The present invention relates to the field of the transmission (emission and/or reception) of radiofrequency waves.
More specifically, the field of transmission devices employing orthogonal polarization duplexers (also known as Orthogonal Mode Transducers, most commonly known by their abbreviation OMT) inserted between an electronic unit able to generate and/or to pick up radiofrequency signals, and an antenna, for example a parabolic antenna.
More specifically, polarization duplexers, or OMTs, are devices which are used to combine in emission mode or to separate in receive mode two orthogonally-polarized (one vertically and one horizontally) signals. Thus, it is possible to use the one same frequency band to emit and receive simultaneously distinct signals of which the electrical fields are mutually perpendicular.
Known polarization duplexers, or OMTs, comprise orthomode junctions for separating/combining orthogonally-polarized radiofrequency wave signals, which junctions are made in a body which has a main cavity forming a main waveguide, which has a blind end and an end generally coupled to an antenna, for example a parabolic antenna, and auxiliary cavities forming auxiliary waveguides, which have ends which communicate laterally with the main cavity in the vicinity of the blind end thereof, and ends which are coupled to an electronic unit. The adjacent parts of the main cavity that form a main waveguide, and of the auxiliary cavities that form auxiliary waveguides, are generally referred to as junctions.
Nevertheless, it is essential that, in emission and/or in reception, these junctions provide inter-polarization isolation between the two orthogonally-polarized signals so as to avoid exchanges of energy that would produce interference and noise detrimental to the communication.
An embodiment orthomode junction for separating and/or combining orthogonally-polarized radiofrequency wave signals, comprises a body which has a main cavity forming a main waveguide, which has a blind end, and auxiliary cavities forming auxiliary waveguides, which communicate laterally with the main cavity in the vicinity of the blind end thereof, and a deflection insert situated at the blind end of the main cavity and facing the auxiliary cavities, the deflection insert having different shapes on the side of the auxiliary cavities respectively.
Thus, in emission and/or in reception, the inter-polarization isolation between the two orthogonally-polarized signals is improved.
The auxiliary cavities may communicate with the main cavity at opposing points.
The main cavity may comprise a main portion, adjacent to the blind end, of cylindrical cross section, and the auxiliary cavities may comprise auxiliary portions, adjacent to the cylindrical portion, of rectangular cross sections.
The axes of the rectangular auxiliary portions of the auxiliary cavities may intersect the axis of the cylindrical main portion of the main cavity orthogonally.
The rectangular auxiliary portions of the auxiliary cavities may be diametrically opposed with respect to the cylindrical main portion of the main cavity.
The long sides of one of the rectangular auxiliary portions may extend longitudinally with respect to the main cavity, and the long sides of the other rectangular auxiliary portion may extend orthogonally with respect to the main cavity.
The deflection insert may comprise parts which have opposing domed faces on the side of, or facing, the auxiliary cavities respectively.
One of the domed faces may be larger than the other domed face.
The deflection insert may comprise a projecting part which has opposing domed faces on the side of, or facing, the auxiliary cavities respectively.
The junction may be the result of manufacture by 3D printing.
An orthomode junction for separating and/or combining orthogonally-polarized radiofrequency wave signals will now be described by way of non-limiting example, illustrated by the drawing in which:
A junction 1, included in a polarization duplexer, or OMT, with a view to separating and/or combining orthogonally-polarized radiofrequency wave signals, comprises a body 2 in which there are formed a main cavity 3 that forms a main waveguide, which has a blind end 4, and auxiliary cavities 5 and 6 that form auxiliary waveguides, which communicate laterally with the main cavity 3 in the vicinity of the blind end 4 thereof.
More specifically, according to one alternative form of embodiment, the main cavity 3 comprises a main terminal portion 7, adjacent to the blind end 4, and of cylindrical cross section, the blind end 4 being arranged radially with respect to this cylindrical terminal portion 7.
The main end portion 7 is extended in the opposite direction to the radial blind end 4 by a junction portion, not depicted, which is routed, along a path of suitable shape, so that its terminal end is coupled to an antenna, for example a parabolic antenna, not depicted, able to emit and/or to pick up a radiofrequency wave.
The auxiliary cavities 5 and 6 comprise auxiliary terminal portions 8 and 9, of rectangular cross sections, which communicate radially with the main terminal portion 7 of the main cavity 3 in the vicinity of the radial blind end 4 and which are situated so that they are diametrically opposed with respect to the main terminal portion 7.
The auxiliary terminal portions 8 and 9 are extended in the opposite direction to the radial blind end 4 by a connecting portion, not depicted, and are routed, along paths of suitable shape, so that their terminal ends are coupled to distinct means able to emit and/or to pick up radiofrequency waves, belonging to an electronic unit, not depicted.
The auxiliary terminal portion 8 is situated in such a way that its axis intersects the axis of the main terminal portion 7 at right angles, that its opposite long sides 10 and 11 are situated radially with respect to the main terminal portion 7, that its opposite short sides 12 and 13 are situated longitudinally with respect to the main terminal portion 7, and that the distance between its opposite short sides 12 and 13 is equal to the diameter of the main terminal portion 7 so as to meet the latter tangentially.
The auxiliary terminal portion 9 is situated in such a way that its axis intersects the axis of the main terminal portion 7 at right angles, that its opposite long sides 14 and 15 are situated longitudinally with respect to the main terminal portion 7, that its opposite short sides 16 and 17 are situated radially with respect to the main terminal portion 7, and that the distance between its opposite long sides 14 and 15 is less than the diameter of the main terminal portion 7.
The junction 1 is configured in such a way as to operate as follows.
In receive mode, a radiofrequency wave including orthogonally-polarized signals, for example coming from the aforementioned antenna, is routed in the main cavity 3 towards the blind end 4.
From the main terminal portion 7 of the main cavity 3, this radiofrequency wave is split, heading towards the auxiliary cavities 5 and 6, into two radiofrequency waves respectively including the orthogonally-polarized signals.
These separated radiofrequency waves enter the terminal portions 8 and 9 of the auxiliary cavities 5 and 6 and are then routed through the auxiliary cavities 5 and 6 towards the aforementioned pick-up means of the aforementioned electronic unit. The electronic unit therefore processes the received signals separately.
Reciprocally, in emit mode, the aforementioned emission means of the aforementioned electronic unit emit radiofrequency waves respectively including distinct orthogonally-polarized signals, into the auxiliary cavities 5 and 6 respectively.
The radiofrequency waves are routed through the auxiliary cavities 5 and 6, passed through the terminal portions 8 and 9 and then enter the terminal portion 7 of the main cavity 3. Therefore, the radiofrequency waves coming from the auxiliary cavities 5 and 6 combine to form a resultant radiofrequency wave including the distinct orthogonally-polarized signals.
This resultant radiofrequency wave is then routed through the main cavity 3 away from the radial end 4, as far as the aforementioned antenna.
In a two-way communication mode, one of the two electronic units emits radiofrequency waves while the second electronic unit receives radiofrequency waves in the same frequency band but with orthogonal polarization. The wave emitted by the emitting electronic unit travels through the structure as described hereinabove. At the same time, the signal picked up by the receiving other electronic unit, and which comes from the antenna, travels through the structure in the opposite direction with an orthogonal polarization mode, as described hereinabove.
It is evident from the foregoing that the junction 1 is able to combine in one direction of traffic and to separate in the other direction of traffic, on the one same frequency band, distinct signals, the electric fields of which are mutually perpendicular.
The junction 1 further comprises a deflection insert 18 which is situated to project with respect to the blind end 4 of the main cavity 3 and facing the auxiliary cavities 8 and 9 so as to facilitate the separating and/or the combining of the orthogonally-polarized signals.
Advantageously, the deflection insert 18 has different shapes respectively facing or on the side of the auxiliary cavities 5 and 6. The face of the deflection insert 18 has, on the opposite side to the radial end 4, a shape that is discontinuous.
According to one exemplary embodiment, the deflection insert 18 is configured as follows.
The deflection insert 18 is placed against the radial end 4 of the terminal portion 7 of the main cavity 3 and comprises a part 19 which, on the side of the auxiliary cavity 5, has a domed face 20 the generatrices of which extend parallel to the axis of the terminal portion 7, and a part 21 which, on the side of the auxiliary cavity 6, has a domed face 22 the generatrices of which extend parallel to the axis of the terminal portion 7, the faces 20 and 22 being opposed and domed in opposite directions.
Perpendicular to the parallel axes of the terminal portions 8 and 9 of the auxiliary cavities 5 and 6, the domed face 20 is, between the terminal generatrices 23 and 24, larger than the domed face 22, between the terminal generatrices 25 and 26. The face 20 is not as domed as the face 22.
The part 19 has flat faces 27 and 28 which respectively join the terminal generatrices 23 and 24 and the terminal generatrices 25 and 26 and which are situated on either side of the part 21 and on the side of the auxiliary cavity 6. The flat faces 27 and 28 are in the one same plane which is perpendicular to the axes of the terminal portions 8 and 9 of the auxiliary cavities 5 and 6.
For example, the domed faces 20 and 22 have cross sections in the form of portions of circles or of ellipses.
The deflection insert 18 further comprises, on the opposite side to the radial end 4, a part 29 that projects with respect to a radial end face 30 of the part 19. The projecting part 29 has, on the side of the auxiliary cavity 6, a domed face 31 which extends the domed face 22 and, on the side of the auxiliary cavity 5, a domed face 32 which extends from the radial face 30 of the part 19, the domed faces 31 and 32 meeting in the continuation of the generatrices 25 and 26. The projecting part 29 has a radial end face 33.
According to an alternative form of embodiment, the edge corners of the deflection insert 18 could be chamfered.
The deflection insert 18 is offset towards the auxiliary cavity 6 with respect to the axis of the main portion 7 of the main cavity 3.
According to an alternative form of manufacture, the body 2 of the junction 1 may comprise several assembled parts, the deflection insert 18 being added at the moment of assembly.
According to another alternative form of manufacture, the body 2 of the junction 1 may be obtained directly using a 3D printing system.
Number | Date | Country | Kind |
---|---|---|---|
1906471 | Jun 2019 | FR | national |
This application is a continuation of U.S. patent application Ser. No. 16/901,832, filed Jun. 15, 2020, now U.S. Pat. No. 11,258,148, issued Feb. 22, 2022, which application claims the benefit of French Patent Application No. 1906471, filed on Jun. 17, 2019, all of which applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
11258148 | Fiorese | Feb 2022 | B2 |
20130314172 | Massman | Nov 2013 | A1 |
20140266934 | Cook | Sep 2014 | A1 |
20150295300 | Herbsommer et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
108011160 | May 2018 | CN |
2015207863 | Nov 2015 | JP |
100967153 | Jul 2010 | KR |
Number | Date | Country | |
---|---|---|---|
20220131246 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16901832 | Jun 2020 | US |
Child | 17646964 | US |