 A1
20160370586 Saenger Nayver et al. Dec 2016 A1
20170003505 Vallius et al. Jan 2017 A1
20170010488 Klug et al. Jan 2017 A1
20170030550 Popovich et al. Feb 2017 A1
20170031160 Popovich et al. Feb 2017 A1
20170031171 Vallius et al. Feb 2017 A1
20170034435 Vallius Feb 2017 A1
20170038579 Yeoh et al. Feb 2017 A1
20170052374 Waldern et al. Feb 2017 A1
20170052376 Amitai et al. Feb 2017 A1
20170059759 Ayres et al. Mar 2017 A1
20170102543 Vallius Apr 2017 A1
20170115487 Travis et al. Apr 2017 A1
20170123208 Vallius May 2017 A1
20170131460 Lin et al. May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Robbins et al. May 2017 A1
20170160546 Bull et al. Jun 2017 A1
20170180404 Bersch et al. Jun 2017 A1
20170180408 Yu et al. Jun 2017 A1
20170199333 Waldern Jul 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170255257 Tiana et al. Sep 2017 A1
20170276940 Popovich et al. Sep 2017 A1
20170299860 Wall et al. Oct 2017 A1
20170356801 Popovich et al. Dec 2017 A1
20170357841 Popovich et al. Dec 2017 A1
20170363871 Vallius et al. Dec 2017 A1
20180011324 Popovich et al. Jan 2018 A1
20180074265 Waldern et al. Mar 2018 A1
20180074352 Popovich et al. Mar 2018 A1
20180113303 Popovich et al. Apr 2018 A1
20180120669 Popovich et al. May 2018 A1
20180143449 Popovich et al. May 2018 A1
20180188542 Waldern et al. Jul 2018 A1
20180210198 Brown et al. Jul 2018 A1
20180210396 Popovich et al. Jul 2018 A1
20180227576 Fattal Aug 2018 A1
20180232048 Popovich et al. Aug 2018 A1
20180246354 Popovich et al. Aug 2018 A1
20180275402 Popovich et al. Sep 2018 A1
20180284440 Popovich et al. Oct 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190212557 Waldern et al. Jul 2019 A1
20190212588 Waldern et al. Jul 2019 A1
20200247016 Calafiore Aug 2020 A1
20200249568 Rao et al. Aug 2020 A1
20200348531 Popovich et al. Nov 2020 A1
20200387000 Ding et al. Dec 2020 A1
20200400946 Waldern et al. Dec 2020 A1
20210109285 Jiang et al. Apr 2021 A1
20210191122 Yaroshchuk et al. Jun 2021 A1
20210199873 Shi et al. Jul 2021 A1
20210199971 Lee et al. Jul 2021 A1
20210238374 Ye et al. Aug 2021 A1
20210396998 Waldern et al. Dec 2021 A1
20220019015 Calafiore et al. Jan 2022 A1
20220082739 Franke et al. Mar 2022 A1
20220091323 Yaroshchuk et al. Mar 2022 A1
20220204790 Zhang et al. Jun 2022 A1
20220206232 Zhang et al. Jun 2022 A1
20240151890 Popovich May 2024 A1
Foreign Referenced Citations (253)
Number Date Country
PI0720469 Jan 2014 BR
2889727 Jun 2014 CA
200944140 Sep 2007 CN
101103297 Jan 2008 CN
101151562 Mar 2008 CN
101263412 Sep 2008 CN
100492099 May 2009 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101881936 Nov 2010 CN
103823267 May 2014 CN
104204901 Dec 2014 CN
104956252 Sep 2015 CN
105074537 Nov 2015 CN
105074539 Nov 2015 CN
105190407 Dec 2015 CN
105229514 Jan 2016 CN
105393159 Mar 2016 CN
105408801 Mar 2016 CN
105408802 Mar 2016 CN
105408803 Mar 2016 CN
105531716 Apr 2016 CN
105705981 Jun 2016 CN
107466372 Dec 2017 CN
108780224 Nov 2018 CN
19751190 May 1999 DE
102006003785 Jul 2007 DE
102012108424 Mar 2014 DE
102013209436 Nov 2014 DE
0286962 Oct 1988 EP
0795775 Sep 1997 EP
0822441 Feb 1998 EP
1347641 Sep 2003 EP
1413972 Apr 2004 EP
1526709 Apr 2005 EP
1748305 Jan 2007 EP
1938152 Jul 2008 EP
1413972 Oct 2008 EP
2110701 Oct 2009 EP
2225592 Sep 2010 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
2381290 Oct 2011 EP
1828832 May 2013 EP
2733517 May 2014 EP
1573369 Jul 2014 EP
2748670 Jul 2014 EP
2929378 Oct 2015 EP
2748670 Nov 2015 EP
2995986 Mar 2016 EP
2995986 Apr 2017 EP
3256888 Dec 2017 EP
3359999 Aug 2018 EP
2494388 Nov 2018 EP
2677463 Dec 1992 FR
2115178 Sep 1983 GB
2140935 Dec 1984 GB
2508661 Jun 2014 GB
2509536 Jul 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1204684 Nov 2015 HK
1205563 Dec 2015 HK
1205793 Dec 2015 HK
1206101 Dec 2015 HK
02186319 Jul 1990 JP
03239384 Oct 1991 JP
06294952 Oct 1994 JP
07098439 Apr 1995 JP
0990312 Apr 1997 JP
11109320 Apr 1999 JP
11142806 May 1999 JP
2953444 Sep 1999 JP
2000056259 Feb 2000 JP
2000267042 Sep 2000 JP
2001027739 Jan 2001 JP
2001296503 Oct 2001 JP
2002090858 Mar 2002 JP
2002122906 Apr 2002 JP
2002162598 Jun 2002 JP
2002523802 Jul 2002 JP
2002529790 Sep 2002 JP
2003066428 Mar 2003 JP
2003270419 Sep 2003 JP
2004157245 Jun 2004 JP
2006350129 Dec 2006 JP
2007011057 Jan 2007 JP
2007219106 Aug 2007 JP
2008112187 May 2008 JP
2009036955 Feb 2009 JP
2009133999 Jun 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
2012137616 Jul 2012 JP
5303928 Oct 2013 JP
2018508037 Mar 2018 JP
2018533069 Nov 2018 JP
20100092059 Aug 2010 KR
20140140063 Dec 2014 KR
20140142337 Dec 2014 KR
200535633 Nov 2005 TW
200801583 Jan 2008 TW
201314263 Apr 2013 TW
201600943 Jan 2016 TW
201604601 Feb 2016 TW
1997001133 Jan 1997 WO
1997027519 Jul 1997 WO
1998004650 Feb 1998 WO
1999009440 Feb 1999 WO
1999052002 Oct 1999 WO
2000016136 Mar 2000 WO
2000023830 Apr 2000 WO
2000023832 Apr 2000 WO
2000023847 Apr 2000 WO
2000028369 May 2000 WO
2000028369 Oct 2000 WO
2001050200 Jul 2001 WO
2001090822 Nov 2001 WO
2002082168 Oct 2002 WO
2003081320 Oct 2003 WO
2004102226 Nov 2004 WO
2005001753 Jan 2005 WO
2005006065 Jan 2005 WO
2005006065 Feb 2005 WO
2005073798 Aug 2005 WO
2006002870 Jan 2006 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006132614 Dec 2006 WO
2006102073 Jan 2007 WO
2007015141 Feb 2007 WO
2007029032 Mar 2007 WO
2007085682 Aug 2007 WO
2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
2008011066 Jan 2008 WO
2008011066 May 2008 WO
2008081070 Jul 2008 WO
2008100545 Aug 2008 WO
2008011066 Dec 2008 WO
2009013597 Jan 2009 WO
2009013597 Jan 2009 WO
2009077802 Jun 2009 WO
2009077803 Jun 2009 WO
2009101238 Aug 2009 WO
2007130130 Sep 2009 WO
2009155437 Dec 2009 WO
2009155437 Mar 2010 WO
2010023444 Mar 2010 WO
2010057219 May 2010 WO
2010067114 Jun 2010 WO
2010067117 Jun 2010 WO
2010078856 Jul 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
2010125337 Nov 2010 WO
2010125337 Nov 2010 WO
2011012825 Feb 2011 WO
2011032005 Mar 2011 WO
2011042711 Apr 2011 WO
2011051660 May 2011 WO
2011055109 May 2011 WO
2011042711 Jun 2011 WO
2011073673 Jun 2011 WO
2011107831 Sep 2011 WO
2011110821 Sep 2011 WO
2011131978 Oct 2011 WO
2012052352 Apr 2012 WO
2012062658 May 2012 WO
2012158950 Nov 2012 WO
2012172295 Dec 2012 WO
2013027004 Feb 2013 WO
2013027006 Feb 2013 WO
2013033274 Mar 2013 WO
2013034879 Mar 2013 WO
2013049012 Apr 2013 WO
2013102759 Jul 2013 WO
2013163347 Oct 2013 WO
2013167864 Nov 2013 WO
2013190257 Dec 2013 WO
2014064427 May 2014 WO
2014080155 May 2014 WO
2014085734 Jun 2014 WO
2014090379 Jun 2014 WO
2014091200 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
2014130383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014164901 Oct 2014 WO
2014176695 Nov 2014 WO
2014179632 Nov 2014 WO
2014188149 Nov 2014 WO
2014209733 Dec 2014 WO
2014209819 Dec 2014 WO
2014209820 Dec 2014 WO
2014209821 Dec 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015015138 Feb 2015 WO
2015017291 Feb 2015 WO
2015069553 May 2015 WO
2015081313 Jun 2015 WO
2015117039 Aug 2015 WO
2015145119 Oct 2015 WO
2016010289 Jan 2016 WO
2016020643 Feb 2016 WO
2016025350 Feb 2016 WO
2016042283 Mar 2016 WO
2016046514 Mar 2016 WO
2016103263 Jun 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113534 Jul 2016 WO
2016116733 Jul 2016 WO
2016118107 Jul 2016 WO
2016122679 Aug 2016 WO
2016130509 Aug 2016 WO
2016135434 Sep 2016 WO
2016156776 Oct 2016 WO
2016181108 Nov 2016 WO
WO-2017060665 Apr 2017 WO
2017134412 Aug 2017 WO
WO-2017162999 Sep 2017 WO
2017178781 Oct 2017 WO
2017180403 Oct 2017 WO
2017182771 Oct 2017 WO
2017203200 Nov 2017 WO
2017203201 Nov 2017 WO
2017207987 Dec 2017 WO
2018102834 Jun 2018 WO
2018096359 Jul 2018 WO
2018129398 Jul 2018 WO
2017162999 Aug 2018 WO
2018150163 Aug 2018 WO
2018102834 Nov 2018 WO
2019077307 Apr 2019 WO
2019122806 Jun 2019 WO
2019136476 Jul 2019 WO
2019171038 Sep 2019 WO
2020212682 Oct 2020 WO
2020264031 Dec 2020 WO
2021032982 Feb 2021 WO
2021032983 Feb 2021 WO
2021044121 Mar 2021 WO
Non-Patent Literature Citations (366)
Entry
Extended European Search Report for EP Application No. 13192383.1, dated Apr. 2, 2014, 7 pgs.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pgs.
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, mailed Jan. 28, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/039434, Report issued Dec. 28, 2021, Mailed on Jan. 6, 2022, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, issued Nov. 1, 2011, mailed Nov. 10, 2011, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, issued Apr. 11, 2012, mailed Apr. 19, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report issued May 1, 2012, mailed May 10, 2012, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2013/000273, issued Dec. 23, 2014, mailed Dec. 31, 2014, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, issued Mar. 21, 2017, mailed Mar. 30, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, issued Aug. 29, 2017, mailed Sep. 8, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000065, issued Oct. 3, 2017, mailed Oct. 12, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012768, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, issued Jun. 14, 2011, mailed Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, issued Sep. 18, 2012, mailed Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, issued Oct. 8, 2013, mailed Oct. 17, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, issued Feb. 25, 2014, mailed Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, issued Jul. 8, 2014, mailed Jul. 17, 2014, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, issued Feb. 2, 2016, mailed Feb. 11, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, issued Feb. 14, 2017, mailed Feb. 23, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000228, issued Feb. 14, 2017, mailed Feb. 23, 2017, 11 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000274, Issued Mar. 28, 2017, mailed Apr. 6, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, issued Jul. 25, 2017, mailed Aug. 3, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report issued Sep. 25, 2018, Mailed Oct. 4, 2018, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, issued Oct. 16, 2018, Mailed Oct. 25, 2018, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, issued Jul. 21, 2015, mailed Jul. 30, 2015, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2016/017091, issued Aug. 15, 2017, mailed Aug. 24, 2017, 5 pgs.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012768, Search completed Feb. 26, 2019, Mailed Mar. 8, 2019, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, mailed Nov. 8, 2010, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, mailed Apr. 6, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2015/000228, Search completed May 4, 2011, Mailed Jul. 15, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, mailed Jul. 13, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000065, completed Jul. 14, 2016, mailed Jul. 27, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, Search completed Jul. 19, 2017, Mailed Jul. 26, 2017, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, mailed Aug. 14, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, mailed May 8, 2014, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, mailed Mar. 28, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, Mailed Sep. 19, 2018, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/037410, Search completed Aug. 16, 2018, Mailed Aug. 30, 2018, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/039434, Search completed Sep. 3, 2020, Mailed Oct. 14, 2020, 15 pgs.
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, mailed May 18, 2010, 7 pgs.
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, mailed Feb. 27, 2017, 21 pgs.
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office on Apr. 20, 2016, 7 pgs.
International Search Report for International Application PCT/GB2014/000295, completed Nov. 18, 2014, mailed Jan. 5, 2015, 4 pgs.
International Search Report for International Application PCT/GB2017/000040, mailed Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs.
International Search Report for PCT/GB2010/001982, completed by the European Patent Office on Feb. 24, 2011, 4 pgs.
International Search Report for PCT/GB2011/000349, completed by the European Patent Office on Aug. 17, 2011, 4 pgs.
International Search Report for PCT/GB2012/000331, completed by the European Patent Office on Aug. 29, 2012, 4 pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office on Dec. 10, 2012, 4 pgs.
International Search Report for PCT/GB2013/000005, completed by the European Patent Office on Jul. 16, 2013, 3 pgs.
International Search Report for PCT/GB2013/000273, completed by the European Patent Office on Aug. 30, 2013, 4 pgs.
International Search Report for PCT/GB2015/000203, completed by the European Patent Office on Oct. 9, 2015, 4 pgs.
International Search Report for PCT/GB2015/000225, completed by the European Patent Office on Nov. 10, 2015, mailed Dec. 2, 2016, 5 pgs.
International Search Report for PCT/GB2015/000274, completed by the European Patent Office on Jan. 7, 2016, 4 pgs.
International Search Report for PCT/GB2016/000014, completed by the European Patent Office on Jun. 27, 2016, 4 pgs.
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, mailed Mar. 8, 2011, 6 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, mailed Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, mailed Sep. 6, 2012, 7 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, mailed Dec. 17, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, mailed Jul. 24, 2013, 11 pgs.
Written Opinion for International Application No. PCT/GB2013/000273, completed Aug. 30, 2013, mailed Sep. 9, 2013, 7 pgs.
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, mailed Jan. 5, 2015, 3 pgs.
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, mailed Nov. 16, 2015, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, mailed Feb. 4, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, mailed Jan. 19, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, mailed Jul. 7, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016, Mailed Aug. 22, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, mailed Jul. 18, 2017, 6 pgs.
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs.
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs.
“Application Note AN16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs.
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs.
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg.
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs.
“BragGrate—Deflector: Transmitting vol. Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com, 1pg.
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs.
“Desmodur N 3900”, Bayer MaterialScience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs.
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs.
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261.
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs.
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs.
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs.
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“LED325W UVTOP UV LED with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs.
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs.
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs.
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs.
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs.
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 20130221, www.philipslumileds.com, 2013, 33 pgs.
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs.
“Molecular Imprints Imprio 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-Imprint.asp, Dec. 28, 2015, 2 pgs.
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2.
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs.
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs.
“Plastic has replaced glass in photochromic lens”, www.plastemart.com, 2003, 1 pg.
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs.
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs.
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs.
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniqueICs, Jul. 15, 2004, 11 pgs.
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs.
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs.
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs.
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs.
“USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, Press Release, SBG Labs DigiLens, Apr. 2014, 2 pgs.
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 28, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs.
“X-Cubes—Revisited for LCOS”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs.
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs.
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc. of SPIE, 2009, vol. 7176 717606-1, 12 pgs., doi:10.1117/12.808855.
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs.
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55. No. 2, pp. 1646-1654.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103, first published Dec. 22, 2008.
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing- Field-Induced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, May 18, 2009, vol. 17, No. 8, pp. 659-664, DOI: 10.1889/JSID17.8.659.
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108.
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350, DOI: 10.1080/02678290310001605910.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631, doi: 10.1039/B922303G.
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs.
Bleha et al., “D-ILA Technology for High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, 11 pgs., doi: 10.1117/12.497532.
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707.
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs.
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11, DOI: 10.1063/1.1383566.
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1735, DOI: 10.1080/00222348.2013.808926.
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the Society for Information Display, vol. 17, No. 12, Dec. 2009, pp. 1043-1049, DOI: 10.1189/JSID17.12.1043.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII, Iam-Choon Khoo, Editor, Dec. 2003, pp. 123-129.
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135.
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annual Review of Material Science, 2000, vol. 30, pp. 83-115.
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Journal of Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833.
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662, DOI: 10.1002/adma.200900298.
Butler et al., “Diffractive Properties of Highly Birefringent vol. Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189.
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Materials Horizons, 2015, vol. 2, pp. 37-53, DOI: 10.1038/c4mh00140k.
Cameron, “Optical Waveguide Technology & Its Application In Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11, doi: 10.1117/12.923660.
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc. of SPIE, 2009, vol. 7326, 11 pgs., doi: 10.1117/12.818581.
Caputo et al., “POLICRYPS Composite Materials: Features and Applications”, Advances in Composite Materials—Analysis of Natural and Man- Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118.
Caputo et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51, DOI: 10.1109/JDT.2005.864156.
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs.
Chen et al, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558, first published Apr. 5, 2011.
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 15 pgs., DOI:10.1364/OE.22.020705.
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408, first published Apr. 19, 2012.
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?journalCode=tlcy20, 15 pgs.
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753.
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090.
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 DIGEST, May 2000, pp. 770-773.
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' N Revista Mexicana De Fi'sica, Feb. 2011, vol. 57, No. 1, pp. 6-16.
Dabrowski, “High Birefringence Liquid Crystals”, Crystals, Sep. 3, 2013, vol. 3, No. 3, pp. 443-482, doi:10.3390/cryst3030443.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, No. 2, pp. 289-294.
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877.
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22.
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418.
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs.
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489.
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6.
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, pp. 2499-2505.
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, pp. 177/[529]-185/[537], DOI: 10.1080/15421400802432584.
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212, DOI: 10.1063/1.1807027.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579.
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103.
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, pp. 348-351.
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-777.
Forman et al., “Materials development for PhotolNhibited SuperResolution (PINSR) lithography”, Proc. of SPIE, 2012, vol. 8249, pp. 824904-1-824904-9, doi: 10.1117/12.908512.
Forman et al., “Radical diffusion limits to photoinhibited superresolution lithography”, Phys. Chem. Chem. Phys., May 31, 2013, vol. 15, pp. 14862-14867, DOI: 10.1039/c3cp51512.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Fujii et al., “Nanoparticle-polymer-composite vol. gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs.
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514.
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high- efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs.
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, pp. 121-122.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335.
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012, Article ID 803439, Academic Editor: Sergi Gallego, 16 pgs., http://dx.doi.org/10.1155/2012/803439, May 4, 2012.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs.
Harbers et al., “I-15.3: Led Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs.
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. Vol. 10, 2003, pp. 1585-1588.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, 8 pgs., doi: 10.1117/12.805378.
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 230-233.
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., received May 21, 1999, 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, vol. 14, No. 2, Feb. 1997, pp. 405-409.
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs.
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, vol. 16, 1997, pp. 1-25.
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optical Materials Express, vol. 1, No. 2, Jun. 1, 2011, pp. 207-222.
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684.
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160.
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, pp. 842-848, doi: 10.1117/12.580978.
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942.
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, pp. 072601-1-072601-4.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs.
Holmes et al., “Controlling the Anisotropy of Holographic Polymer-Dispersed Liquid-Crystal Gratings”, Physical Review E, Jun. 11, 2002, vol. 65, pp. 066603-1-066603-4.
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc., 2003 Conference, 6 pgs.
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs.
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899.
Huang et al., “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020.
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430.
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, vol. 68, No. 7, IUPAC, pp. 1367-1371.
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs.
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606.
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010, 124 pgs.
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961.
Jurbergs et al., “New recording materials for the holographic industry”, Proc. of SPIE, 2009 vol. 7233, pp. 72330K-1-72330K-10, doi: 10.1117/12.809579.
Kahn et al., “Private Line Report on Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, Oct. 1997, vol. 36, No. 10, pp. 6388-6392.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, pp. 74070D-1-74070D-11, CCC code: 0277-786X/09, doi: 10.1117/12.826531.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE, 1998, vol. 3297, pp. 52-57.
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs.
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 DIGEST, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 DIGEST, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335.
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295.
Kim et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853.
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., vol. 368, 2001, pp. 3855-3864.
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs.
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, Nov. 1969, pp. 2909-2947.
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs.
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session: Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482.
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs.
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs.
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475.
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862.
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, 2007, pp. 2067-2074.
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs.
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242.
Lin et al., “lonic Liquids in Photopolymerizable Holographic Materials”, in book: Holograms—Recording Materials and Applications, Nov. 9, 2011, 21 pgs.
Liu et al., “Holographic Polymer Dispersed Liquid Crystals” Materials, Formation and Applications, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs.
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, vol. 95, No. 3, Feb. 1, 2004, pp. 810-815.
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs.
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs.
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280.
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002, vol. 53, No. 3-4, pp. 86-90.
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs.
Matic, “Blazed phase liquid crystal beam steering”, Proc. of the SPIE, 1994, vol. 2120, pp. 194-205.
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169.
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096.
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 661-719.
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs.
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007.
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742.
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989.
Natarajan et al., “Electro Optical Switching Characteristics of vol. Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668.
Natarajan et al., “Electro-Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98.
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420.
Naydenova et al., “Low-scattering vol. Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs.
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886.
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs.
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs.
Nordin et al., “Diffraction Properties of Stratified Volume Holographic Optical Elements”, Journal of the Optical Society of America A. Dec. 1992, vol. 9, No. 12, pp. 2206-2217.
Oh et al., “Achromatic Diffraction from Polarization Gratings with High Efficiency”, Optic Letters, vol. 33, No. 20, Oct. 15, 2008, pp. 2287-2289.
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890.
Ondax, Inc., “Volume Holographic Gratings (VHG)”, 2005, 7 pgs.
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs.
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105.
Osredkar et al., “Planarization methods in IC fabrication technologies” Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs.
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762.
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252.
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45.
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs.
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101- 6.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, 117 pgs., DOI:http://dx.doi.org/10.6100/IR634422.
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs.
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489.
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs.
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. vol. 4294, Jan. 24, 2001, pp. 75-83.
Saleh et al., “Fourier Optics: 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143.
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs.
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs.
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791.
Shechter et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421.
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852.
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs.
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs.
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149.
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97.
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs.
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat. 1708, 8 pgs.
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, pp. 6289DH-1-6289DH-9, doi: 10.1117/12.679416.
Sun et al., “Transflective Multiplexing of Holographic Polymer Dispersed Liquid Crystal Using Si Additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials.
Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA, 1996, SPIE, vol. 2689, pp. 158-169.
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391.
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs.
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, pp. 18623-18629.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9.
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs.
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 3 pgs., doi: 10.1117/2.1200612.0475.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Tzeng et al., “Axially symmetric polarization converters based on photo- aligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775.
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287.
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, Nov. 10, 2001, vol. 40, Issue 32, pp. 5840-5851.
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149.
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs.
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80.
Vecchi, “Studi ESR DI Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs.
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 107 pgs.
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456.
Webster, “Webster's Third New International Dictionary 433”, 1986, 3 pgs.
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg.
Wicht et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs.
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969.
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, pp. 12874-12883.
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc. of SPIE, 2009, vol. 7327, 10 pgs.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, Jan. 2007, 17 pgs.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, pp. 021902-1-021902-3.
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs.
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, vol. 104, Oct. 13, 2008, pp. 073115-1-073115-4.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater., 2010, vol. 22, pp. 622-626.
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063.
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507.
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73.
Zlȩbacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs.
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526, doi:10.1016/j.sna.2006.12.006.
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs.
Related Publications (1)
Number Date Country
20240302656 A1 Sep 2024 US
Provisional Applications (3)
Number Date Country
62614947 Jan 2018 US
62614949 Jan 2018 US
62615000 Jan 2018 US
Continuations (2)
Number Date Country
Parent 17167903 Feb 2021 US
Child 18481943 US
Parent 16242979 Jan 2019 US
Child 17167903 US