a is an exemplary equivalent transmission line circuit for the device of
a is graph of the insertion loss and
The embodiments of the present invention are directed towards tunable waveguide-based iris filters and phase shifters using deformable membranes. The devices in accordance with the embodiments of the present invention can be applied in W-band as well as other spectrums. Such filters can function as continuous microwave tunable filter that can operate at 95 GHz. As used herein, the W-band of the microwave part of the electromagnetic spectrum ranges from 75 to 111 GHz. It sits above the US IEEE designated V band (50-75 GHz) in frequency. It overlaps with the NATO designated M band (60-100 GHz). The W band is used for millimeter wave radar and other scientific systems. For example, the atmospheric window at 94 GHz is used for imaging mm-wave radar applications in astronomy, defense and security applications. The inventive tunable filters and phase shifters can be manufactured using plastic hot-embossing technologies, such as those used by the inventors herein (e.g., see F. Sammoura et al., The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1067-1070, Seoul, Korea, Jun. 5-9, 2005). Some embodiments of the present invention provide plastic, W-band MEMS tunable filters and phase shifters that have built-in deformable membranes. Prototypical filters were fabricated using a MEMS-based process including a plastic micro embossing process and a gold electroplating process. In one prototype, two movable membranes of 1.6 mm in diameter were designed as parts of a two-cavity iris filter to actively change the cavity geometry for frequency turning. Prototype filters were fabricated and measured having a bandwidth of 4.05 GHz centered at 94.79 GHz with a minimum insertion loss of 2.37 dB and return loss better than 15 dB. In one implementation, a total of 2.59 GHz center frequency shift was achieved when membranes deflected from −50 μm to +150 μm.
The tunable filters in accordance with the embodiments of the present invention can also function as phase shifters. In one specific implementation, a total phase shift of 110° at 95 GHz was achieved upon deflecting the membrane from −50 μm to 150 μm with an addition of 1.11 dB of insertion loss.
a is an exemplary transmission line model for the tunable filter of
where β=[k02−(π/a)2]1/2, γ−[(3π/a)2−k02]1/2, and k0 is the wave number of the material filling the waveguide.
K=Z
0 tan(φ/2) (2)
φ=tan−1(2X/Z0) (3)
where Z0 is the line impedance.
The insertion loss method with binomial coefficients can be used to design the flat, passband response for a 2-pole filter (e.g., see David M. Pozar, Microwave Engineering, (John Wiley & sons, 1997)):
P
LR=1+(ω/ωc)2N (4)
where N is the order of the filter (2 in this case) and ωc is the cutoff frequency for the transformed low pass model.
For the exemplary device of
where Δ=2(λ1−λ2)/(λ1+λ1), λ1 and λ2 are the lower and upper cutoff wavelengths in waveguide respectively, and g1=g2=√{square root over (2)} for the maximally flat 2-pole filter design. After specifying the lower and upper cut-off frequencies, Eq. (5) and (6) are used to calculate the impedance inverter values. Afterwards, Eq. (2) and (3) can be used to calculate the negative electrical length of the inverter and the inductive shunt value, respectively. The iris gaps are derived from Eq. (1).
The effect of iris thickness on the magnitudes of center frequency and bandwidth was analyzed using the High Frequency Structure Simulator (HFSS). HFSS is a finite-element electromagnetic simulator for the design and optimization of arbitrarily-shaped, passive three-dimensional structures. HFSS is commercially available from the Ansoft corporation. Based on the results of the simulations, as the iris thickness increases, the bandwidth decreases and the center frequency increases while the penalty is the increase of return loss. In one simulation, the iris thickness was set to be 300 μm as that represented the smallest dimension that could be realized in the prototype example using precision machining to make the mold insert. The width and the height of the waveguide were 2.54 mm and 1.27 mm respectively. To realize the filter, the resonant length R and the iris gaps d1 and d2 were calculated as 1.95 mm, 1.25 mm, and 0.874 mm, respectively. Based on these values, the simulated center frequency of the prototype filter was 94.38 GHz and its bandwidth was 4.2 GHz with a minimum insertion loss of 0 dB and a return loss better than 15 dB over the entire band. The various parameters of the deformable membrane were also simulated using HFSS. It is preferable to have the membrane diameter be as big as possible to have large frequency tuning effects. As a result, the membrane diameter was chosen to be 1.6 mm to fit into the resonant cavity. Simulation results in
One fabrication process in accordance with the embodiments of the present invention is shown in
As is shown in
In the manufacture of the deformable iris filter cavity substrate described above, any plastic material may be used. Plastic materials that may be used include, but are not limited to Topas©COC, PVC, Polycarbonate, Polypropylene, and so on. In connection with the choice of plastic material, a plastic material is preferred that has a similar or a same thermal expansion coefficient as the top (e.g. membrane supporting) portion. The deformable membrane can also be made from any other suitable and soft material that is easily deflectable. Such membrane materials include, but are not limited to polyimide (e.g., Kapton tape as used in the examples), nitride, acrylic, rubber, and so on.
For the prototypical tunable filter in accordance with the embodiments of the present invention, the tunable filter scattering parameters s11 (return loss) and s21 (insertion loss) were measured from 75 GHz to 110 GHz using an Anritsu ME7808B network analyzer. The membrane deflection was first characterized under a probe station. When vacuum was applied, the deflection of the membrane was about +150 μm. When a pressure of 0.25 atm was applied, membrane deflection of −50 μm was expected. The deflection data were gathered under the microscope using the focusing/defocusing method. The experimental insertion loss data in
The tunable filter in accordance with the embodiments of the present invention can also be used as a phase shifter.
As a phase shifter the tunable iris filter cavity in accordance with the embodiments of the present invention has utility as a part of an electronically scanned radar array, for example such as those used in vehicles to detect objects that are in the vicinity of the vehicle. Contrary to dish or slotted array antennas, which use physical shape and direction to form and steer the beam, phased array antennas utilize the interference between multiple radiating elements to achieve beam forming and beam steering. By electronically adjusting the signal each element radiates, the combined radiation pattern can be scanned and shaped at high speed. Phase shifters are critical elements for electronically scanned phased array antennas, and typically represent a significant amount of the cost of producing an antenna array. Phase shifters are the devices in an electronically scanned array that allow the antenna beam to be steered in the desired direction without physically re-positioning the antenna. There is significant demand in the wireless and microwave industries for affordable phase shifters that can reduce the cost of an electronically scanned antenna system and allow them to be deployed more widely. Additionally, phase shifters provide an elegant way of linearizing amplifiers for such applications as cellular base stations. The phase shifters when manufactured in accordance with the embodiments of the present invention can provide for significant cost savings, helping to keep down the costs for the entire electronically scanned array.
All publications and descriptions mentioned above are herein incorporated by reference in their entirety for all purposes. None is admitted to be prior art.
The above description is illustrative and is not restrictive, and as it will become apparent to those skilled in the art upon review of the disclosure, the present invention may be embodied in other specific forms without departing from the essential characteristics thereof. These other embodiments are intended to be included within the scope of the present invention. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the following and pending claims along with their full scope or equivalents.
A part of this invention was made with Government support under an NSF Grant No. DMI-6428884. The Government has certain rights to this invention.