Waveguide combiner system and method with less susceptibility to glare

Abstract
A system and method for a head up display (HUD) can mitigate glare. The head up display can include a waveguide combiner including an input grating and an output grating and a glare mitigator disposed to prevent glare through the output grating from reaching an eye box. The glare mitigator can be a shade, a diffuser, a dimming element, or other device for mitigating glare. The glare mitigator can be an active or passive glare mitigator.
Description
BACKGROUND

The present specification relates to displays. More particularly, the present specification relates to head up displays (HUDs).


Conventional HUDs are generally large, expensive and difficult to fit into small airplanes. Often, conventional HUDs rely on large lenses to form adequate field of view and viewing eye box. Compact HUDs are needed for tactical jets and other small aircraft where space is constrained in the cockpit. Substrate guided or waveguide HUDs have been proposed which use waveguide combiners to preserve eye box size while reducing lens size. U.S. Pat. No. 4,309,070 issued to St. Leger Searle and U.S. Pat. No. 4,711,512 issued to Upatnieks disclose substrate waveguide HUDS where the pupil of a collimating optical system is effectively expanded by the waveguide structure.


Modern cockpits are incorporating large area head down displays (LADs or LAHDDs). The LADs can provide panoramic views and large areas to the display information below the glare shield of the aircraft. However, such LADs do not provide HUD capabilities and require space in the cockpit that is required by conventional HUDs. HUDs which use waveguide combiners have a smaller size but can be susceptible to glare or sunspot imaging. The susceptibility is increased in glass cockpit environments, such as, those associated with tactical aircraft.


Accordingly, there is also a need for a HUD that is less susceptible to glare and/or sunspot imaging. There is also a need for a low profile HUD which is compatible with LADs and has acceptable display performance in environments subject to sunlight or other light. There is a need for a HUD that can fit within the cockpit of a tactical aircraft or other small aircraft when an LAD is provided in the aircraft and has glare mitigation. Further, there is a need for a compact HUD for use with an LAD. Further still, there is a need for a HUD having a waveguide combiner that is less susceptible to solar glare and sunspot imaging.


SUMMARY

An exemplary embodiment relates to a head up display (HUD) for providing light from an image source in a cockpit environment. The head up display includes a waveguide disposed at an angle with respect to a top surface of a glare shield having a first coupler at a first end and a second coupler at a second end. The waveguide is positioned as a combiner and allows viewing of an outside scene and information from the image source. The waveguide includes a diffuser disposed between a surface of the waveguide and a windshield of the cockpit or between the surface of the waveguide and a ceiling of the cockpit.


Another exemplary embodiment relates to a method of providing information to a pilot. The method includes providing light associated with the information from within a glare shield to an input coupler of a substrate waveguide, and providing the light associated with the information at the input coupler of the substrate waveguide into the substrate waveguide by diffraction and diffracting the light associated with the information out of the substrate waveguide at an output coupler of the waveguide for reception by the pilot above the glare shield. The method also includes diffusing or blocking sunlight before the sunlight strikes on a surface of the substrate waveguide at a location associated with the output coupler.


Another embodiment relates to a head up display including a waveguide combiner and a glare mitigator. The waveguide combiner includes an input grating and an output grating. The glare mitigator is disposed to prevent glare through the output grating from reaching an eye box.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are hereafter described with reference to the accompanying drawings, wherein like numerals denote like elements; and:



FIG. 1 is a general schematic block diagram of a head up display (HUD) system including a substrate waveguide with an input and output coupler and a glare mitigator in accordance with an exemplary embodiment;



FIG. 2 is a general schematic block diagram of a head up display system including a substrate waveguide with an input and output coupler and an active glare mitigator in accordance with another exemplary embodiment;



FIG. 3 is a side view schematic drawing of an embodiment of the HUD systems illustrated in FIGS. 1 and 2 in accordance with yet another exemplary embodiment;



FIG. 4 is a side view schematic drawing of another embodiment of the HUD systems illustrated in FIGS. 1 and 2 in accordance with still another exemplary embodiment;



FIG. 5 is side view schematic drawing of yet another embodiment of the HUD systems illustrated in FIGS. 1 and 2 in accordance with another exemplary embodiment;



FIG. 6 is a side view schematic drawing of a HUD system exposed to sunlight without glare mitigation; and



FIG. 7 is a side view schematic drawing of an exemplary embodiment of the HUD systems illustrated in FIGS. 1 and 2 exposed to sunlight with glare mitigation.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before describing in detail the particular improved system and method, it should be observed that the invention includes, but is not limited to, a novel structural combination of optical components and not in the particular detailed configurations thereof. Accordingly, the structure, methods, functions, control and arrangement of components have been illustrated in the drawings by readily understandable block representations and schematic drawings, in order not to obscure the disclosure with structural details which will be readily apparent to those skilled in the art, having the benefit of the description herein. Further, the invention is not limited to the particular embodiments depicted in the exemplary diagrams, but should be construed in accordance with the language in the claims.


With reference to FIG. 1, a head up display (HUD) system 10 can be utilized in various applications, including but not limited to aviation, medical, naval, targeting, ground based, military, etc. HUD system 10 is preferably configured for use in smaller cockpit environments and yet provides an appropriate field of view and eye box for avionic applications. In one embodiment, HUD system 10 is configured for use in a tactical cockpit and is compatible with large area head down displays (LADs).


HUD system 10 includes an image source 20 and a substrate waveguide combiner 40 in one embodiment. Image source 20 can be any device for providing an image including but not limited to a CRT display, an LED display, an active matrix liquid crystal display (LCD), a light emitting diode, laser illuminator, etc. In a preferred embodiment, image source 20 is a micro LCD assembly or liquid crystal on silicon (LCOS) display and can provide linearly polarized light. Image source 20 can include a laser or LED backlight.


In addition, system 10 can include collimating optics 30 disposed between substrate waveguide combiner 40 and image source 20. Collimating optics 30 can be a single optical component, such as a lens, or include multiple optical components. In one embodiment, collimating optics 30 are configured as a catadioptric collimator. Collimating optics 30 can be any optical component or configuration of optical components that provide light (preferably collimated light) from image source 20 to substrate waveguide combiner 40. Collimating optics 30 can be integrated with or spaced apart from image source 20 and/or substrate waveguide combiner 40.


In operation, system 10 provides images from image source 20 to a pilot or other operator so that the pilot can simultaneously view the images and a real world scene. The images can include graphic and/or text information (e.g., flight path vector, target icons, etc.) related to avionic information in one embodiment. In addition, the images can include synthetic or enhanced vision images. In one embodiment, collimated light representing the image from image source 20 is provided on substrate waveguide combiner 40 so that the pilot can view the image conformally on the real world scene through substrate waveguide combiner 40. In one embodiment, waveguide combiner 40 is preferably transparent for viewing the real world scene through main surfaces or sides 84 and 88. In one embodiment, waveguide combiner 40 can be bent as discussed below with reference to FIG. 5.


In one preferred embodiment, HUD system 10 is configured to provide uniform luminance and expand the pupil of system 10 in one or more axes (e.g., along a vertical axis). Waveguide combiner 40 can effect single axis pupil expansion using an input coupler 42 at an input 72 and an output coupler 44 at an output 74 that is configured to provide uniform luminance. The single axis expansion can be on the order of 2 to 7 times (e.g., approximately 4 times in one preferred embodiment). Other orders of pupil expansion are possible depending upon performance criteria, design parameters, and optical components utilized without departing from the scope of the invention.


Couplers 42 and 44 can be gradient coupling gratings that provide excellent image quality and acceptable brightness in a preferred embodiment. Couplers 42 and 44 are implemented as any type of diffractive element (e.g., dichromated gratings, holographic or blazed surface relief gratings) in one embodiment. Couplers 42 and 44 can be implemented according to a number of techniques including but not limited to mechanical reproduction, holographic formation, embossing, casting (e.g., into a polymer resin), or lithography.


Substrate waveguide combiner 40 can be a single glass plate or can be made from two or more fixed glass plates. Substrate waveguide combiner 40 can have a variety of shapes including generally rectangular, oval, circular, tear drop-shaped, hexagonal, rectangular with rounded corners, square-shaped, etc.


In operation, substrate waveguide combiner 40 advantageously receives light from image source 20 provided through collimating optics 30 at an input 72 and provides light to a user at its output 74. Image source 20 provides information using a single color of light (e.g., green light approximately between 500 and 550 nanometers (nm)). Light provided to substrate waveguide or waveguide combiner 40 is preferably linearly S-polarized or P-polarized and collimated. Alternatively, other polarization, multiple colors, or other colors at different wavelengths can be utilized without departing from the scope of the invention. Optics 30 can have an output disposed directly adjacent or attached to coupler 42.


Substrate waveguide combiner 40 preferably performs two operations in one preferred embodiment. First, substrate waveguide 40 is disposed to provide a medium for transporting light by total internal reflection from input 72 to output 74. Light is reflected multiple times off of opposing main sides 84 and 88 of waveguide combiner 40 as it travels from input 72 to output 74. Second, substrate waveguide combiner 40 operates as a combiner allowing the user to view the light from image source 20 at output 74 and light from the real world scene through sides 84 and 88.


Light from collimating optics 30 first strikes coupler 42 at input 72 on side 84 of substrate waveguide combiner 40. Coupler 42 diffracts light toward the length of combiner 40 so that it travels by total internal reflection to output 74 on side 84. At output 74, coupler 44 diffracts the light toward the user and out of the substrate waveguide combiner 40. Coupler 42 at input 72 preferably has a greater efficiency than coupler 44 at output 74 in one embodiment.


Couplers 42 and 44 are disposed on respective opposing sides 84 and 88 of substrate waveguide 40 in one embodiment. Couplers 42 and 44 can also be formed on the same side 84 of or within waveguide combiner 40 in one alternative embodiment. Couplers 42 and 44 can be disposed respectively on sides 88 and 84 of waveguide combiner 40, within waveguide combiner 40 or both on the same side 88 of waveguide combiner 40 in other alternative embodiments.


Couplers 42 and 44 are preferably disposed in respective areas that are rectangular in shape and have the same width as each other in one embodiment. Alternatively, couplers 42 and 44 can have different widths. Coupler 44 has a greater height than coupler 42 in one embodiment.


According to one embodiment, system 10 advantageously includes a glare mitigator 92. Glare mitigator 92 can be a device for blocking, diffusing or dimming light from the environment and preventing such light from affecting the view of the pilot through waveguide combiner 40. For example, glare mitigator 92 can reduce susceptibility to overhead sunlight conditions which can cause solar glare and sunspot imaging via diffraction through output grating 74. In one embodiment, glare mitigator 92 is a passive glare mitigation element or layer. Alternatively, mitigator 92 can be an active mitigation element.


In one embodiment glare mitigator 92 is a directional diffuser that diffuses the sunlight so that diffracted light is significantly less bright or non-existent to the pilot's eyes. The sunlight rays are diffused and scattered so that they encounter output diffraction grating 74 at incident angles that either (1) diffract away from the eye motion box or (2) diffract into the eye motion box with significantly lower intensity. Alternatively, a shading mechanism or a dimming mechanism can provide glare mitigation. System parameters and design criteria can affect the placement of mitigator 92.


With reference to FIG. 2, HUD system 10 can be utilized with an active glare mitigator 94. Active glare mitigator 94 includes a control circuit 96, an ambient sensor 98 and an active element 99. Mitigator 94 can sense the sunlight or other interfering light within the cockpit via ambient sensor 98 and respond to levels of the light to shade, dim, block or diffuse the sunlight via active element 99. Active element 99 can be a diffusing layer that can actively respond to a signal from control circuit 96 to provide more diffusion when ambient sunlight can provide conditions associated with solar glare and sunspot imaging in one embodiment. Alternatively, active element 99 can be a selectable dimmer or a selectable shading device. In one embodiment, attenuation of sunlight can allow the backlight to be dimmed. Conservation of backlight power and a contrast ratio of 1.2 to 1 can be achieved with lower luminance provided by the real world in one embodiment.


Ambient sensor 98 can utilize an existing ambient sensor for system 10. A second prismatic path can be used to provide light to the existing ambient sensor. The existing sensor or sensor 93 can characterize sunlight exposure conditions in the environment of HUD system 10. Active element 99 can utilize various controlled glare mitigation elements, (e.g., electronic dimmers, optical or mechanical gratings, a diffusive layer electronically controlled shades, etc.) to prevent solar exposure at critical angles.


Active glare mitigator 94 and glare mitigator 92 can use one or more of a shading, dimming, blocking or diffusing operation. For example, combinations of shading, dimming, blocking and diffusion can be utilized. System parameters and application criteria including angle of waveguide 400, characteristics of diffraction of output grating 74, etc., can affect the placement and characteristics of active element 99 and mitigator 92.


Advantageously, mitigators 92 and/or 94 diffuse the light before it strikes or enters grating 74 in the total field of view (TFOV) in one embodiment. For example, system 10 can advantageously use a diffuser that is diffused light in one direction of incidence and is transparent in another range incident angles (e.g., the TFOV as seen by the pilot.) Accordingly, the diffuser diffuses the light so that an unobstructed path from the sun to waveguide combiner 40 does not allow the sunlight to diffract towards the pilot. Advantageously, HUD system 10 in FIGS. 1 and 2 provides the advantages of decreased sunspot brightness and reduced glare while being transparent in the total field of view as seen from the pilot.


With reference to FIG. 3, a HUD system 200 that is an embodiment of HUD system 10 is comprised of a projector 202 and a waveguide combiner 400 similar to waveguide combiner 40. Projector 202 is provided beneath a top surface glare shield 210 in one embodiment. Substrate waveguide combiner 400 can be disposed through a glare shield 210 such that the input end of substrate waveguide combiner 400 is beneath glare shield.


Projector 202 can include image source 20 and collimating optics 30. Image source 20 can include a backlight 212 which can be an LED backlight in one embodiment. Image source 20 can also include display 214 which can be an active matrix LCD, although other types of image sources 20 are available according to alternative embodiments.


In one embodiment, projector 202 is an LCOS based system including a beam splitter 252, an LED or laser illuminator 250, and an LCOS display in the position of display 214. An image shaping lens 254 is provided between illuminator 250 and beam splitter 252. Beam splitter 252 reflects polarized (e.g., s-polarized) light and provides the light to display 214 which selectively rotates the polarization to p-polarized light in one embodiment. The p-polarized light is provided through beam splitter 252 and collimating optics 30.


Collimating optics 30 includes a lens 215, a mirror 216 and a lens 218 in one embodiment. Lens 215, mirror 216 and lens 218 are configured to provide collimated light to coupler 42. Optics 30 can be embodied in various forms including more or fewer components.


Light from collimating optics 30 advantageously enters waveguide 400 beneath glare shield 210 at input coupler 42. Light is provided through waveguide combiner 400 in a manner similar to waveguide combiner 40 discussed above to output coupler 44 for viewing by the pilot. Preferably, output coupler 44 is entirely disposed above a top surface of glare shield 210. Projector 202 and combiner 400 partially beneath the surface of glare shield 210 provides a compact space saving design that does not interfere with space for LAD. Although specific components are discussed for projector 202, various optical components can be utilized. The collimating optics 30 shown in FIG. 3 are not shown in a limiting fashion. Other collimating systems can be utilized.


HUD system 200 can utilize a diffuser 402 that is disposed substantially parallel to the line of sight of the pilot as seen from the design location such that obscuration is minimized in one embodiment. Diffuser 402 can be at an angle with respect to glare shield 210 according to certain embodiments. Alternatively, diffuser 402 can be a shade rather than a diffuser. The shade can be louvered element. In another embodiment, diffuser 402 can be a transparent layer with an active or passive electrochromic layer. Generally, element 402 can be held by rails attached to combiner 400. The material for element 402 can be a diffusing material or be opaque in one embodiment. Advantageously, the shade or diffuser 402 is relatively thin thereby providing reduced obstruction to the pilot's view. In one embodiment, the diffuser is translucent. Diffuser 402 can be the active element 91 discussed with reference to FIG. 2. In one embodiment, a diffuser 402 is located between combiner 400 and a ceiling or cockpit or between windshield or the cockpit and combiner 400 to provide glare mitigation.


With reference to FIG. 4, HUD system 200 includes a layer 422 provided on waveguide 400. In one embodiment, layer 422 is a diffusive layer. Layer 422 can be made spaced apart from surface 84. In one embodiment, layer 422 can be physically separated and parallel to surface 84. In one embodiment, layer 422 is disposed between combiner 400 and the ceiling or windshield of the cockpit.


With reference to FIG. 5, a HUD system 500 can have a bent waveguide combiner configuration. A projector 600 for HUD 500 system includes a laser or LED illuminator 604, a backlight 612, an image source 614, a beam splitter 632, and collimating lens 630. A combiner system 503 includes a horizontal waveguide 502 and angled waveguide 508.


Waveguide 508 can include a glare mitigation layer 504 or a glare mitigation element 506 similar to element 402 and layer 422 discussed above with reference to FIGS. 3 and 4. In one embodiment, layer 504 or element 506 is located between the ceiling or windshield of the cockpit.


Element 506 can be an opaque shade or be a controlled mechanical or electrical dimming element. Element 506 can be a louvered system that is electronically or manually controlled in one embodiment. Layer 504 can be a diffusing layer in one embodiment.


With reference to FIG. 6, light from sun 702 interacts with HUD system 700 and can strike waveguide 704 and be diffracted into the eye motion box 706 of the pilot. For example, light can be diffracted into the eye motion box 706 of the pilot if it enters waveguide 704 at an angle supported by the grating equation given the grating spatial period, index of output coupler 44 and the wavelength of light.


With reference to FIG. 7, a glare mitigator 750 can be utilized to prevent light from sun 702 from reaching eye motion box 706. In one embodiment, element or mitigator 750 is a layer which diffuses light so that it is not diffracted into waveguide 704 at angles where it will reach eye motion box 706 of the pilot. The angles shown in FIGS. 6 and 7 are exemplary only and are related to the angle of the combiner, characteristics of diffraction of output coupler 44, etc. The angles can be +13 to −30 or +15-25 degrees in certain specific embodiments, Various factors can affect the appropriate placement and characteristics of element 99 and mitigator 92 without departing from the scope of the invention.


It is understood that while the detailed drawings, specific examples, material types, thicknesses, dimensions, and particular values given provide a preferred exemplary embodiment of the present invention, the preferred exemplary embodiment is for the purpose of illustration only. The method and apparatus of the invention is not limited to the precise details and conditions disclosed. For example, although specific types of optical component, dimensions and angles are mentioned, other components, dimensions and angles can be utilized. Various changes may be made to the details disclosed without departing from the spirit of the invention which is defined by the following claims.

Claims
  • 1. A head up display for providing information to a pilot, the head up display comprising: a waveguide combiner configured to: provide light associated with the information, the waveguide combiner comprising an input coupler and an output coupler, the output coupler disposed above and at an angle with respect to a top surface of a glare shield, wherein the light associated with the information at the input coupler of the waveguide combiner is provided into the waveguide combiner by diffraction; anddiffract the light associated with the information out of the waveguide combiner at the output coupler for reception by the pilot above the glare shield, wherein the light travels by total internal reflection between the input coupler and the output coupler; anda glare mitigator configured to dim, diffuse, or block sunlight before the sunlight strikes on a surface of the waveguide combiner at a location associated with the output coupler to reduce sunspot imaging via diffraction through the output coupler,wherein the input coupler being part of a first portion of the waveguide combiner, the first portion of the waveguide combiner being under and substantially parallel with the glare shield.
  • 2. The head up display of claim 1 further comprising: an ambient sensor configured to provide an ambient sensor signal to the glare mitigator, the glare mitigator causing the sunlight to be dimmed, diffused, or blocked in response to the ambient sensor signal.
  • 3. The head up display of claim 1, wherein the glare mitigator blocks at least some of the sunlight using an electrometric layer or mechanical device.
  • 4. The head up display of claim 1, wherein the sunlight is diffused by a layer above the surface of the waveguide combiner.
  • 5. The head up display of claim 1, wherein the sunlight is diffused by a first diffusive layer and a second diffusive layer, the first diffusive layer attached to a top end of the waveguide combiner and extending approximately parallel to an aircraft line of sight, the second diffusive layer attached to the waveguide combiner along a surface of the waveguide combiner opposite the output coupler.
  • 6. The head up display of claim 1, wherein the output coupler includes a diffraction grating and the light from the output coupler is provided to an eye motion box above the glare shield.
  • 7. The head up display of claim 1, wherein the glare mitigator is a diffuser spaced apart from the surface of the waveguide, wherein the glare mitigator is configured to diffuse the ambient light in order to reduce sunspot imaging via diffraction through the output coupler.
  • 8. The head up display of claim 1, wherein the glare mitigator extends substantially parallel to an aircraft line of sight toward a front of a cockpit of an aircraft so as to minimize obscuration of the aircraft line of sight.
  • 9. The head up display of claim 1, wherein the input and output couplers are diffractive elements.
  • 10. The head up display of claim 1, wherein the output coupler is disposed substantially above the top surface of the glare shield.
  • 11. The head up display of claim 1, wherein the waveguide has substantially the same width as an exit pupil of collimating optics.
  • 12. The head up display of claim 1, wherein light from the image source enters and leaves the waveguide on a same side.
  • 13. The head up display of claim 1, wherein light from the image source enters and leaves the waveguide on opposing sides.
  • 14. The head up display of claim 1, further comprising a lens disposed between the waveguide and the image source.
  • 15. The head up display of claim 1, wherein the input coupler has a greater efficiency than the output coupler.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/460,076, filed on Mar. 15, 2017, which is a continuation of U.S. patent application Ser. No. 13/892,057, filed on May 10, 2013, which is incorporated herein by reference in its entirety and for all purposes. The present application is related to: U.S. Pat. No. 9,507,150, filed on May 10, 2013 by Stratton et al., U.S. patent application Ser. No. 13/250,940, filed on Sep. 30, 2011 by Stahl et al., U.S. Pat. No. 8,903,207, filed on Sep. 30, 2011 by Brown et al.; U.S. Pat. No. 9,715,067, filed on Sep. 30, 2011 by Brown et al., U.S. Pat. No. 8,937,772, filed on Sep. 30, 2011 by Burns et al., U.S. Pat. No. 8,749,890, filed on Sep. 30, 2011 by Wood et al., and U.S. Pat. No. 8,634,139, filed on Sep. 30, 2011 by Brown et al., incorporated herein by reference herein in their entireties and assigned to the assignee of the present application.

US Referenced Citations (568)
Number Name Date Kind
2141884 Sonnefeld Dec 1938 A
3620601 Waghorn Nov 1971 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4309070 St. Leger Searle Jan 1982 A
4647967 Kirschner et al. Mar 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4775218 Wood et al. Oct 1988 A
4799765 Ferrer Jan 1989 A
4854688 Hayford et al. Aug 1989 A
4928301 Smoot May 1990 A
4946245 Chamberlin et al. Aug 1990 A
5007711 Wood et al. Apr 1991 A
5035734 Honkanen et al. Jul 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5117285 Nelson et al. May 1992 A
5124821 Antier et al. Jun 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5243413 Gitlin et al. Sep 1993 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5317405 Kuriki et al. May 1994 A
5341230 Smith Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5369511 Amos Nov 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5418584 Larson May 1995 A
5438357 McNelley Aug 1995 A
5455693 Wreede et al. Oct 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5496621 Makita et al. Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5537232 Biles Jul 1996 A
5572248 Allen et al. Nov 1996 A
5579026 Tabata Nov 1996 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5682255 Friesem et al. Oct 1997 A
5694230 Welch Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5751452 Tanaka et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5812608 Valimaki et al. Sep 1998 A
5822127 Chen et al. Oct 1998 A
5841507 Barnes Nov 1998 A
5856842 Tedesco Jan 1999 A
5868951 Schuck et al. Feb 1999 A
5892598 Asakawa et al. Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5903395 Rallison et al. May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5966223 Friesem et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5991087 Rallison Nov 1999 A
5999314 Asakura et al. Dec 1999 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6115152 Popovich et al. Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6156243 Kosuga et al. Dec 2000 A
6169613 Amitai et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6195206 Yona et al. Feb 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6285813 Schultz et al. Sep 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366378 Tervonen et al. Apr 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6524771 Maeda et al. Feb 2003 B2
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6560019 Nakai May 2003 B2
6563648 Gleckman et al. May 2003 B2
6580529 Amitai et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6598987 Parikka Jul 2003 B1
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6624943 Nakai et al. Sep 2003 B2
6646810 Harter et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6674578 Sugiyama et al. Jan 2004 B2
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6805490 Levola Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6853491 Ruhle et al. Feb 2005 B1
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6987908 Bond et al. Jan 2006 B2
7003187 Frick et al. Feb 2006 B2
7018744 Otaki et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7095562 Peng et al. Aug 2006 B1
7101048 Travis Sep 2006 B2
7110184 Yona et al. Sep 2006 B1
7123418 Weber et al. Oct 2006 B2
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184615 Levola Feb 2007 B2
7190849 Katase Mar 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7230767 Walck et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7259906 Islam Aug 2007 B1
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
7299983 Piikivi Nov 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7375870 Schorpp May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7415173 Kassamakov et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7500104 Goland Mar 2009 B2
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 Dejong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7618750 Ueda et al. Nov 2009 B2
7629086 Otaki et al. Dec 2009 B2
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7675684 Weissman et al. Mar 2010 B1
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733572 Brown et al. Jun 2010 B1
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7872804 Moon et al. Jan 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7944428 Travis May 2011 B2
7969644 Tilleman et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7999982 Endo et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8016475 Travis Sep 2011 B2
8022942 Bathiche et al. Sep 2011 B2
RE42992 David Dec 2011 E
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8186874 Sinbar et al. May 2012 B2
8188925 Dejean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8321810 Heintze Nov 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8547638 Levola Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8670029 Mceldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8913324 Schrader Dec 2014 B2
8938141 Magnusson Jan 2015 B2
9341846 Popovich et al. May 2016 B2
9366864 Brown et al. Jun 2016 B1
9523852 Brown et al. Dec 2016 B1
9632226 Waldern et al. Apr 2017 B2
9933684 Brown et al. Apr 2018 B2
20010036012 Nakai et al. Nov 2001 A1
20020012064 Yamaguchi Jan 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020127497 Brown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20030030912 Gleckman et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040047938 Kosuga et al. Mar 2004 A1
20040075830 Miyake et al. Apr 2004 A1
20040089842 Sutherland et al. May 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050269481 David et al. Dec 2005 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080106775 Amitai et al. May 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186604 Amitai Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080278812 Amitai Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080309586 Vitale Dec 2008 A1
20090010135 Ushiro et al. Jan 2009 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100039796 Mukawa Feb 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100214659 Levola Aug 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100315719 Saarikko Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110002143 Saarikko et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110232211 Farahi Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130069850 Mukawa et al. Mar 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20150010265 Popovich et al. Jan 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20160178901 Ishikawa Jun 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160274356 Mason Sep 2016 A1
20160291328 Popovich et al. Oct 2016 A1
20170031160 Popovich et al. Feb 2017 A1
20180052277 Schowengerdt et al. Feb 2018 A1
20180284440 Popovich et al. Oct 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190121027 Popovich et al. Apr 2019 A1
20190212699 Waldern et al. Jul 2019 A1
20200026074 Waldern et al. Jan 2020 A1
Foreign Referenced Citations (48)
Number Date Country
101151562 Mar 2008 CN
101263412 Sep 2008 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101726857 Jun 2010 CN
101881936 Nov 2010 CN
101910900 Dec 2010 CN
102608762 Jul 2012 CN
104520751 Apr 2015 CN
10 2006 003 785 Jul 2007 DE
0 822 441 Feb 1998 EP
2 110 701 Oct 2009 EP
2 196 729 Jun 2010 EP
2 225 592 Sep 2010 EP
2 381 290 Oct 2011 EP
2 733 517 May 2014 EP
2677463 Dec 1992 FR
2 115 178 Sep 1983 GB
2002-529790 Sep 2002 JP
2002-311379 Oct 2002 JP
2004-157245 Jun 2004 JP
2007-011057 Jan 2007 JP
2007-094175 Apr 2007 JP
2009-133999 Jun 2009 JP
2016-030503 Mar 2016 JP
WO-9952002 Oct 1999 WO
WO-0028369 May 2000 WO
WO-03081320 Oct 2003 WO
WO-2006002870 Jan 2006 WO
WO-2007130130 Nov 2007 WO
WO-2007130130 Nov 2007 WO
WO-2009013597 Jan 2009 WO
WO-2009077802 Jun 2009 WO
WO-2010067114 Jun 2010 WO
WO-2010067117 Jun 2010 WO
WO-2010125337 Nov 2010 WO
WO-2010125337 Nov 2010 WO
WO-2011012825 Feb 2011 WO
WO-2011051660 May 2011 WO
WO-2011055109 May 2011 WO
WO-2011107831 Sep 2011 WO
WO-2013027006 Feb 2013 WO
WO-2013033274 Mar 2013 WO
WO-2013163347 Oct 2013 WO
WO-2014091200 Jun 2014 WO
WO-2015044193 Apr 2015 WO
WO-2016044193 Mar 2016 WO
WO-2016178901 Nov 2016 WO
Non-Patent Literature Citations (163)
Entry
Corrected Notice of Allowance for U.S. Appl. No. 14/497,280 dated Aug. 7, 2019. 2 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Aug. 16, 2019. 28 pages.
Japanese Office Action for JP Patent Application No. 2018-164677 dated Sep. 17, 2019. 4 pages.
Non-Final Office Action for U.S. Appl. No. 13/844,456, dated Feb. 20, 2020, 21 pages.
Non-Final Office Action for U.S. Appl. No. 16/126,618 dated Dec. 19, 2019. 9 pages.
Notice of Allowance for U.S. Appl. No. 16/020,125, dated Feb. 25, 2020, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/384,435, dated Feb. 26, 2020, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/465,763 dated Nov. 15, 2019. 4 pages.
Notice of Allowance for U.S. Appl. No. 15/048,954 dated Jan. 6, 2020. 10 pages.
Preliminary Report on Patentability for PCT Application No. PCT/US2018/012227 dated Aug. 8, 2019. 7 pages.
U.S. Appl. No. 14/814,020, filed Jul. 30, 2015, Brown et al.
Amendment and Reply for U.S. Appl. No. 12/571,262, dated Dec. 16, 2011, 7 pages.
Amitai, Y., et al. “Visor-display design based on planar holographic optics,” Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Ayras et al., Exit Pupil Expander with a Large Field of View Based on Diffractive Optics, Journal of the SID, 2009, 6 pages.
Ayras, et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, 17/8, 2009, pp. 659-664.
Cameron, A., The Application of Holograhpic Optical Waveguide Technology to Q-Sight Family of Helmet Mounted Displays, Proc. of SPIE, vol. 7326, 7326OH-1, 2009, 11 pages.
Caputo, R. et al., POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application; Journal of Display Technology, vol. 2, No. 1, Mar. 2006, pp. 38-51, 14 pages.
Chinese First Office Action for Chinese Patent Application No. 201610512319.1 dated Aug. 11, 2017. 16 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/044,676 dated Feb. 1, 2018. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/044,676 dated Jan. 3, 2018. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/715,332 dated Jul. 25, 2018. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/136,841 dated Feb. 1, 2019. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/439,597 dated Oct. 19, 2018. 2 pages.
Crawford, “Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Decision of Rejection for Japanese Patent Application No. 2013-231450 dated May 8, 2018. 4 pages.
European Office Action for European Patent Application No. 13192383.1 dated Oct. 16, 2017. 5 pages.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pages.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pages.
Final Notice of Reasons for Rejection on Japanese Application No. JP2015-509120, dated Mar. 7, 2017, English Translation, 2 pages.
Final Office Action for U.S. Appl. No. 14/044,676 dated Jul. 13, 2017. 31 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Jul. 10, 2017. 20 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Apr. 19, 2018. 24 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Dec. 17, 2018. 20 pages.
Final Office Action for U.S. Appl. No. 14/044,676, dated Jul. 13, 2017. 30 pages.
Final Office Action for U.S. Appl. No. 14/152,756 dated Aug. 30, 2018. 17 pages.
Final Office Action for U.S. Appl. No. 14/465,763 dated Jun. 28, 2018. 4 pages.
Final Office Action for U.S. Appl. No. 14/465,763 dated Nov. 16, 2018. 6 pages.
Final Office Action for U.S. Appl. No. 14/497,280 dated Oct. 18, 2018. 20 pages.
Final Office Action for U.S. Appl. No. 15/048,954 dated Jan. 2, 2019. 26 pages.
Final Office Action for U.S. Appl. No. 15/136,841 dated Aug. 31, 2018. 7 pages.
Final Office Action for U.S. Appl. No. 15/136,841 dated Oct. 27, 2017. 15 pages.
Final Office Action for U.S. Appl. No. 15/460,076 dated Dec. 3, 2018. 13 pages.
Final Office Action in U.S. Appl. No. 13/864,991, dated Apr. 2, 2015, 16 pages.
Final Office Action on U.S. Appl. No. 13/869,866 dated Oct. 3, 2014, 17 pages.
Final Office Action on U.S. Appl. No. 13/250,858, dated Jul. 11, 2016, 21 pages.
Final Office Action on U.S. Appl. No. 13/250,858 dated Feb. 4, 2015, 18 pages.
Final Office Action on U.S. Appl. No. 13/250,940 dated Oct. 17, 2014, 15 pages.
Final Office Action on U.S. Appl. No. 13/864,991, dated Jun. 27, 2016, 16 pages.
Final Office Action on U.S. Appl. No. 13/892,026 dated Apr. 3, 2015, 17 pages.
Final Office Action on U.S. Appl. No. 13/892,057 dated Mar. 5, 2015, 21 pages.
Final Office Action on U.S. Appl. No. 13/892,057 dated Nov. 20, 2015, 30 pages.
Final Office Action on U.S. Appl. No. 14/038,400 dated Aug. 10, 2015, 32 pages.
Final Office Action on U.S. Appl. No. 14/152,756, dated Jun. 7, 2017, 16 pages.
Final Office Action on U.S. Appl. No. 14/168,173, dated Nov. 4, 2015, 10 pages.
Final Office Action on U.S. Appl. No. 14/497,280, dated Mar. 10, 2017, 17 pages.
Final Office Action on U.S. Appl. No. 14/715,332, dated Aug. 11, 2017, 14 pages.
Final Office Action on U.S. Appl. No. 14/260,943, dated Jul. 19, 2016, 23 pages.
First Office Action on EPO Application No. 13765610.4, dated Apr. 18, 2017, 4 pages.
First Office Action on Japanese Application No. 2013-231450, dated Aug. 8, 2017, 5 pages.
First office action received in Chinese patent application No. 201380001530.1, dated Jun. 30, 2015, 9 pages with English translation.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pages.
International Search Report and Written Opinion for PCT/US18/12227. dated Mar. 14, 2018. 9 pages.
International Search Report and Written Opinion regarding PCT/US2013/038070, dated Aug. 14, 2013, 14 pages.
Irie, Masahiro, Photochromic diarylethenes for photonic devices, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Levola, et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light” Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet at http://www.kirkmoffitt.com/hmd_image_configurations.pdf on Dec. 19, 2014, dated May 2008, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/250,970 dated Jul. 30, 2013. 4 pages.
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Apr. 1, 2019.
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Aug. 30, 2018. 17 pages.
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Oct. 6, 2017. 19 pages.
Non-Final Office Action for U.S. Appl. No. 14/152,756 dated Feb. 13, 2018. 17 pages.
Non-Final Office Action for U.S. Appl. No. 14/152,756 dated Feb. 27, 2019. 17 pages.
Non-Final Office Action for U.S. Appl. No. 14/497,280 dated Mar. 19, 2018. 19 pages.
Non-Final Office Action for U.S. Appl. No. 14/715,332 dated Dec. 26, 2017. 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/048,954 dated Jul. 26, 2018. 24 pages.
Non-Final Office Action for U.S. Appl. No. 15/048,954 dated Jul. 9, 2019. 22 pages.
Non-Final Office Action for U.S. Appl. No. 15/136,841 dated Jul. 13, 2017. 36 pages.
Non-Final Office Action for U.S. Appl. No. 15/136,841 dated Mar. 12, 2018. 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/429,569 dated Sep. 17, 2018. 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/460,076 dated Jul. 10, 2018. 15 pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 dated Jul. 22, 2015, 28 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Aug. 6, 2015, 22 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,057 dated Jul. 30, 2015, 29 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Jun. 12, 2015, 20 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Sep. 15, 2014, 16 pages.
Non-final Office Action on U.S. Appl. No. 13/250,858, dated Nov. 14, 2016, 18 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,940 dated Mar. 18, 2015, 17 pages.
Non-Final Office Action on U.S. Appl. No. 13/432,662 dated May 27, 2015, 15 pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456 dated Apr. 1, 2015, 16 Pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Jan. 15, 2016, 16 Pages.
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Nov. 30, 2015, 18 pages.
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Oct. 22, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 dated May 28, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Mar. 22, 2016, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,057, dated May 16, 2016, 23 pages.
Non-Final Office Action on U.S. Appl. No. 14/038,400 dated Feb. 5, 2015, 18 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676 dated Apr. 9, 2015, 13 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676, dated Jan. 20, 2016, 21 pages.
Non-Final Office Action on U.S. Appl. No. 14/109,551 dated Jul. 14, 2015, 32 pages.
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Apr. 26, 2016, 17 pages.
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Feb. 21, 2017, 18 pages.
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Aug. 25, 2015, 39 pages.
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Jun. 22, 2015, 14 pages.
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Mar. 10, 2016, 9 pages.
Non-Final Office Action on U.S. Appl. No. 14/225,062 dated May 21, 2015, 11 pages.
Non-Final Office Action on U.S. Appl. No. 14/260,943 dated Feb. 3, 2016, 19 pages.
Non-Final Office Action on U.S. Appl. No. 14/715,332, dated Mar. 9, 2017, 14 pages.
Non-Final Office Action on U.S. Appl. No. 14/754,368, dated May 8, 2017, 12 pages.
Non-Final Office Action on U.S. Appl. No. 15/178,521, dated Aug. 24, 2017, 34 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858, dated Mar. 18, 2016, 20 pages.
Nordin, G., et al., “Diffraction properties of stratified volume holographic optical elements,” Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217, 12 pages.
Notice of Allowance for U.S. Appl. No. 12/700,557, dated Oct. 22, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/044,676 dated Nov. 24, 2017. 18 pages.
Notice of Allowance for U.S. Appl. No. 14/715,332 dated May 14, 2018. 9 pages.
Notice of Allowance for U.S. Appl. No. 15/005,507 dated May 23, 2017. 8 pages.
Notice of Allowance for U.S. Appl. No. 15/136,841 dated Nov. 9, 2018. 9 pages.
Notice of Allowance for U.S. Appl. No. 15/178,521 dated Jan. 31, 2018. 9 pages.
Notice of Allowance for U.S. Appl. No. 15/429,569 dated Jan. 22, 2019. 7 pages.
Notice of Allowance for U.S. Appl. No. 15/439,597 dated Jun. 15, 2018. 11 pages.
Notice of Allowance for U.S. Appl. No. 15/460,076 dated May 8, 2019. 10 pages.
Notice of Allowance on U.S. Appl. No. 13/250,858, dated Mar. 20, 2017, 8 pages.
Notice of Allowance on U.S. Appl. No. 13/250,970 dated Sep. 16, 2014, 7 pages.
Notice of Allowance on U.S. Appl. No. 13/251,087 dated Jul. 17, 2014, 8 pages.
Notice of Allowance on U.S. Appl. No. 13/355,360 dated Apr. 10, 2014, 7 pages.
Notice of Allowance on U.S. Appl. No. 13/432,662, dated Feb. 18, 2016, 10 pages.
Notice of Allowance on U.S. Appl. No. 13/864,991, dated Feb. 2, 2017, 10 pages.
Notice of Allowance on U.S. Appl. No. 13/892,026, dated Jul. 18, 2016, 10 pages.
Notice of Allowance on U.S. Appl. No. 13/892,057, dated Nov. 8, 2016, 10 pages.
Notice of Allowance on U.S. Appl. No. 14/168,173, dated Aug. 8, 2016, 8 pages.
Notice of Allowance on U.S. Appl. No. 14/814,020, dated Aug. 12, 2016, 15 pages.
Notice or Reasons for Rejection for Japanese Application No. 2015-509120, with English translation, dated Nov. 1, 2016, 4 pages.
Office Action for U.S. Appl. No. 12/571,262, dated Sep. 28, 2011,5 pages.
Office Action for U.S. Appl. No. 10/696,507, dated Nov. 13, 2008, 15 pages.
Office Action for U.S. Appl. No. 12/700,557, dated Aug. 9, 2013, 12 pages.
Office Action for U.S. Appl. No. 12/700,557, dated Feb. 4, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/250,621, dated May 21, 2013, 10 pages.
Office Action for U.S. Appl. No. 13/250,858 dated Feb. 19, 2014, 13 pages.
Office Action for U.S. Appl. No. 13/250,858, dated Oct. 28, 2013, 9 pages.
Office Action for U.S. Appl. No. 13/250,940, dated Aug. 28, 2013, 15 pages.
Office Action for U.S. Appl. No. 13/250,940, dated Mar. 12, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/250,970, dated Jul. 30, 2013, 4 pages.
Office Action for U.S. Appl. No. 13/250,994, dated Sep. 16, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/355,360, dated Sep. 12, 2013, 7 pages.
Office Action on U.S. Appl. No. 13/250,940 dated Mar. 25, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/251,087 dated Mar. 28, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/892,026 dated Dec. 8, 2014, 19 pages.
Office Action on U.S. Appl. No. 13/892,057 dated Nov. 28, 2014, 17 pages.
Plastic has replaced glass in photochromic lens, www.plastemart.com, 2003, 1 page.
Press Release, “USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, SBG Labs—DigiLens, Apr. 2013, 1 page.
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internat at http://www.digilens.com/pr10-2012.2.php. 2 pages.
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internet at http://www.digilens.com/pr10-2012.2.php. 2 pages.
Requirement for Restriction/Election on U.S. Appl. No. 13/844,456 dated Sep. 12, 2014, 23 pages.
Schechter, et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Second Office Action for Chinese Patent Application No. 201310557623.4 dated Dec. 1, 2017. 21 pages.
Second Office Action for Chinese Patent Application No. 201610512319.1 dated May 2, 2018. 9 pages.
Supplemental Notice of Allowability on U.S. Appl. No. 13/892,026, dated Nov. 1, 2016, 2 pages.
Third Office Action [With English translation] for CN Application No. 2016105123191 dated Nov. 1, 2018. 16 pages.
Third Office Action for Chinese Application No. 2016105123191 dated Jan. 16, 2019. 16 pages.
Third Office Action for Chinese Patent Application No. 20130557623.4 dated May 22, 2018. 16 pages.
Urey, “Diffractive exit pupil expander for display applications” Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
US Notice of Allowance on U.S. Appl. No. 14/820,237 dated Jan. 23, 2017.
Webster's Third New International Dictionary 433 (1986), 3 pages.
Wisely, P.L., Head up and head mounted display performance improvements through advanced techniques in the manipulation of light, Proc. of SPIE vol. 7327, 732706-1, 2009, 10 pages.
Continuations (2)
Number Date Country
Parent 15460076 Mar 2017 US
Child 16548751 US
Parent 13892057 May 2013 US
Child 15460076 US