Waveguide coupler

Information

  • Patent Grant
  • 6313714
  • Patent Number
    6,313,714
  • Date Filed
    Friday, October 15, 1999
    26 years ago
  • Date Issued
    Tuesday, November 6, 2001
    24 years ago
Abstract
A first embodiment of a waveguide coupler (10) has a substantially square cross-section with a width tapering from a first width a at a first end (12) to a smaller width b at a second end (14). Each side of the square waveguide coupler is provided with a turnstile port (16). The first end is coupled to a first waveguide (18) to couple the turnstile ports with the first waveguide, while the second end is coupled to a second waveguide, coupling the first and second waveguides together. Signals throughout the waveguide coupler's lower frequency band can be coupled between the turnstile ports and the first waveguide, while signals throughout the higher end of the frequency band can be coupled from the first waveguide to the second waveguide, and signals within the frequency band can be coupled from the second waveguide to the first waveguide. A second embodiment (24) includes a first waveguide coupling section (26) having a first end (30) with a substantially circular cross-section which is connected to a circular first waveguide (40), and a second end (32) with a substantially square cross-section. A second waveguide coupling section (28) has a configuration like waveguide coupler (10) of the first embodiment. The larger end of the second waveguide coupling section is coupled to the first waveguide coupling section to couple the turnstile ports with the first waveguide. The second of the second waveguide coupling section is coupled to a square second waveguide to couple the first and second waveguides together.
Description




FIELD OF THE INVENTION




The present invention pertains to a waveguide coupler. More particularly, the present invention pertains to a square symmetric orthomode waveguide coupler for wide band cellular applications.




BACKGROUND OF THE INVENTION




Modern communication techniques have increased the amount of high frequency radio communication significantly. By way of examples, cellular phones and Internet communication have added a considerable number of high frequency radio transmissions. Cellular phones and Internet communication involve transmission of signals from a ground location to a satellite, and retransmission of the signals from the satellite to another ground location either directly or by way of one or more other satellites. The usage is compounded, since both cellular phones and Internet communication involve two-way communication. The satellite functions of up link signal reception and down link signal transmission within a coverage area using reflector antenna systems require feed systems capable of supporting dual frequency and dual sense polarization. The down link signal transmission is generally at a fairly high power, and so requires low power loss. In addition, the ability to cover a band of from 17.5 GHz to 20 GHz is needed. As a result of all this, wider bandwidth is highly desirable.




SUMMARY OF THE INVENTION




The present invention is a square symmetric orthomode waveguide coupler which allows broad band down link dual sense polarization transmission at one frequency band, while simultaneously accepting up link dual sense polarization signal transmission at another frequency band. The present invention takes advantage of the increased separation distance with respect to frequency between the dominant TE


01


rectangular waveguide mode and that of the next higher order rectangular waveguide mode relative to that of the separation distance and frequency between the dominant TE


11


circular waveguide mode and the next higher order circular waveguide mode. Consequently, the square symmetric orthomode coupler of the present invention can operate over a wider frequency band then can a circular symmetric orthomode coupler. Furthermore, the rectangular waveguide circular polarized TE


01


mode created by the square symmetric orthomode waveguide coupler of the present invention can in turn be used to create broad band circularly polarized dominant TE


11


modes in a circular waveguide of the same bandwidth.




A first embodiment of the waveguide coupler of the present invention has a substantially square cross-section of a width which tapers from a first width at a first end to a second, smaller width at a second end. Each side of the square waveguide coupler is provided with a turnstile port to couple signals throughout the entire lower frequency band to or from a first waveguide connected to the first end of the waveguide coupler. In addition, signals throughout the higher frequency band can be coupled through the waveguide coupler from the first waveguide to a second waveguide connected to the second end of the waveguide coupler, and signals within the covered frequency band can be coupled from the second waveguide to the first waveguide.




In a second embodiment, the waveguide coupler of the present invention includes a first waveguide coupling section having a first end with a substantially circular cross-section and a second end with a substantially square cross-section. This second embodiment also includes a second waveguide coupling section having a substantially square cross-section with a width which tapers from a first width at a first end to a second, smaller width at a second end and with a turnstile port in each side thereof. This second waveguide coupling section is thus of a design similar to the design of the first embodiment of waveguide coupler. The first end of this second waveguide coupling section is connected to the square end of the first waveguide coupling section, preferably through a square intermediate section extending from the first waveguide coupling section square end. Signals throughout the entire lower frequency band can be coupled to and from the turnstile ports to a circular waveguide connected to the circular end of the first waveguide coupling section. In addition, signals throughout the entire higher frequency band can be coupled through the waveguide coupler from the circular waveguide to a second, square waveguide connected to the second end of the second waveguide coupling section, and signals within the covered frequency band can be coupled from the second, square waveguide to the first, circular waveguide.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other aspects and advantages of the present invention are more apparent from the following detailed description and claims, particularly when considered in conjunction with the accompanying drawings. In the drawings:





FIG. 1

is a perspective view of a first embodiment of a waveguide coupler in accordance with the present invention; and





FIG. 2

is a perspective view of a second embodiment of a waveguide coupler in accordance with the present invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Waveguide coupler


10


, depicted in

FIG. 1

, has a substantially square cross-section with a width which tapers from a first width a at first end


12


of waveguide coupler


10


to a second, smaller width b at second end


14


of waveguide coupler


10


. Each side of square waveguide coupler


10


is provided with a turnstile port


16


. First end


12


of waveguide coupler


10


is coupled to an end of a first waveguide


18


having a width a, while second end


14


of waveguide coupler


10


is coupled to an end of a second waveguide


20


having a width b.




Waveguide coupler


10


is designed for a predetermined frequency band, such as 17.5 GHz to 20 GHz. Waveguide coupler


10


can couple signals throughout the covered frequency band from turnstile ports


16


to first waveguide


18


and from first waveguide


18


to turnstile ports


16


, and can couple signals at or near the higher end of the covered frequency band through the waveguide coupler from first waveguide


18


to second waveguide


20


. In addition, signals within the covered frequency band can be coupled from second waveguide


20


to first waveguide


18


.





FIG. 2

depicts a second embodiment of a waveguide coupler


10


in accordance with the present invention which includes a first waveguide coupling section


26


, and a second waveguide coupling section


28


. First waveguide coupling section


26


has a first end


30


, with a circular cross-section and a second end


32


with a square cross-section. Second waveguide coupling section


28


has a substantially square cross-section which tapers from a first width at first end


34


of second waveguide coupling section


28


to a second, smaller width at second end


36


of second waveguide coupling section


28


. Each side of square, second waveguide coupling section


28


is provided with a turnstile port


38


. Thus, second waveguide coupling section


28


is of substantially the same design as waveguide coupler


10


of FIG.


1


.




The circular first end


30


of first waveguide coupling section


26


has substantially the same diameter as a first, circular waveguide


40


to which it is connected. The second, square end


32


of first waveguide coupling section


26


has substantially the same width as the larger end


34


of second waveguide coupling section


28


to which it is connected, preferably through a square intermediate section


42


which extends from the square end


32


of first waveguide coupling section


26


. The second, smaller end


36


of square, second waveguide coupling section


28


has substantially the same width as a second, square waveguide


44


to which it is connected.




Like waveguide coupler


10


of

FIG. 1

, waveguide coupler


24


is designed for a predetermined frequency band, such as 17.5 GHz to 20 GHz. Waveguide coupler


24


can couple signals throughout the lower covered frequency band from turnstile ports


38


to first, circular waveguide


40


and from circular waveguide


40


to turnstile ports


38


, and can couple signals throughout the higher covered frequency band through the waveguide coupler from circular waveguide


40


to square waveguide


44


. In addition, signals within the covered frequency band can be coupled from second waveguide


44


to first waveguide


40


.




The square symmetric orthomode waveguide coupler


10


of

FIG. 1

can operate over a wider frequency band than can circular symmetric orthomode waveguide couplers. In addition, the waveguide coupler


10


can receive circular mode and linearly polarized mode electromagnetic waves from first waveguide


12


and can couple those waves through turnstile ports


22


. The rectangular waveguide circular polarized TE


01


modes created by the square symmetric orthomode waveguide coupler


24


of

FIG. 2

can be used to create broad band circularly polarized dominant degenerate TE


11


mode waves by means of intermediate section


26


.




Although the present invention has been described with reference to preferred embodiments, various rearrangements, alterations, and substitutions can be made, and still the result would be within the scope of the invention.



Claims
  • 1. A waveguide coupler, comprising a waveguide coupling section having a substantially square cross-section with a width tapering from a first width at a fist end of said waveguide coupling section to a second, smaller width at a second end of said waveguide coupling section, said waveguide coupling section first end being adapted to be coupled to an end of a first waveguide to receive TE01 mode waves of a first bandwidth therefrom, each side of said square waveguide coupling section having a turnstile port therein to generate circularly polarized TE01 mode waves of the first bandwidth, and said waveguide coupling section second end being adapted to be coupled to an end of a second waveguide to couple the first and second waveguides together such that the dominant TE01 mode waves are cut off and circularly polarized TE01 mode waves are coupled to circularly polarized dominant TE11 mode waves of the first bandwidth.
  • 2. A waveguide coupler, comprising:a first waveguide coupling section having a first end with a substantially circular cross-section and a second end with a substantially square cross-section, said first waveguide coupling section first end being adapted to be coupled to an end of a circular first waveguide, said first waveguide coupling section being adapted to receive circularly polarized TE01 mode waves of a first bandwidth; and a second waveguide coupling section having a substantially square cross-section with a width tapering from a first width at a first end of said second waveguide coupling section to a second, smaller width at a second end of said second waveguide coupling section, the first width being substantially equal to the width of said second end of said first waveguide coupling section, each side of said square second waveguide coupling section having a turnstile port therein, said second waveguide coupling section creating circularly polarized dominant TE11 mode waves of the first bandwidth, said second waveguide coupling section first end being coupled to said first waveguide coupling section second end to couple said turnstile ports and the first waveguide together, and said second waveguide coupling section second end being adapted to be coupled to an end of a second waveguide to couple the first and second waveguides together.
  • 3. A waveguide coupler as claimed in claim 2, further comprising an intermediate waveguide coupling section having square cross-section and coupling said first waveguide coupling section, and said second waveguide coupling section together.
  • 4. A waveguide assembly, comprising:a first waveguide having a substantially square cross-section with a first width; a second waveguide having a substantially square cross-section with a second width less than the first width; and a waveguide coupler having a substantially square cross-section with a width tapering from the first width at a first end of said waveguide coupler to the second width at a second end of said waveguide coupler, each side of said square waveguide coupler having a turnstile port therein, said waveguide coupler first end being coupled to an end of said first waveguide to receive circularly polarized TE01 mode waves of a first bandwidth therefrom and to couple said turnstile ports and said first waveguide together, and said waveguide coupler second end being coupled to an end of said second waveguide to couple said first and second waveguides together, said second waveguide coupling section creating circularly polarized dominant TE11 mode waves of the first bandwidth.
  • 5. A waveguide assembly, comprising:a first waveguide having a substantially circular cross-section; a second waveguide having a substantially square cross-section; a first waveguide coupling section having a first end with a substantially circular cross-section of a diameter substantially equal to the diameter of said first waveguide, and a second end with a substantially square cross-section, said first waveguide coupling section being adapted to receive circularly polarized TE01 mode waves of a first bandwidth, said first waveguide coupling section first end being coupled to a first end of said first waveguide; and a second waveguide coupling section having a substantially square cross-section with a width tapering from a first width at a first end of said second waveguide coupling section to a second, smaller width at a second end of said second waveguide coupling section, the first width being substantially equal to the width of said second end of said first waveguide coupling section, the second width being substantially equal to the width of said second wave guide, each side of said square second waveguide coupling section having a turnstile port therein, said second waveguide coupling section creating circularly polarized dominant TE11 mode waves of the first bandwidth, said second waveguide coupling section first end being coupled to said first waveguide coupling section second end to couple said turnstile ports and said first waveguide together, and said second waveguide coupling section second end being coupled to an end of said second waveguide to couple said first and second waveguides together, said second waveguide coupling section creating circularly polarized dominant TE11 mode waves of the first bandwidth.
  • 6. A waveguide coupler as claimed in claim 5, further comprising an intermediate waveguide coupling section having a square cross-section and coupling said first waveguide coupling section and said second waveguide coupling section together.
US Referenced Citations (1)
Number Name Date Kind
3978434 Morz et al. Aug 1976
Non-Patent Literature Citations (2)
Entry
Farr, Mode Converter (Abstract) (No. 576,842), vol. 659, p. 587, Official Gazzette, Jun. 10, 1952.*
“Wide-Band Communication Satellite Antenna Using a Multifrequency Primary Horn;” Hiroyuki Kumazawa, Masaki Koyama and Yoshio Kataoka; IEEE Transactions on Antennas and Propagation, May 1975; pp. 404-407.