The present disclosure relates to waveguide devices and more particularly to waveguides having uniform output illumination.
Waveguide optics are currently being considered for a range of display and sensor applications for which the ability of waveguide devices to integrate multiple optical functions into a thin, transparent, lightweight substrate is of key importance. This new approach is stimulating new product developments including near-eye displays for Augmented Reality (AR) and Virtual Reality (VR), compact Heads Up Display (HUDs) for aviation and road transport and sensors for biometric and laser radar (LIDAR) applications.
Waveguide devices offer many features that are attractive in HMDs and HUDs. They are thin and transparent. Wide fields of views can be obtained by recording multiple holograms and tiling the field of view regions formed by each hologram.
Several embodiments are directed to a waveguide device that includes at least one optical substrate, at least one light source; at least one light coupler, at least one light extractor, a debanding optic. The at least one light coupler is capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating. The at least one light extractor extracts the light from the optical substrate. The debanding optic is capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding.
In more embodiments, the extracted light has a spatial non-uniformity less than 10%.
In further embodiments, the extracted light has a spatial non-uniformity less than 20%.
In further more embodiments, the debanding optic is an effective input aperture such that when the optical substrate has a thickness D, the input aperture is configured to provide a TIR angle U in the optical substrate, and the angle U is calculated by 2D tan (U).
In even more embodiments, the debanding optic provides spatial variation of the light along the TIR path of at least one of diffraction efficiency, optical transmission, polarization or birefringence.
In even further embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to have multiple gratings, such that each grating provides a small pupil shift to mitigate banding.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as a stacked switchable grating that turns on when a voltage is applied, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as an array of switchable grating elements that can turn on a specific element when a voltage is applied, shifting pupil to mitigate banding effects
In even further more embodiments, the selected at least one grating has a plurality of rolled K-vectors.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to be a plurality of passive grating layers configured to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects.
In even further more embodiments, at least one index layer of the one or more index layers is a gradient index (GRIN) medium.
In even further more embodiments, the waveguide device further includes at least one reflecting surface on at least a part of an edge of the optical substrate. The debanding optic is one or more index layers disposed adjacent to the at least one reflecting surface such that the one or more index layers are configured to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers are configured to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is an input grating having a leading edge able to couple the incident light such that a unique displacement of a ray bundle of the light relative to the leading edge of the input grating is provided by the input grating for any given incident light direction, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is an input grating configured to have a variation of diffraction efficiencies such that a plurality of collimated incident ray paths of the incident light is diffracted into different TIR ray paths, as determined by a ray path input angle, such that a projected pupil is capable of forming at a unique location within the optical substrate for each of the plurality of collimated incident ray paths to mitigate banding effects.
In even further more embodiments, the variation of diffraction efficiencies varies along a principal waveguide direction.
In even further more embodiments, the variation of diffraction efficiencies varies in two dimensions over the aperture of the input grating.
In even further more embodiments, the debanding optic is a partially reflecting layer disposed within the optical substrate such that the partially reflecting layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is a polarization modifying layer disposed within the optical substrate such that the polarization modifying layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, mitigating banding effects.
In even further more embodiments, the selected grating has crossed slant gratings used in conjunction with at least one fold grating exit pupil expander.
In even further more embodiments, the debanding optic is an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil shift to mitigate banding effects.
In even further more embodiments, the debanding optic is a plurality of grating layers within at least one grating of either at least one input grating or at least one output grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in shift of pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is an input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization and birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects.
In even further more embodiments, the plurality of refractive index layers incorporates adhesives of different indices.
In even further more embodiments, the plurality of refractive index layers incorporates layers selected from the group consisting of alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, and birefringent stretched polymer layers.
In even further more embodiments, the debanding optic is a microdisplay projecting spatially varied numerical apertures that shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are mitigated.
In even further more embodiments, the debanding optic is a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along the optical substrate for each angle of incident light, such that banding effects are mitigated along one expansion axis.
In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a prism coupled to the optical substrate, such that a linear relationship between the angles of an exit pupil from the light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).
In even further more embodiments, the debanding optic is a light-absorbing film adjacent to the edges of the optical substrate such that portions of the incident light, that would otherwise give rise to banding, are removed, mitigating banding effects.
In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a first light-absorbing film disposed adjacent to the edges an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).
In even further more embodiments, the thickness of the optical substrate is 3.4 mm, the thickness of the second is substrate 0.5 mm, and the input substrate contains two 0.5 mm thick glass substrates sandwiching the input grating.
In even further more embodiments, the debanding optic is an input grating configured such that the light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect.
In even further more embodiments, the device is integrated into a display selected from the group of head mounted display (HMD) and a head up display (HUD).
In even further more embodiments, a human eye is positioned with an exit pupil of the display.
In even further more embodiments, the device incorporates an eye tracker.
In even further more embodiments, the waveguide device further includes an input image generator that further includes the light source, a microdisplay panel, and optics for collimating the light.
In even further more embodiments, the light source is at least one laser.
In even further more embodiments, the light source is at least one light emitting diode (LED).
In even further more embodiments, the light coupler is an input grating.
In even further more embodiments, the light coupler is a prism.
In even further more embodiments, the light extractor is an input grating.
Several embodiments are directed to a color waveguide device that includes at least two optical substrates, at least one light source, at least one light coupler, at least one light extractor, and at least two input stops. The at least two optical substrates are stacked upon each other. The at least one light coupler is capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating. The at least one light extractor extracts the light from the optical substrate. The at least two input stops are each within a different optical substrate, each in a different plane, and each input stop includes an outer dichroic portion to shift pupil and mitigate color banding.
In more embodiments, each input stop also includes an inner phase compensation coating to compensate for a phase shift.
In further embodiments, the compensation coating includes SiO2.
Several embodiments are directed to a method to mitigate banding in an output illumination of a waveguide device. The method produces incident light from a light source. The method passes the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate. The method also extracts the TIR light from the optical substrate via a light extractor to produce the output illumination. The light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination.
In more embodiments, the output illumination has a spatial non-uniformity less than 10%.
In further embodiments, the output illumination has a spatial non-uniformity less than 20%.
In further more embodiments, the debanding optic is an effective input aperture such that when the optical substrate has a thickness D, the input aperture is configured to provide a TIR angle U in the optical substrate, and the angle U is calculated by 2D tan (U).
In even more embodiments, the debanding optic provides spatial variation of the light along the TIR path of at least one of diffraction efficiency, optical transmission, polarization or birefringence.
In even further embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to have multiple gratings, such that each grating provides a small pupil shift to mitigate banding.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as a stacked switchable grating that turns on when a voltage is applied, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as an array of switchable grating elements that can turn on a specific element when a voltage is applied, shifting pupil to mitigate banding effects
In even further more embodiments, the selected at least one grating has a plurality of rolled K-vectors.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to be a plurality of passive grating layers configured to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects.
In even further more embodiments, at least one index layer of the one or more index layers is a gradient index (GRIN) medium.
In even further more embodiments, the waveguide device further includes at least one reflecting surface on at least a part of an edge of the optical substrate. The debanding optic is one or more index layers disposed adjacent to the at least one reflecting surface such that the one or more index layers are configured to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers are configured to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is an input grating having a leading edge able to couple the incident light such that a unique displacement of a ray bundle of the light relative to the leading edge of the input grating is provided by the input grating for any given incident light direction, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is an input grating configured to have a variation of diffraction efficiencies such that a plurality of collimated incident ray paths of the incident light is diffracted into different TIR ray paths, as determined by a ray path input angle, such that a projected pupil is capable of forming at a unique location within the optical substrate for each of the plurality of collimated incident ray paths to mitigate banding effects.
In even further more embodiments, the variation of diffraction efficiencies varies along a principal waveguide direction.
In even further more embodiments, the variation of diffraction efficiencies varies in two dimensions over the aperture of the input grating.
In even further more embodiments, the debanding optic is a partially reflecting layer disposed within the optical substrate such that the partially reflecting layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is a polarization modifying layer disposed within the optical substrate such that the polarization modifying layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating, and wherein the selected at least one grating is configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, mitigating banding effects.
In even further more embodiments, the selected grating has crossed slant gratings used in conjunction with at least one fold grating exit pupil expander.
In even further more embodiments, the debanding optic is an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil shift to mitigate banding effects.
In even further more embodiments, the debanding optic is a plurality of grating layers within at least one grating of either at least one input grating or at least one output grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in shift of pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is an input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization and birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects.
In even further more embodiments, the plurality of refractive index layers incorporates adhesives of different indices.
In even further more embodiments, the plurality of refractive index layers incorporate layers selected from the group consisting of alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, and birefringent stretched polymer layers.
In even further more embodiments, the debanding optic is a microdisplay projecting spatially varied numerical apertures that shift pupil to mitigate banding effects.
In even further more embodiments, the debanding optic is a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are mitigated.
In even further more embodiments, the debanding optic is a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along the optical substrate for each angle of incident light, such that banding effects are mitigated along one expansion axis.
In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a prism coupled to the optical substrate, such that a linear relationship between the angles of an exit pupil from the light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).
In even further more embodiments, the debanding optic is a light-absorbing film adjacent to the edges of the optical substrate such that portions of the incident light, that would otherwise give rise to banding, are removed, mitigating banding effects.
In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a first light-absorbing film disposed adjacent to the edges of an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).
In even further more embodiments, the thickness of the optical substrate is 3.4 mm, the thickness of the second is substrate 0.5 mm, and the input substrate contains two 0.5 mm thick glass substrates sandwiching the input grating.
In even further more embodiments, the debanding optic is an input grating configured such that the light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect.
In even further more embodiments, the method is performed by a display selected from the group of head mounted display (HMD) and a head up display (HUD).
In even further more embodiments, a human eye is positioned with an exit pupil of the display.
In even further more embodiments, the display incorporates an eye tracker.
In even further more embodiments, the waveguide device further includes an input image generator that further comprises the light source, a microdisplay panel, and optics for collimating the light.
In even further more embodiments, the light source is at least one laser.
In even further more embodiments, the light source is at least one light emitting diode (LED).
In even further more embodiments, the light coupler is an input grating.
In even further more embodiments, the light coupler is a prism.
In even further more embodiments, the light extractor is an input grating.
The following related issued patents and patent applications are incorporated by reference herein in their entireties: U.S. Pat. No. 9,075,184 entitled COMPACT EDGE ILLUMINATED DIFFRACTIVE DISPLAY; U.S. Pat. No. 8,233,204 entitled OPTICAL DISPLAYS; PCT Application No. US2006/043938 entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY; PCT Application No. GB2012/000677 entitled WEARABLE DATA DISPLAY; U.S. patent application Ser. No. 13/317,468 entitled COMPACT EDGE ILLUMINATED EYEGLASS DISPLAY; U.S. patent application Ser. No. 13/869,866 entitled HOLOGRAPHIC WIDE ANGLE DISPLAY; U.S. patent application Ser. No. 13/844,456 entitled TRANSPARENT WAVEGUIDE DISPLAY; U.S. patent application Ser. No. 14/620,969 entitled WAVEGUIDE GRATING DEVICE; U.S. Provisional Patent Application No. 62/176,572 entitled ELECTRICALLY FOCUS TUNABLE LENS, U.S. Provisional Patent Application No. 62/177,494 entitled WAVEGUIDE DEVICE INCORPORATING A LIGHT PIPE, U.S. Provisional Patent Application No. 62/071,277 entitled METHOD AND APPARATUS FOR GENERATING INPUT IMAGES FOR HOLOGRAPHIC WAVEGUIDE DISPLAYS; U.S. Provisional Patent Application No. 62/123,282 entitled NEAR EYE DISPLAY USING GRADIENT INDEX OPTICS; U.S. Provisional Patent Application No. 62/124,550 entitled WAVEGUIDE DISPLAY USING GRADIENT INDEX OPTICS; U.S. Provisional Patent Application No. 62/125,064 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION IN WINDOWS; U.S. Provisional Patent Application No. 62/125,066 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION IN WINDOWS; U.S. Provisional Patent Application No. 62/125,089 entitled HOLOGRAPHIC WAVEGUIDE LIGHT FIELD DISPLAYS; U.S. Pat. No. 8,224,133 entitled LASER ILLUMINATION DEVICE; U.S. Pat. No. 8,565,560 entitled LASER ILLUMINATION DEVICE; U.S. Pat. No. 6,115,152 entitled HOLOGRAPHIC ILLUMINATION SYSTEM; PCT Application No. PCT/GB2013/000005 entitled CONTACT IMAGE SENSOR USING SWITCHABLE BRAGG GRATINGS; PCT Application No. PCT/GB2012/000680 entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES; PCT Application No. PCT/GB2014/000197 entitled HOLOGRAPHIC WAVEGUIDE EYE TRACKER; PCT/GB2013/000210 entitled APPARATUS FOR EYE TRACKING; PCT Application No. GB2013/000210 entitled APPARATUS FOR EYE TRACKING; PCT/GB2015/000274 entitled HOLOGRAPHIC WAVEGUIDE OPTICAL TRACKER; U.S. Pat. No. 8,903,207 entitled SYSTEM AND METHOD OF EXTENDING VERTICAL FIELD OF VIEW IN HEAD UP DISPLAY USING A WAVEGUIDE COMBINER; U.S. Pat. No. 8,639,072 entitled COMPACT WEARABLE DISPLAY; U.S. Pat. No. 8,885,112 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY; U.S. Provisional Patent Application No. 62/390,271 entitled HOLOGRAPHIC WAVEGUIDE DEVICES FOR USE WITH UNPOLARIZED LIGHT; U.S. Provisional Patent Application No. 62/391,333 entitled METHOD AND APPARATUS FOR PROVIDING A POLARIZATION SELECTIVE HOLOGRAPHIC WAVEGUIDE DEVICE; U.S. Provisional Patent Application No. 62/493,578 entitled WAVEGUIDE DISPLAY APPARATUS; U.S. Provisional Patent Application No. 62/497,781 entitled APPARATUS FOR HOMOGENIZING THE OUTPUT FROM A WAVEGUIDE DEVICE; PCT Application No.: PCT/GB2016000181 entitled WAVEGUIDE DISPLAY; and PCT/GB2016/00005 entitled ENVIRONMENTALLY ISOLATED WAVEGUIDE DISPLAY.
The description will be more fully understood with reference to the following figures, which are presented as exemplary embodiments of the invention and should not be construed as a complete recitation of the scope of the invention, wherein:
Turning now to the drawings, systems and methods relating to near-eye display or head up display systems are shown according to various embodiments. A number of embodiments are directed to waveguide devices for use in near-eye display or head up display systems. A common complication existing in many waveguide devices is banding in the output illumination that affects its uniformity. Accordingly, various embodiments of waveguide devices having uniform output illumination are provided. In numerous embodiments of waveguide devices, a debanding optic is incorporated to eliminate or mitigate banding effects.
Many embodiments are also directed to holographic waveguide technology that can be advantageously utilized in waveguide devices. In some embodiments, the holographic waveguide technology is used for helmet mounted displays or head mounted displays (HMDs) and head up displays (HUDs). In several embodiments, holographic waveguide technology is used in many applications, including avionics applications and consumer applications (e.g., augmented reality glasses, etc.). In a number of embodiments, an eye is positioned within an exit pupil or an eye box of a display.
In many embodiments, waveguide devices provide pupil expansion in two orthogonal directions using a single waveguide layer. Uniformity of output is achieved, in accordance with various embodiments, by designing an output grating to have diffraction efficiency varying from a low value near an input end of the waveguide substrate to a high value at the furthest extremity of an output grating. In a number of embodiments, input image data is provided by a microdisplay external to a waveguide optical substrate and coupled to the substrate by means of an input grating. A microdisplay, in accordance with multiple embodiments, is a reflective array and illuminated via a beamsplitter. A reflected image light is collimated such that each pixel of the image provides a parallel beam in a unique direction.
In accordance with a number of embodiments, a waveguide device is coupling image content into a waveguide efficiently and in such a way that a waveguide image is free from chromatic dispersion and brightness non-uniformity. One way to prevent chromatic dispersion and to achieve better collimation is to use lasers. The use of lasers, however, suffer from pupil banding artifacts which manifest themselves in the output illumination causing disruption of the uniformity of the image. Banding artifacts are able to form when a collimated pupil is replicated (expanded) in a total internal reflection (TIR) waveguide. Banding occurs when some light beams diffracted out of the waveguide each time the beam interacts with the grating exhibit gaps or overlaps, leading to an illumination ripple. The degree of ripple is a function of field angle, waveguide thickness, and aperture thickness. As portrayed in the various embodiments described herein, it was found by experimentation and simulation that the effect of banding can be smoothed by dispersion with broadband sources such as light-emitting diodes (LEDs). LED illumination, however, is not entirely free from the banding problem, particularly for higher waveguide thickness to waveguide input-aperture ratios. Moreover, LED illumination tends to result in bulky input optics and an increase in the thickness of the waveguide device. Accordingly, a number of embodiments of waveguide devices described herein have a compact and efficient debanding optic for homogenizing the light output from holographs to prevent banding distortion.
Banding effects contribute to non-uniformity of an output illumination. As discovered in several prototype tests, a practical illumination from a waveguide device should achieve less than 20% and preferably not more than 10% non-uniformity to provide an acceptable viewable image. Achieving low non-uniformity requires tradeoffs against other system requirements, particularly image brightness. The tradeoffs are difficult to define in precise terms and are very much dependent on application. Since many optical techniques for reducing non-uniformity generally incur some light loss, output image brightness might be reduced. As the sensitivity of the human visual system to non-uniformity increases with light level, the problem of non-uniformity becomes more acute for displays, such as car HUDs, which require a high luminous flux to achieve high display to background scene contrasts. Accordingly, in some embodiments, extracted light has a spatial non-uniformity less than 10%. In a number of embodiments, extracted light has a spatial non-uniformity less than 20%.
Several embodiments of the invention will now be further described with reference to the accompanying drawings. For the purposes of explaining the various embodiments of the invention, well-known features of optical technology known to those skilled in the art of optical design and visual displays may have been omitted or simplified in order not to obscure the basic principles of the various embodiments. Description of the various embodiments will be presented using terminology commonly employed by those skilled in the art of optical design. Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to various devices. In the following description, the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of electromagnetic radiation along rectilinear trajectories. The term light and illumination may be used in relation to the visible and infrared bands of the electromagnetic spectrum. As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments.
Waveguide Devices
In accordance with a number of embodiments, a waveguide device includes at least one optical substrate, at least one light source, at least one light coupler to couple the light from the source into the optical substrate, and at least one light extractor to extract the light from the optical substrate to form an output illumination. Depicted in
In a number of embodiments, a waveguide device includes an input image generator, which further includes an input image generator having a light source, a microdisplay panel, and optics for collimating the light. In the description of some embodiments, an input generator is referred to as a picture generation unit (PGU). In some embodiments, a source may be configured to provide general illumination that is not modulated with image information. In many embodiments, an input image generator projects the image displayed on the microdisplay panel such that each display pixel is converted into a unique angular direction within the substrate waveguide. In various embodiments, collimation optics include at least a lens and mirrors. In many embodiments, lens and mirrors are diffractive. In some embodiments, a light source is at least one laser. In numerous embodiments, a light source is at least one LED. In many embodiments, various combinations of different light sources are used within an input image generator.
It should be understood that a number of input image generators may be used in accordance with various embodiments of the invention, such as, for example, those described in U.S. patent application Ser. No. 13/869,866 entitled HOLOGRAPHIC WIDE ANGLE DISPLAY and U.S. patent application Ser. No. 13/844,456 entitled TRANSPARENT WAVEGUIDE DISPLAY. In many embodiments, an input image generator contains a beamsplitter for directing light onto the microdisplay and transmitting the reflected light towards the waveguide. In several embodiments, a beamsplitter is a grating recorded in holographic polymer dispersed liquid crystal (HPDLC). In numerous embodiments, a beam splitter is a polarizing beam splitter cube. In some embodiments, an input image generator incorporates a despeckler. Any appropriate despeckler can be used in various embodiments, such as those, for example, described in U.S. Pat. No. 8,565,560 entitled LASER ILLUMINATION DEVICE.
In a number of embodiments, a light source further incorporates one or more lenses for modifying an illumination beam's angular characteristics. In many embodiments, an image source is a microdisplay or laser-based display. Several embodiments of light sources utilize LEDs, which may provide better uniformity than laser. If laser illumination is used, the risk of illumination banding effects are higher, but may still be eliminated or mitigated in accordance with various embodiments as described herein. In numerous embodiments, light from a light source is polarized. In multiple embodiments, an image source is a liquid crystal display (LCD) microdisplay or liquid crystal on silicon (LCoS) microdisplay.
In some embodiments, an input image generator optics includes a polarizing beam splitter cube. In many embodiments, an input image generator optics includes an inclined plate to which a beam splitter coating has been applied. In a number of embodiments, an input image generator optics incorporates a switchable Bragg grating (SBG), which acts as a polarization selective beam splitter. Examples of input image generator optics incorporating a SBG are disclosed in U.S. patent application Ser. No. 13/869,866 entitled HOLOGRAPHIC WIDE ANGLE DISPLAY, and U.S. patent application Ser. No. 13/844,456 entitled TRANSPARENT WAVEGUIDE DISPLAY. In many embodiments, an input image generator optics contains at least one of a refractive component and curved reflecting surfaces or a diffractive optical element for controlling the numerical aperture of the illumination light. In multiple embodiments, an input image generator contains spectral filters for controlling the wavelength characteristics of the illumination light. In several embodiments, an input image generator optics contains apertures, masks, filter, and coatings for controlling stray light. In some embodiments, a microdisplay incorporates birdbath optics.
Returning to an embodiment depicted in
In a multitude of embodiments, a waveguide device incorporates a debanding optic capable of shifting a pupil to configure the light coupled into the waveguide such that the input grating has an effective input aperture which is a function of the TIR angle. The effect of the debanding optic is that successive light extractions from the waveguide by the output grating integrate to provide a substantially flat illumination profile for any light incidence angle at the input grating. In some embodiments, a debanding optic is implemented by combining various types of optical beam-modifying layers, including (but not limited to) gratings, partially reflecting films, liquid crystal alignment layers, isotropic refractive layers and gradient index (GRIN) structures. It should be understood, that the term “beam-modifying” refers to the variation of amplitude, polarization, phase, and wavefront displacement in 3D space as a function of incidence light angle. In each case, beam-modifying layers, in accordance with several embodiments, provide an effective aperture that gives uniform extraction across the output grating for any light incidence angle at the input grating. In many embodiments, beam-modifying layers are used in conjunction with a means for controlling the numerical aperture of the input light as a function of input angle. In some embodiments, beam-modifying layers are used in conjunction with techniques for providing wavelength diversity.
Input Couplers and Extractors Utilized in Waveguide Devices
Waveguide devices are currently of interest in a range of display and sensor applications. Although much of the earlier work on devices has been directed at reflection holograms, transmission, devices are proving to be much more versatile as optical system building blocks. Accordingly, a number of embodiments are directed to the use of gratings in waveguide devices, which may be used for input or output of pupil. In many embodiments, an input grating is a type of input coupler of light to couple light from a source into a waveguide. In numerous embodiments, an output grating is a type of light extractor of light to extract light from a waveguide to form an output illumination. In several embodiments, waveguide devices utilize a Bragg grating (also referred to as a volume grating). Bragg gratings have high efficiency with little light being diffracted into higher orders. The relative amount of light in the diffracted and zero order can be varied by controlling the refractive index modulation of the grating, a property that is used to make lossy waveguide gratings for extracting light over a large pupil.
As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments. For example, in some embodiments an input grating and/or output grating separately comprise two or more gratings multiplexed into a single layer. It is well established in the literature of holography that more than one holographic prescription can be recorded into a single holographic layer. Methods for recording such multiplexed holograms are well known to those skilled in the art. In some embodiments, an input grating and/or output grating separately comprise two overlapping gratings layers that are in contact or vertically separated by one or more thin optical substrate. In many embodiments, grating layers are sandwiched between flanking glass or plastic substrates. In several embodiments, two or more gratings layers may form a stack within which total internal reflection occurs at the outer substrate and air interfaces. In a number of embodiments, a waveguide device may comprise just one grating layer. In some embodiments, electrodes are applied to faces of substrates to switch gratings between diffracting and clear states. A stack, in accordance with numerous embodiments, further includes additional layers such as beam splitting coatings and environmental protection layers.
In numerous embodiments, a grating layer is broken up into separate layers. A number of layers are laminated together into a single waveguide substrate, in accordance with various embodiments. In some embodiments, a grating layer is made of several pieces including an input coupler, a fold grating, and an output grating (or portions thereof) that are laminated together to form a single substrate waveguide. In many embodiments, pieces of waveguide devices are separated by optical glue or other transparent material of refractive index matching that of the pieces. In a multitude of embodiments, a grating layer is formed via a cell making process by creating cells of the desired grating thickness and vacuum filling each cell with Switchable Bragg Grating (SBG) material for each of an input coupler, a fold grating, and an output grating. In a number of embodiments, a cell is formed by positioning multiple plates of glass with gaps between the plates of glass that define the desired grating thickness for an input coupler, a fold grating, and an output grating. In many embodiments, one cell may be made with multiple apertures such that the separate apertures are filled with different pockets of SBG material. Any intervening spaces, according to various embodiments, are separated by a separating material (e.g., glue, oil, etc.) to define separate areas. In multiple embodiments, SBG material is spin-coated onto a substrate and then covered by a second substrate after curing of the material. By using a fold grating, a waveguide display advantageously requires fewer layers than previous systems and methods of displaying information according to some embodiments. In addition, by using a fold grating, light can travel by total internal refection within the waveguide in a single rectangular prism defined by the waveguide outer surfaces while achieving dual pupil expansion. In many embodiments, an input coupler and gratings can be created by interfering two waves of light at an angle within the substrate to create a holographic wave front, thereby creating light and dark fringes that are set in the waveguide substrate at a desired angle. In numerous embodiments, a grating in a given layer is recorded in stepwise fashion by scanning or stepping the recording laser beams across the grating area. In some embodiments, gratings are recorded using mastering and contact copying process currently used in the holographic printing industry.
Input and output gratings, in accordance with many embodiments, are designed to have common surface grating pitch. In some embodiments, an input grating combines a plurality of gratings orientated such that each grating diffracts a polarization of the incident unpolarized light into a waveguide path. In many embodiments, an output grating combines a plurality of gratings orientated such that the light from the waveguide paths is combined and coupled out of the waveguide as unpolarized light. Each grating is characterized by at least one grating vector (or K-vector) in 3D space, which in the case of a Bragg grating is defined as the vector normal to the Bragg fringes. A grating vector determines an optical efficiency for a given range of input and diffracted angles.
One important class of gratings is known as Switchable Bragg Gratings (SBG), which are utilized in various waveguide devices in accordance with many embodiments. Typically, a holographic polymer dispersed liquid crystal (HPDLC) is used in SBGs. In many embodiments, HPDLC includes a mixture liquid crystal (LC), monomers, photoinitiator dyes, and coinitiators. Often, a mixture also includes a surfactant. The patent and scientific literature contains many examples of material systems and processes that may be used to fabricate SBGs. Two fundamental patents are: U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. Both filings describe monomer and liquid crystal material combinations suitable for fabricating SBG devices. One of the known attributes of transmission SBGs is that the LC molecules tend to align normal to the grating fringe planes. The effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (i.e., light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (i.e., light with the polarization vector normal to the plane of incidence). Transmission SBGs may not be used at near-grazing incidence as the diffraction efficiency of any grating for P polarization falls to zero when the included angle between the incident and reflected light is small.
In a number of embodiments, SBGs are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes for applying an electric field across the film. In numerous embodiments, electrodes are made at least in part by transparent indium tin oxide films. A volume phase grating can then be recorded by illuminating liquid crystal material (often referred to as the syrup) with two mutually coherent laser beams, which interfere to form a slanted fringe grating structure, in accordance with multiple embodiments. During a recording process, monomers polymerize and the mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer, resulting in a HPDLC. In accordance with several embodiments, alternating liquid crystal-rich and liquid crystal-depleted regions of an HPDLC device form fringe planes of a grating. A resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled, in accordance with various embodiments, by the magnitude of the electric field applied across the film. When an electric field is applied to a grating via transparent electrodes, a natural orientation of the LC droplets is changed, reducing the refractive index modulation of the fringes and dropping a hologram diffraction efficiency to very low levels. Typically, SBG Elements are switched clear in 30 μs, with a longer relaxation time to switch ON. Note that the diffraction efficiency of a device can be adjusted, in accordance with many embodiments, by means of applied voltage over a continuous range. A device exhibits near 100% efficiency when no voltage is applied and near-zero efficiency when a sufficiently high voltage is applied. In certain embodiments, of HPDLC devices, magnetic fields may be used to control the LC orientation. In certain embodiments of HPDLC devices, phase separation of LC material from polymer may be accomplished to such a degree that no discernible droplet structure results. In a number of embodiments, a SBG is also used as a passive grating, which may provide a benefit of a uniquely high refractive index modulation.
According to numerous embodiments, SBGs are used to provide transmission or reflection gratings for free space applications. Various embodiments of SBGs are implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. In many embodiments, parallel glass plates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure. Light is coupled out of a SBG, in accordance with several embodiments, when a switchable grating diffracts light at an angle beyond the TIR condition.
In many embodiments of waveguide devices based on SBGs, gratings are formed in a single layer sandwiched by transparent substrates. In a number of embodiments, a waveguide is just one grating layer. In various embodiments that incorporate switchable gratings, transparent electrodes are applied to opposing surfaces of the substrate layers sandwiching the switchable grating. In some embodiments, cell substrates are fabricated from glass. An exemplary glass substrate is standard Corning Willow glass substrate (index 1.51), which is available in thicknesses down to 50 microns. In a number of embodiments, cell substrates are optical plastics.
It should be understood that Bragg gratings could also be recorded in other materials. In several embodiments, SBGs are recorded in a uniform modulation material, such as POLICRYPS or POLIPHEM having a matrix of solid liquid crystals dispersed in a liquid polymer. In multiple embodiments, SBGs are non-switchable (i.e., passive). Non-switchable SBGs may have the advantage over conventional holographic photopolymer materials of being capable of providing high refractive index modulation due to its liquid crystal component. Exemplary uniform modulation liquid crystal-polymer material systems are disclosed in United State Patent Application Publication No. US2007/0019152 by Caputo et al and PCT Application No.: PCT/EP2005/006950 by Stumpe et al. both of which are incorporated herein by reference in their entireties. Uniform modulation gratings are characterized by high refractive index modulation (and hence high diffraction efficiency) and low scatter. In many embodiments, at least one grating is a surface relief grating. In some embodiments at least one grating is a thin (or Raman-Nath) hologram.
In multiple embodiments, gratings are recorded in a reverse mode HPDLC material. Reverse mode HPDLC differs from conventional HPDLC in that the grating is passive when no electric field is applied and becomes diffractive in the presence of an electric field. Reverse mode HPDLC may be based on any of the recipes and processes disclosed in PCT Application No.: PCT/GB2012/000680, entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES. A grating may be recorded in any of the above material systems, in accordance of various embodiments, but used in a passive (non-switchable) mode. The fabrication process is identical to that used for switchable gratings, but with an electrode coating stage being omitted. LC polymer material systems are highly desirable in view of their high index modulation. In some embodiments, gratings are recorded in HPDLC but are not switchable.
In some embodiments, a grating encodes optical power for adjusting the collimation of the output. In many embodiments, an output image is at infinity. In numerous embodiments, an output image may be formed at distances of several meters from an eye box.
In several embodiments, an input grating may be replaced by another type of input coupler. In particular embodiments, an input grating is replaced with a prism or reflective surface. In a number of embodiments, an input coupler can be a holographic grating, such as a switchable or non-switchable SBG grating. The input coupler is configured to receive collimated light from a display source and to cause the light to travel within the waveguide via total internal reflection between the first surface and second surfaces.
It is well established in the literature of holography that more than one holographic prescriptions can be recorded into a single holographic layer. Methods for recording such multiplexed holograms are well known to those skilled in the art. In some embodiments, at least one of an input or output grating combines two or more angular diffraction prescriptions to expand the angular bandwidth. In many embodiments, at least one of the input or output gratings combines two or more spectral diffraction prescriptions to expand the spectral bandwidth. In numerous embodiments, a color multiplexed grating is used to diffract two or more primary colors.
Many embodiments, as described herein, are operated in monochrome. A color waveguide, however according to various embodiments of the invention, includes a stack of monochrome waveguides. In a number of embodiments, a waveguide device uses red, green and blue waveguide layers. In several embodiments, a waveguide device uses red and blue/green layers. In some embodiments, gratings are all passive, that is, non-switchable. In multiple embodiments, at least one grating is switchable. In a number of embodiments, input gratings in each layer are switchable to avoid color crosstalk between waveguide layers. In some embodiments, color crosstalk is avoided by disposing dichroic filters between the input grating regions of the red and blue and the blue and green waveguides.
In a number of embodiments, light is characterized by a wavelength bandwidth. In many embodiments, a waveguide device is capable of diversifying the wavelength bandwidth of light. In accordance to various embodiments, Bragg gratings, which are inherently spectral bandwidth limited devices, are most efficiently utilized with narrow band sources such as LEDs and lasers. A Bragg grating, in accordance to many embodiments, diffracts two different wavelength bands with high efficiency when the grating prescription and the incident light ray angles satisfy the Bragg equation. Full color waveguides, in accordance to multiple embodiments, utilize separate specific wavelength layers, such as, red, green and blue diffracting waveguide layers. Two-layer solutions in which one layer diffracts two of the three primary colors are used in numerous embodiments. In many embodiments, a natural spectral bandwidth of a Bragg grating is adequate for minimizing color cross talk. For tighter control of color crosstalk, however, additional components such as dichroic filters and narrow band filters integrated between waveguide layers and, typically, overlapping the input gratings may be used.
Debanding Optics
In numerous embodiments, a debanding optic is an effective input aperture such that when the optical substrate has a thickness D, the input aperture is configured to provide a TIR angle U in the optical substrate, and the angle U is calculated by 2D tan (U). Provided in
In some embodiments, a debanding optic provides spatial variation of the light along a TIR path of at least one of diffraction efficiency, optical transmission, polarization or birefringence. A typical spatial variation (120) is provided in the chart
In some embodiments, a debanding optic is at least one grating configured to have multiple gratings, such that each grating provides a small pupil shift to eliminate or mitigate banding. In many embodiments, a stack of multiple gratings achieves a small pupil shift when separations between the gratings within the stack are designed to provide a pupil shift for each angle. In a number of embodiments, gratings capable of a pupil shift are separated by transparent substrates. In several embodiments, gratings capable of a pupil shift are passive. Alternatively, in some embodiments, gratings are switched on when a voltage is applied. In some embodiments, multiple gratings arranged to have lateral relative displacements provides a pupil shift. In numerous embodiments, multiple gratings are configured in a two-dimensional array with different sub arrays of grating elements being switched in to their diffraction states according to an incidence angle. In some embodiments, gratings are configured as stacks of arrays. In various embodiments, separate gratings are provided for different wavelength bands. In a number of embodiments, a grating is multiplexed.
In many embodiments, gratings have grating parameters that vary across the principal plane of a waveguide. In some embodiments, a diffraction efficiency is varied to control the amount of light diffracted versus the amount of light transmitted down the waveguide as zero order light, thereby enabling the uniformity of light extracted from the waveguide to be fine-tuned. In several embodiments, K-vectors of at least one grating has rolled K-vectors which have directions optimized to fine tune the uniformity of light extracted from the waveguide. In various embodiments, an index modulation of gratings is varied to fine tune the uniformity of light extracted from the waveguide. In numerous embodiments, a thickness of the gratings is varied to fine tune the uniformity of light extracted from the waveguide.
In a number of embodiments, a debanding optic is at least one grating configured as a stacked switchable grating that turns on when a voltage is applied, shifting pupil to eliminate or mitigate banding effects. Depicted in
In some embodiments, a debanding optic is at least one grating configured as an array of switchable grating elements that can turn on a specific element when a voltage is applied, shifting pupil to eliminate or mitigate banding effects. Depicted in
In various embodiments, a grating has a plurality of rolled K-vectors. A K-vector is a vector aligned normal to the grating planes (or fringes) which determines the optical efficiency for a given range of input and diffracted angles. Rolling K-vectors, in accordance with a number of embodiments, allows an angular bandwidth of a grating to be expanded without the need to increase the waveguide thickness. Depicted in
In numerous embodiments, a debanding optic is at least one grating configured to be a plurality of passive grating layers configured to shift pupil to eliminate or mitigate banding effects. When a waveguide device incorporates multiple passive grating layers, in accordance with various embodiments, the basic architecture is similar to some of the embodiments that incorporate active grating layers (e.g., see
In some embodiments, a waveguide device includes a fold grating for providing exit pupil expansion. It should be understood that various fold gratings may be used in accordance with various embodiments of the invention. Examples of various fold gratings that may be used in a multitude of embodiments are disclosed in PCT Application No. PCT/GB2016000181 entitled WAVEGUIDE DISPLAY or as described in other references cited herein. A fold grating, in accordance of several embodiments, incorporates multiple gratings for pupil shifting to eliminate or mitigate banding effects, with each grating providing a small pupil shift.
In many embodiments, a debanding optic is one or more index layers disposed within an optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects. In some embodiments, at least one index layer is a GRIN medium. It should be understood that various GRIN mediums may be used in accordance with various embodiments of the invention, such as the examples of various GRIN mediums that are described in U.S. Provisional Patent Application No. 62/123,282 entitled NEAR EYE DISPLAY USING GRADIENT INDEX OPTICS and U.S. Provisional Patent Application No. 62/124,550 entitled WAVEGUIDE DISPLAY USING GRADIENT INDEX OPTICS.
In a number of embodiments, a debanding optic is one or more index layers disposed adjacent to at least one reflecting surface of an edge of an optical substrate such that the one or more layers are configured to provide pupil shifting to eliminate or mitigate banding effects. Depicted in
In several embodiments, a debanding optic is an input grating having a leading edge able to couple incident light such that a unique displacement of a ray bundle of the light relative to the leading edge of the input grating is provided by the input grating for any given incident light direction, shifting pupil to eliminate or mitigate banding effects. Depicted in
In many embodiments, a debanding optic is an input grating configured to have a variation of diffraction efficiencies such that a plurality of collimated incident ray paths of the incident light is diffracted into different TIR ray paths, as determined by a ray path input angle, such that a projected pupil is capable of forming at a unique location within the optical substrate for each of the plurality of collimated incident ray paths to eliminate or mitigate banding effects. Depicted in
In some embodiments, a variation of diffraction efficiencies varies along a principal waveguide direction to provide, at least in part, pupil shift to eliminate or mitigate banding effects. In many embodiments, a variation of diffraction efficiencies varies in two dimensions over the aperture of the input grating.
In some embodiments, a debanding optic is a partially reflecting layer disposed within an optical substrate such that the partially reflecting layer separates incident light into transmitted and reflected light, shifting pupil to eliminate or mitigate banding effects. Depicted in
In numerous embodiments, a debanding optic is a polarization modifying layer disposed within an optical substrate such that the polarization modifying layer separates incident light into transmitted and reflected light, shifting pupil to eliminate or mitigate banding effects. For example,
In many embodiments, a debanding optic is at least one grating configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, eliminating or mitigating banding effects. In several embodiments, a debanding optic includes at least one grating having crossed slant gratings used in conjunction with at least one fold grating exit pupil expander configured to provide a pupil shift to eliminate or mitigate banding effects. Depicted in
In several embodiments, a debanding optic is a system of gratings, such that an input grating and an output grating each combine crossed gratings with peak diffraction efficiency for orthogonal polarizations states. In some embodiments, polarization states created by input and output gratings are S-polarized and P-polarized. In a number of embodiments, polarization states created by input and output gratings are opposing senses of circular polarization. Several embodiments utilize gratings recorded in liquid crystal polymer systems, such as SBGs, which may have an advantage owing to their inherent birefringence and exhibiting strong polarization selectivity. It should be noted, however, that other grating technologies that can be configured to provide unique polarization states may be used and still fall within various embodiments of the invention.
Returning to
In several embodiments, a debanding optic is an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil to eliminate or mitigate banding effects. Depicted in
In several embodiments, a microdisplay is a reflective device. In some embodiments, a microdisplay is a transmission device, such as, for example, a transmission liquid crystal on silicon (LCoS) device. In many embodiments, an input image generator has a transmission microdisplay panel with a backlight and a variable NA component. When a backlight is employed, in accordance with various embodiments, the illuminated light typically has a uniform NA across, illuminating a back surface of a microdisplay, which is propagated through a variable NA component and converted into an output image modulated light with NA angles varying along a principal axis of the microdisplay.
In a number of embodiments, an emissive display is employed in a microdisplay. Examples of emissive displays for use within a microdisplay include, but not limited to, LED arrays and light emitting polymers arrays. In some embodiments, an input image generator incorporates an emissive microdisplay and a spatially-varying NA component. Light from a microdisplay employing an emissive display, in accordance with various embodiments, typically has a uniform NA across the emitting surface of the display, illuminates the spatially-varying NA component and is converted into an output image modulated light with NA angles varying across the display aperture.
In many embodiments, a debanding optic is a plurality of grating layers within at least one grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in pupil shift to eliminate or mitigate banding effects. Depicted in
In several embodiments, a debanding optic is the input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to eliminate or mitigate banding effects. In many embodiments, individual grating elements are designed to diffract light incident in predefined input beam angular ranges into corresponding TIR angular ranges. Depicted in
In numerous embodiments, a debanding optic is a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization and birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to eliminate or mitigate banding effects. In several embodiments, a plurality of refractive index layers incorporates adhesives of different indices, especially to influence high angle reflections. In some embodiments, a plurality of refractive index layers incorporate layers, such as alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, or birefringent stretched polymer layers. Depicted in
In some embodiments, a debanding optic is a microdisplay projecting spatially varied NAs that shift pupil to eliminate or mitigate banding effects. In several embodiments, NA can be varied in two orthogonal directions. Depicted in
In many embodiments, a debanding optic is a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are eliminated or mitigated. In a number of embodiments, an exit pupil changes position on an input grating. This technique, in accordance with various embodiments, can be used to address banding in one beam expansion axis. Depicted in
In several embodiments, a debanding optic is a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along an optical substrate for each direction of incident light, such that banding effects are mitigated along one expansion axis. Depicted in
In numerous embodiments, a debanding optic is a prism coupled to an optical substrate, such that a linear relationship between the angles of an exit pupil from a light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U). In many embodiments, an input grating is replaced with a coupling prism. In several embodiments, input light is provided through a tilted PGU pupil. By selecting a prism angle and cooperative PGU pupil tilt, in accordance with various embodiments, it is possible to achieve an approximately linear relationship between the angles out of the PGU exit pupil and the TIR angles in the waveguide while meeting a debanding condition when the effective input aperture for a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U), over the entire field of view range. Depicted in
In some embodiments, a debanding optic is a light-absorbing film adjacent to the edges of an optical substrate such that portions of incident light, that would otherwise give rise to banding, are removed, eliminating or mitigating banding effects. Depicted in
In many embodiments, a debanding optic is a first light-absorbing film disposed adjacent to the edges an input substrate containing an input grating and disposed adjacent to an optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U). Depicted in
In some embodiments utilizing an input substrate, an input grating is implemented in separate cells bonded to the main waveguide, thus simplifying indium tin oxide (ITO) coating. In many embodiments utilizing an input substrate, beam shifting techniques based on forming a projected stop and tilting the PGU exit pupil are incorporated, to provide debanding in orthogonal directions.
Depicted in
In some embodiments, a prism is separated from a waveguide by a small air gap. In many embodiments, a prism is separated from a waveguide by a thin layer of low index material.
Returning to
In a number of embodiments incorporating color waveguides, projected stops are required to be created in different waveguides, each on a different plane, such that the waveguides form a stack. Misalignment of these stops leads to misregistration of the color components of the output images from the waveguide and hence color banding. One solution, in accordance with various embodiments, is a waveguide input stop with outer dichroic portions to provide some compensation for the color banding and an inner phase compensation coating (e.g., SiO2) to compensate for the phase shift due to the input stop. In some embodiments, a waveguide input stop has outer dichroic portions, but lacks a phase compensation coating. A waveguide input stop, in accordance with several embodiments, is formed on a thin transparent plate adjacent to an input surface of the waveguide, overlapping an input grating. In multiple embodiments, a waveguide input stop is disposed within a layer inside a grating. In many embodiments, a waveguide input stop is disposed directly adjacent to a waveguide external surface.
When pupils project at different positions along an optical substrate, in accordance with various embodiments, color display application projected stops are created in different planes inside separate red, green and blue transmitting optical substrate layers. In some embodiments, a waveguide input stop includes outer dichroic portions to shift pupil and eliminate or mitigate color banding and an inner phase compensation coating in inner portions to compensate for the phase shift. In many embodiments, an inner phase compensation coating is SiO2. Depicted in
In numerous embodiments, a debanding optic is an input grating configured such that light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect. Displacement of the light results in a portion of the light beam to fall outside the input grating apertures and therefore not being diffracted into a TIR path inside a waveguide, which varies with field angle. In several embodiments, non-diffracted light can be trapped by a suitable absorbing film. In many embodiments, a beam width can be tailored by displacement to meet the debanding condition a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U). Depicted in
It should be understood, that the various embodiments of debanding described herein, can be combined. In several embodiments, embodiments for debanding can be combined with a technique to vary the diffraction efficiency of the input grating along a principal waveguide direction. Furthermore, in many embodiments, embodiments of debanding are performed in each beam expansion direction. Accordingly, in some embodiments, two or more of embodiments employing debanding solutions are combined to provide debanding in two dimensions. In a number of embodiments in which a waveguide device operates in two dimensions, the device includes fold gratings, which allow for debanding in two dimensions.
In a number of embodiments, a waveguide display is integrated within a window, for example, a windscreen-integrated HUD for road vehicle applications. It should be understood that any appropriate window-integrated display may be integrated into a waveguide display and fall within various embodiments of the invention. Examples of window-integrated displays are described in U.S. Provisional Patent Application No. 62/125,064 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION IN WINDOWS and U.S. Provisional Patent Application No. 62/125,066 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION IN WINDOWS.
In many embodiments, a waveguide display includes gradient index (GRIN) wave-guiding components for relaying image content between an input image generator and the waveguide. Exemplary GRIN wave-guiding components are described in U.S. Provisional Patent Application No.: 62/123,282 entitled NEAR EYE DISPLAY USING GRADIENT INDEX OPTICS and U.S. Provisional Patent Application No. 62/124,550 entitled WAVEGUIDE DISPLAY USING GRADIENT INDEX OPTICS. In several embodiments, a waveguide display incorporates a light pipe for providing beam expansion in one direction. Examples of light pipes are described in U.S. Provisional Patent Application No. 62/177,494 entitled WAVEGUIDE DEVICE INCORPORATING A LIGHT PIPE. In some embodiments, the input image generator may be based on a laser scanner as disclosed in U.S. Pat. No. 9,075,184 entitled COMPACT EDGE ILLUMINATED DIFFRACTIVE DISPLAY. Various embodiments of the invention are used in wide range of displays, including (but not limited t) HMDs for AR and VR, helmet mounted displays, projection displays, heads up displays (HUDs), Heads Down Displays, (HDDs), autostereoscopic displays and other 3D displays. A number of the embodiments are applied in waveguide sensors such as, for example, eye trackers, fingerprint scanners, LIDAR systems, illuminators and backlights.
In some embodiments, a waveguide device incorporates an eye tracker. It should be understood that a number of eye trackers can be used and still fall within various embodiments of the invention, including eye trackers described in PCT/GB2014/000197 entitled HOLOGRAPHIC WAVEGUIDE EYE TRACKER, PCT/GB2015/000274 entitled HOLOGRAPHIC WAVEGUIDE OPTICAL TRACKER, and PCT Application No.: GB2013/000210 entitled APPARATUS FOR EYE TRACKING.
It should be emphasized that the drawings are exemplary and that the dimensions have been exaggerated. For example, thicknesses of the SBG layers have been greatly exaggerated. Optical devices based on any of the above-described embodiments may be implemented using plastic substrates using the materials and processes disclosed in PCT Application No.: PCT/GB2012/000680, entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES. In some embodiments, the dual expansion waveguide display may be curved.
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (for example, variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, positions of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
As can be inferred from the above discussion, the above-mentioned concepts can be implemented in a variety of arrangements in accordance with embodiments of the invention. Accordingly, although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
This application is a continuation of U.S. patent application Ser. No. 16/465,834, entitled “Waveguide Device with Uniform Output Illumination” to Waldern et al., filed May 31, 2019, which is a national stage of PCT Patent Application No. PCT/US2018/015553, entitled “Waveguide Device with Uniform Output Illumination” to Waldern et al., filed Jan. 26, 2018, which claims priority to U.S. Provisional Application No. 62/499,423, entitled “Waveguide Device with Uniform Output Illumination” to Waldern et al., filed Jan. 26, 2017, and claims priority to U.S. Provisional Application No. 62/497,781, entitled “Apparatus for Homogenizing the Output from a Waveguide Device” to Waldern et al., filed Dec. 2, 2016, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1043938 | Huttenlocher | Nov 1912 | A |
2141884 | Sonnefeld | Dec 1938 | A |
3482498 | Becker | Dec 1969 | A |
3620601 | Leonard et al. | Nov 1971 | A |
3741716 | Johne et al. | Jun 1973 | A |
3804496 | Crane et al. | Apr 1974 | A |
3843231 | Borel et al. | Oct 1974 | A |
3851303 | Muller | Nov 1974 | A |
3885095 | Wolfson et al. | May 1975 | A |
3940204 | Withrington | Feb 1976 | A |
3965029 | Arora | Jun 1976 | A |
3975711 | McMahon | Aug 1976 | A |
4028725 | Lewis | Jun 1977 | A |
4035068 | Rawson | Jul 1977 | A |
4038110 | Feng | Jul 1977 | A |
4066334 | Fray et al. | Jan 1978 | A |
4082432 | Kirschner | Apr 1978 | A |
4099841 | Ellis | Jul 1978 | A |
4133152 | Penrose | Jan 1979 | A |
4178074 | Heller | Dec 1979 | A |
4218111 | Withrington et al. | Aug 1980 | A |
4232943 | Rogers | Nov 1980 | A |
4248093 | Andersson et al. | Feb 1981 | A |
4251137 | Knop et al. | Feb 1981 | A |
4309070 | St. Leger Searle | Jan 1982 | A |
4322163 | Schiller | Mar 1982 | A |
4386361 | Simmonds | May 1983 | A |
4389612 | Simmonds et al. | Jun 1983 | A |
4403189 | Simmonds | Sep 1983 | A |
4403827 | Bryan et al. | Sep 1983 | A |
4418993 | Lipton | Dec 1983 | A |
4472037 | Lipton | Sep 1984 | A |
4523226 | Lipton et al. | Jun 1985 | A |
4544267 | Schiller | Oct 1985 | A |
4562463 | Lipton | Dec 1985 | A |
4566758 | Bos et al. | Jan 1986 | A |
4583117 | Lipton et al. | Apr 1986 | A |
4636237 | Geppaard | Jan 1987 | A |
4643515 | Upatnieks | Feb 1987 | A |
4647967 | Kirschner et al. | Mar 1987 | A |
4688900 | Doane et al. | Aug 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4714320 | Banbury | Dec 1987 | A |
4728547 | Vaz et al. | Mar 1988 | A |
4729640 | Sakata et al. | Mar 1988 | A |
4741926 | White et al. | May 1988 | A |
4743083 | Schimpe | May 1988 | A |
4749256 | Bell et al. | Jun 1988 | A |
4765703 | Suzuki et al. | Aug 1988 | A |
4775218 | Wood et al. | Oct 1988 | A |
4791788 | Simmonds et al. | Dec 1988 | A |
4792850 | Liptoh et al. | Dec 1988 | A |
4794021 | Potter | Dec 1988 | A |
4799765 | Ferrer | Jan 1989 | A |
4811414 | Fishbine et al. | Mar 1989 | A |
4848093 | Simmonds et al. | Jul 1989 | A |
4852988 | Velez et al. | Aug 1989 | A |
4854688 | Hayford et al. | Aug 1989 | A |
4860294 | Winzer et al. | Aug 1989 | A |
4884876 | Lipton et al. | Dec 1989 | A |
4890902 | Doane et al. | Jan 1990 | A |
4928301 | Smoot | May 1990 | A |
4933976 | Fishbine et al. | Jun 1990 | A |
4938568 | Margerum et al. | Jul 1990 | A |
4946245 | Chamberlin et al. | Aug 1990 | A |
4960311 | Moss et al. | Oct 1990 | A |
4964701 | Dorschner et al. | Oct 1990 | A |
4967268 | Lipton et al. | Oct 1990 | A |
4970129 | Ingwall et al. | Nov 1990 | A |
4971719 | Vaz et al. | Nov 1990 | A |
4994204 | Doane et al. | Feb 1991 | A |
5004323 | West | Apr 1991 | A |
5007711 | Wood et al. | Apr 1991 | A |
5009483 | Rockwell et al. | Apr 1991 | A |
5011624 | Yamagishi et al. | Apr 1991 | A |
5016953 | Moss et al. | May 1991 | A |
5033814 | Brown et al. | Jul 1991 | A |
5035734 | Honkanen et al. | Jul 1991 | A |
5053834 | Simmonds | Oct 1991 | A |
5063441 | Lipton et al. | Nov 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5079416 | Filipovich | Jan 1992 | A |
5096282 | Margerum et al. | Mar 1992 | A |
5099343 | Margerum et al. | Mar 1992 | A |
5109465 | Klopotek | Apr 1992 | A |
5110034 | Simmonds et al. | May 1992 | A |
5117285 | Nelson et al. | May 1992 | A |
5117302 | Lipton | May 1992 | A |
5119454 | McMahon et al. | Jun 1992 | A |
5124821 | Antier et al. | Jun 1992 | A |
5138687 | Horie et al. | Aug 1992 | A |
5139192 | Simmonds et al. | Aug 1992 | A |
5142357 | Lipton et al. | Aug 1992 | A |
5142644 | Vansteenkiste et al. | Aug 1992 | A |
5148302 | Nagano et al. | Sep 1992 | A |
5150234 | Takahashi et al. | Sep 1992 | A |
5151958 | Honkanen | Sep 1992 | A |
5153751 | Ishikawa et al. | Oct 1992 | A |
5159445 | Gitlin et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5166989 | Kurdi et al. | Nov 1992 | A |
5181133 | Lipton | Jan 1993 | A |
5183545 | Branca et al. | Feb 1993 | A |
5187597 | Kato et al. | Feb 1993 | A |
5193000 | Lipton et al. | Mar 1993 | A |
5198912 | Ingwall et al. | Mar 1993 | A |
5198914 | Arns | Mar 1993 | A |
5200861 | Moskovich et al. | Apr 1993 | A |
5210624 | Matsumoto et al. | May 1993 | A |
5210801 | Fournier et al. | May 1993 | A |
5218360 | Goetz et al. | Jun 1993 | A |
5218480 | Moskovich et al. | Jun 1993 | A |
5224198 | Jachimowicz et al. | Jun 1993 | A |
5225918 | Taniguchi et al. | Jul 1993 | A |
5239372 | Lipton | Aug 1993 | A |
5240636 | Doane et al. | Aug 1993 | A |
5241337 | Betensky et al. | Aug 1993 | A |
5242476 | Bartel et al. | Sep 1993 | A |
5243413 | Gitlin et al. | Sep 1993 | A |
5251048 | Doane et al. | Oct 1993 | A |
5264950 | West et al. | Nov 1993 | A |
5268792 | Kreitzer et al. | Dec 1993 | A |
5284499 | Harvey et al. | Feb 1994 | A |
5289315 | Makita et al. | Feb 1994 | A |
5295208 | Caulfield et al. | Mar 1994 | A |
5296967 | Moskovich et al. | Mar 1994 | A |
5299289 | Omae et al. | Mar 1994 | A |
5303085 | Rallison | Apr 1994 | A |
5306923 | Kazmierski et al. | Apr 1994 | A |
5309283 | Kreitzer et al. | May 1994 | A |
5313330 | Betensky | May 1994 | A |
5315324 | Kubelik et al. | May 1994 | A |
5315419 | Saupe et al. | May 1994 | A |
5315440 | Betensky et al. | May 1994 | A |
5317405 | Kuriki et al. | May 1994 | A |
5327269 | Tilton et al. | Jul 1994 | A |
5329363 | Moskovich et al. | Jul 1994 | A |
5341230 | Smith | Aug 1994 | A |
5343147 | Sager et al. | Aug 1994 | A |
5351151 | Levy | Sep 1994 | A |
5359362 | Lewis et al. | Oct 1994 | A |
5363220 | Kuwayama et al. | Nov 1994 | A |
5368770 | Saupe et al. | Nov 1994 | A |
5369511 | Amos | Nov 1994 | A |
5371626 | Betensky | Dec 1994 | A |
5400069 | Braun et al. | Mar 1995 | A |
5408346 | Trissel et al. | Apr 1995 | A |
5410370 | Janssen | Apr 1995 | A |
5410376 | Cornsweet et al. | Apr 1995 | A |
5416510 | Lipton et al. | May 1995 | A |
5416514 | Janssen et al. | May 1995 | A |
5418584 | Larson | May 1995 | A |
5418871 | Revelli et al. | May 1995 | A |
5428480 | Betensky et al. | Jun 1995 | A |
5437811 | Doane et al. | Aug 1995 | A |
5438357 | McNelley | Aug 1995 | A |
5452385 | Izumi et al. | Sep 1995 | A |
5453863 | West et al. | Sep 1995 | A |
5455693 | Wreede et al. | Oct 1995 | A |
5455713 | Kreitzer et al. | Oct 1995 | A |
5462700 | Beeson et al. | Oct 1995 | A |
5463428 | Lipton et al. | Oct 1995 | A |
5465311 | Caulfield et al. | Nov 1995 | A |
5471326 | Hall et al. | Nov 1995 | A |
5473222 | Thoeny et al. | Dec 1995 | A |
5476611 | Nolan et al. | Dec 1995 | A |
5481321 | Lipton | Jan 1996 | A |
5481385 | Zimmerman et al. | Jan 1996 | A |
5485313 | Betensky | Jan 1996 | A |
5493430 | Lu et al. | Feb 1996 | A |
5493448 | Betensky et al. | Feb 1996 | A |
5496621 | Makita et al. | Mar 1996 | A |
5499140 | Betensky | Mar 1996 | A |
5500671 | Andersson et al. | Mar 1996 | A |
5500769 | Betensky | Mar 1996 | A |
5510913 | Hashimoto et al. | Apr 1996 | A |
5515184 | Caulfield et al. | May 1996 | A |
5516455 | Jacobine et al. | May 1996 | A |
5524272 | Podowski et al. | Jun 1996 | A |
5528720 | Winston et al. | Jun 1996 | A |
5530566 | Kumar | Jun 1996 | A |
5532736 | Kuriki et al. | Jul 1996 | A |
5532875 | Betemsky | Jul 1996 | A |
5537232 | Biles | Jul 1996 | A |
RE35310 | Moskovich | Aug 1996 | E |
5543950 | Lavrentovich et al. | Aug 1996 | A |
5544268 | Bischel et al. | Aug 1996 | A |
5559637 | Moskovich et al. | Sep 1996 | A |
5572248 | Allen et al. | Nov 1996 | A |
5572250 | Lipton et al. | Nov 1996 | A |
5576888 | Betensky | Nov 1996 | A |
5579026 | Tabata | Nov 1996 | A |
5583795 | Smyth | Dec 1996 | A |
5585035 | Nerad et al. | Dec 1996 | A |
5593615 | Nerad et al. | Jan 1997 | A |
5604611 | Saburi et al. | Feb 1997 | A |
5606433 | Yin et al. | Feb 1997 | A |
5612733 | Flohr | Mar 1997 | A |
5612734 | Nelson et al. | Mar 1997 | A |
5619254 | McNelley | Apr 1997 | A |
5619586 | Sibbald et al. | Apr 1997 | A |
5621529 | Gordon et al. | Apr 1997 | A |
5621552 | Coates et al. | Apr 1997 | A |
5625495 | Moskovich et al. | Apr 1997 | A |
5629259 | Akada et al. | May 1997 | A |
5631107 | Tarumi et al. | May 1997 | A |
5633100 | Mickish et al. | May 1997 | A |
5646785 | Gilboa et al. | Jul 1997 | A |
5648857 | Ando et al. | Jul 1997 | A |
5661577 | Jenkins et al. | Aug 1997 | A |
5661603 | Hanano et al. | Aug 1997 | A |
5665494 | Kawabata et al. | Sep 1997 | A |
5668614 | Chien et al. | Sep 1997 | A |
5668907 | Veligdan | Sep 1997 | A |
5677797 | Betensky et al. | Oct 1997 | A |
5680231 | Grinberg et al. | Oct 1997 | A |
5680411 | Ramdane et al. | Oct 1997 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5686931 | Fuenfschilling et al. | Nov 1997 | A |
5686975 | Lipton | Nov 1997 | A |
5691795 | Doane et al. | Nov 1997 | A |
5694230 | Welch | Dec 1997 | A |
5695682 | Doane et al. | Dec 1997 | A |
5701132 | Kollin et al. | Dec 1997 | A |
5706108 | Ando et al. | Jan 1998 | A |
5706136 | Okuyama et al. | Jan 1998 | A |
5707925 | Akada et al. | Jan 1998 | A |
5710645 | Phillips et al. | Jan 1998 | A |
5724189 | Ferrante | Mar 1998 | A |
5724463 | Deacon et al. | Mar 1998 | A |
5726782 | Kato et al. | Mar 1998 | A |
5727098 | Jacobson | Mar 1998 | A |
5729242 | Margerum et al. | Mar 1998 | A |
5731060 | Hirukawa et al. | Mar 1998 | A |
5731853 | Taketomi et al. | Mar 1998 | A |
5736424 | Prybyla et al. | Apr 1998 | A |
5742262 | Tabata et al. | Apr 1998 | A |
5745266 | Smith et al. | Apr 1998 | A |
5745301 | Betensky et al. | Apr 1998 | A |
5748272 | Tanaka et al. | May 1998 | A |
5748277 | Huang et al. | May 1998 | A |
5751452 | Tanaka et al. | May 1998 | A |
5757546 | Lipton et al. | May 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5760960 | Lin et al. | Jun 1998 | A |
5764414 | King et al. | Jun 1998 | A |
5771320 | Stone | Jun 1998 | A |
5790288 | Jager et al. | Aug 1998 | A |
5790314 | Duck et al. | Aug 1998 | A |
5798641 | Spagna et al. | Aug 1998 | A |
5804609 | Ohnishi et al. | Sep 1998 | A |
5808804 | Moskovich | Sep 1998 | A |
5812608 | Valimaki et al. | Sep 1998 | A |
5822089 | Phillips et al. | Oct 1998 | A |
5822127 | Chen et al. | Oct 1998 | A |
5825448 | Bos et al. | Oct 1998 | A |
5831700 | Li et al. | Nov 1998 | A |
5835661 | Tai et al. | Nov 1998 | A |
5841507 | Barnes | Nov 1998 | A |
5841587 | Moskovich et al. | Nov 1998 | A |
5847787 | Fredley et al. | Dec 1998 | A |
5856842 | Tedesco | Jan 1999 | A |
5857043 | Cook et al. | Jan 1999 | A |
5867238 | Miller et al. | Feb 1999 | A |
5867618 | Ito et al. | Feb 1999 | A |
5868951 | Schuck, III et al. | Feb 1999 | A |
5870228 | Kreitzer et al. | Feb 1999 | A |
5875012 | Crawford et al. | Feb 1999 | A |
5877826 | Yang et al. | Mar 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5892598 | Asakawa et al. | Apr 1999 | A |
5892599 | Bahuguna | Apr 1999 | A |
5898511 | Mizutani et al. | Apr 1999 | A |
5900987 | Kreitzer et al. | May 1999 | A |
5900989 | Kreitzer | May 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5903396 | Rallison | May 1999 | A |
5907416 | Hegg et al. | May 1999 | A |
5907436 | Perry et al. | May 1999 | A |
5917459 | Son et al. | Jun 1999 | A |
5926147 | Sehm et al. | Jul 1999 | A |
5929946 | Sharp et al. | Jul 1999 | A |
5929960 | West et al. | Jul 1999 | A |
5930433 | Williamson et al. | Jul 1999 | A |
5936776 | Kreitzer | Aug 1999 | A |
5937115 | Domash | Aug 1999 | A |
5942157 | Sutherland et al. | Aug 1999 | A |
5945893 | Plessky et al. | Aug 1999 | A |
5949302 | Sarkka | Sep 1999 | A |
5949508 | Kumar et al. | Sep 1999 | A |
5956113 | Crawford | Sep 1999 | A |
5962147 | Shalhub et al. | Oct 1999 | A |
5963375 | Kreitzer | Oct 1999 | A |
5966223 | Friesem et al. | Oct 1999 | A |
5969874 | Moskovich | Oct 1999 | A |
5969876 | Kreitzer et al. | Oct 1999 | A |
5973727 | McGrew et al. | Oct 1999 | A |
5974162 | Metz et al. | Oct 1999 | A |
5985422 | Krauter | Nov 1999 | A |
5986746 | Metz et al. | Nov 1999 | A |
5991087 | Rallison | Nov 1999 | A |
5999089 | Carlson et al. | Dec 1999 | A |
5999282 | Suzuki et al. | Dec 1999 | A |
5999314 | Asakura et al. | Dec 1999 | A |
6014187 | Taketomi et al. | Jan 2000 | A |
6023375 | Kreitzer | Feb 2000 | A |
6042947 | Asakura et al. | Mar 2000 | A |
6043585 | Plessky et al. | Mar 2000 | A |
6046585 | Simmonds | Apr 2000 | A |
6052540 | Koyama | Apr 2000 | A |
6061107 | Yang | May 2000 | A |
6061463 | Metz et al. | May 2000 | A |
6069728 | Huignard et al. | May 2000 | A |
6075626 | Mizutani et al. | Jun 2000 | A |
6078427 | Fontaine et al. | Jun 2000 | A |
6084998 | Straayer | Jul 2000 | A |
6094311 | Moskovich | Jul 2000 | A |
6097551 | Kreitzer | Aug 2000 | A |
6104448 | Doane et al. | Aug 2000 | A |
6107943 | Schroeder | Aug 2000 | A |
6115152 | Popovich et al. | Sep 2000 | A |
6118908 | Bischel et al. | Sep 2000 | A |
6121899 | Theriault | Sep 2000 | A |
6124954 | Popovich et al. | Sep 2000 | A |
6127066 | Ueda et al. | Oct 2000 | A |
6128058 | Walton et al. | Oct 2000 | A |
6133971 | Silverstein et al. | Oct 2000 | A |
6133975 | Li et al. | Oct 2000 | A |
6137630 | Tsou et al. | Oct 2000 | A |
6141074 | Bos et al. | Oct 2000 | A |
6141154 | Kreitzer et al. | Oct 2000 | A |
6151142 | Phillips et al. | Nov 2000 | A |
6154190 | Yang et al. | Nov 2000 | A |
6156243 | Kosuga et al. | Dec 2000 | A |
6167169 | Brinkman et al. | Dec 2000 | A |
6169594 | Aye et al. | Jan 2001 | B1 |
6169613 | Amitai et al. | Jan 2001 | B1 |
6169636 | Kreitzer et al. | Jan 2001 | B1 |
6172792 | Jepsen et al. | Jan 2001 | B1 |
6176837 | Foxlin | Jan 2001 | B1 |
6185015 | Reinhorn et al. | Feb 2001 | B1 |
6185016 | Popovich | Feb 2001 | B1 |
6188462 | Lavrentovich et al. | Feb 2001 | B1 |
6191887 | Michaloski et al. | Feb 2001 | B1 |
6195206 | Yona et al. | Feb 2001 | B1 |
6195209 | Kreitzer et al. | Feb 2001 | B1 |
6204835 | Yang et al. | Mar 2001 | B1 |
6211976 | Popovich et al. | Apr 2001 | B1 |
6215579 | Bloom et al. | Apr 2001 | B1 |
6218316 | Marsh | Apr 2001 | B1 |
6222297 | Perdue | Apr 2001 | B1 |
6222675 | Mall et al. | Apr 2001 | B1 |
6222971 | Veligdan et al. | Apr 2001 | B1 |
6249386 | Yona et al. | Jun 2001 | B1 |
6259423 | Tokito et al. | Jul 2001 | B1 |
6259559 | Kobayashi et al. | Jul 2001 | B1 |
6266166 | Katsumata et al. | Jul 2001 | B1 |
6268839 | Yang et al. | Jul 2001 | B1 |
6269203 | Davies et al. | Jul 2001 | B1 |
6275031 | Simmonds et al. | Aug 2001 | B1 |
6278429 | Ruth et al. | Aug 2001 | B1 |
6285813 | Schultz et al. | Sep 2001 | B1 |
6297860 | Moskovich et al. | Oct 2001 | B1 |
6301056 | Kreitzer et al. | Oct 2001 | B1 |
6301057 | Kreitzer et al. | Oct 2001 | B1 |
6317083 | Johnson et al. | Nov 2001 | B1 |
6317227 | Mizutani et al. | Nov 2001 | B1 |
6317228 | Popovich et al. | Nov 2001 | B2 |
6317528 | Gadkaree et al. | Nov 2001 | B1 |
6320563 | Yang et al. | Nov 2001 | B1 |
6321069 | Piirainen | Nov 2001 | B1 |
6323970 | Popovich | Nov 2001 | B1 |
6323989 | Jacobson et al. | Nov 2001 | B1 |
6324014 | Moskovich et al. | Nov 2001 | B1 |
6327089 | Hosaki et al. | Dec 2001 | B1 |
6330109 | Ishii et al. | Dec 2001 | B1 |
6333819 | Svedenkrans | Dec 2001 | B1 |
6335224 | Peterson et al. | Jan 2002 | B1 |
6339486 | Popovich | Jan 2002 | B1 |
6340540 | Ueda et al. | Jan 2002 | B1 |
6351273 | Lemelson et al. | Feb 2002 | B1 |
6351333 | Araki et al. | Feb 2002 | B2 |
6356172 | Koivisto et al. | Mar 2002 | B1 |
6356674 | Davis et al. | Mar 2002 | B1 |
6359730 | Tervonen | Mar 2002 | B2 |
6359737 | Stringfellow | Mar 2002 | B1 |
6366281 | Lipton et al. | Apr 2002 | B1 |
6366369 | Ichikawa et al. | Apr 2002 | B2 |
6366378 | Tervonen et al. | Apr 2002 | B1 |
6377238 | McPheters | Apr 2002 | B1 |
6377321 | Khan et al. | Apr 2002 | B1 |
6388797 | Lipton et al. | May 2002 | B1 |
6392812 | Howard | May 2002 | B1 |
6407724 | Waldern et al. | Jun 2002 | B2 |
6409687 | Foxlin | Jun 2002 | B1 |
6411444 | Moskovich et al. | Jun 2002 | B1 |
6414760 | Lopez et al. | Jul 2002 | B1 |
6417971 | Moskovich et al. | Jul 2002 | B1 |
6437563 | Simmonds et al. | Aug 2002 | B1 |
6437886 | Trepanier et al. | Aug 2002 | B1 |
6445512 | Moskovich et al. | Sep 2002 | B1 |
6449095 | Ohtaki et al. | Sep 2002 | B1 |
6456584 | Nagata et al. | Sep 2002 | B1 |
6470132 | Nousiainen et al. | Oct 2002 | B1 |
6473209 | Popovich | Oct 2002 | B1 |
6476974 | Kreitzer et al. | Nov 2002 | B1 |
6483303 | Simmonds et al. | Nov 2002 | B2 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6504518 | Kuwayama et al. | Jan 2003 | B1 |
6504629 | Popovich et al. | Jan 2003 | B1 |
6509937 | Moskovich et al. | Jan 2003 | B1 |
6510263 | Maisenhoelder et al. | Jan 2003 | B1 |
6518747 | Sager et al. | Feb 2003 | B2 |
6519088 | Lipton | Feb 2003 | B1 |
6522794 | Bischel et al. | Feb 2003 | B1 |
6522795 | Jordan et al. | Feb 2003 | B1 |
6524771 | Maeda et al. | Feb 2003 | B2 |
6529336 | Kreitzer et al. | Mar 2003 | B1 |
6534977 | Duncan et al. | Mar 2003 | B1 |
6538775 | Bowley et al. | Mar 2003 | B1 |
6545778 | Ono et al. | Apr 2003 | B2 |
6545808 | Ehbets et al. | Apr 2003 | B1 |
6550949 | Bauer et al. | Apr 2003 | B1 |
6552789 | Modro | Apr 2003 | B1 |
6557413 | Nieminen et al. | May 2003 | B2 |
6559813 | DeLuca et al. | May 2003 | B1 |
6560019 | Nakai | May 2003 | B2 |
6563648 | Gleckman et al. | May 2003 | B2 |
6563650 | Moskovich et al. | May 2003 | B2 |
6567014 | Hansen et al. | May 2003 | B1 |
6567573 | Domash et al. | May 2003 | B1 |
6577411 | David et al. | Jun 2003 | B1 |
6577429 | Kurtz et al. | Jun 2003 | B1 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6583838 | Hoke et al. | Jun 2003 | B1 |
6583873 | Goncharov et al. | Jun 2003 | B1 |
6587619 | Kinoshita | Jul 2003 | B1 |
6594090 | Kruschwitz et al. | Jul 2003 | B2 |
6596193 | Coates et al. | Jul 2003 | B2 |
6597176 | Simmonds et al. | Jul 2003 | B2 |
6597475 | Shirakura et al. | Jul 2003 | B1 |
6598987 | Parikka | Jul 2003 | B1 |
6600590 | Roddy et al. | Jul 2003 | B2 |
6608720 | Freeman | Aug 2003 | B1 |
6611253 | Cohen | Aug 2003 | B1 |
6618104 | Date et al. | Sep 2003 | B1 |
6624943 | Nakai et al. | Sep 2003 | B2 |
6625381 | Roddy et al. | Sep 2003 | B2 |
6646772 | Popovich et al. | Nov 2003 | B1 |
6646810 | Harter, Jr. et al. | Nov 2003 | B2 |
6661578 | Hedrick | Dec 2003 | B2 |
6667134 | Sutherland et al. | Dec 2003 | B1 |
6674578 | Sugiyama et al. | Jan 2004 | B2 |
6677086 | Sutehrland et al. | Jan 2004 | B1 |
6678093 | Scobey et al. | Jan 2004 | B1 |
6680720 | Lee et al. | Jan 2004 | B1 |
6686815 | Mirshekarl-Syahkal et al. | Feb 2004 | B1 |
6690516 | Aritake et al. | Feb 2004 | B2 |
6692666 | Sutherland et al. | Feb 2004 | B2 |
6699407 | Sutehrland et al. | Mar 2004 | B1 |
6706086 | Emig et al. | Mar 2004 | B2 |
6706451 | Sutherland et al. | Mar 2004 | B1 |
6714329 | Sekine et al. | Mar 2004 | B2 |
6721096 | Bruzzone et al. | Apr 2004 | B2 |
6730442 | Sutherland et al. | May 2004 | B1 |
6731434 | Hua et al. | May 2004 | B1 |
6738105 | Hannah et al. | May 2004 | B1 |
6741189 | Gibbons, II et al. | May 2004 | B1 |
6744478 | Asakura et al. | Jun 2004 | B1 |
6747781 | Trisnadi et al. | Jun 2004 | B2 |
6748342 | Dickhaus | Jun 2004 | B1 |
6750941 | Satoh et al. | Jun 2004 | B2 |
6750995 | Dickson | Jun 2004 | B2 |
6750996 | Jagt et al. | Jun 2004 | B2 |
6757105 | Niv et al. | Jun 2004 | B2 |
6771403 | Endo et al. | Aug 2004 | B1 |
6776339 | Piikivi | Aug 2004 | B2 |
6781701 | Sweetser et al. | Aug 2004 | B1 |
6791629 | Moskovich et al. | Sep 2004 | B2 |
6791739 | Ramanujan et al. | Sep 2004 | B2 |
6804066 | Ha et al. | Oct 2004 | B1 |
6805490 | Levola | Oct 2004 | B2 |
6821457 | Natarajan et al. | Nov 2004 | B1 |
6822713 | Yaroshchuk et al. | Nov 2004 | B1 |
6825987 | Repetto et al. | Nov 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6830789 | Doane et al. | Dec 2004 | B2 |
6833955 | Niv | Dec 2004 | B2 |
6836369 | Fujikawa et al. | Dec 2004 | B2 |
6842563 | Zhang et al. | Jan 2005 | B2 |
6844212 | Bond et al. | Jan 2005 | B2 |
6844980 | He et al. | Jan 2005 | B2 |
6844989 | Jo et al. | Jan 2005 | B1 |
6847274 | Salmela et al. | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6850210 | Lipton et al. | Feb 2005 | B1 |
6853491 | Ruhle et al. | Feb 2005 | B1 |
6853493 | Kreitzer et al. | Feb 2005 | B2 |
6861107 | Klasen-Memmer et al. | Mar 2005 | B2 |
6864861 | Schehrer et al. | Mar 2005 | B2 |
6864927 | Cathey | Mar 2005 | B1 |
6864931 | Kumar et al. | Mar 2005 | B1 |
6867888 | Sutherland et al. | Mar 2005 | B2 |
6873443 | Joubert et al. | Mar 2005 | B1 |
6876791 | Murashima et al. | Apr 2005 | B2 |
6878494 | Sutehrland et al. | Apr 2005 | B2 |
6885483 | Takada | Apr 2005 | B2 |
6903872 | Schrader | Jun 2005 | B2 |
6909345 | Salmela et al. | Jun 2005 | B1 |
6917375 | Akada et al. | Jul 2005 | B2 |
6919003 | Ikeda et al. | Jul 2005 | B2 |
6922267 | Endo et al. | Jul 2005 | B2 |
6926429 | Barlow et al. | Aug 2005 | B2 |
6927570 | Simmonds et al. | Aug 2005 | B2 |
6927694 | Smith et al. | Aug 2005 | B1 |
6940361 | Jokio et al. | Sep 2005 | B1 |
6943788 | Tomono | Sep 2005 | B2 |
6950173 | Sutherland et al. | Sep 2005 | B1 |
6950227 | Schrader | Sep 2005 | B2 |
6951393 | Koide | Oct 2005 | B2 |
6952312 | Weber et al. | Oct 2005 | B2 |
6952435 | Lai et al. | Oct 2005 | B2 |
6958662 | Salmela et al. | Oct 2005 | B1 |
6958868 | Pender | Oct 2005 | B1 |
6963454 | Martins et al. | Nov 2005 | B1 |
6972788 | Robertson et al. | Dec 2005 | B1 |
6975345 | Lipton et al. | Dec 2005 | B1 |
6980365 | Moskovich | Dec 2005 | B2 |
6985296 | Lipton et al. | Jan 2006 | B2 |
6987908 | Bond et al. | Jan 2006 | B2 |
6999239 | Martins et al. | Feb 2006 | B1 |
7002618 | Lipton et al. | Feb 2006 | B2 |
7002753 | Moskovich et al. | Feb 2006 | B2 |
7003075 | Miyake et al. | Feb 2006 | B2 |
7003187 | Frick et al. | Feb 2006 | B2 |
7006732 | Gunn, III et al. | Feb 2006 | B2 |
7009773 | Chaoulov et al. | Mar 2006 | B2 |
7018563 | Sutherland et al. | Mar 2006 | B1 |
7018686 | Sutehrland et al. | Mar 2006 | B2 |
7018744 | Otaki et al. | Mar 2006 | B2 |
7019793 | Moskovich et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7026892 | Kajiya | Apr 2006 | B2 |
7027671 | Huck et al. | Apr 2006 | B2 |
7034748 | Kajiya | Apr 2006 | B2 |
7046439 | Kaminsky et al. | May 2006 | B2 |
7050674 | Lee et al. | May 2006 | B2 |
7053735 | Salmela et al. | May 2006 | B2 |
7053991 | Sandusky | May 2006 | B2 |
7054045 | McPheters et al. | May 2006 | B2 |
7058434 | Wang et al. | Jun 2006 | B2 |
7068405 | Sutherland et al. | Jun 2006 | B2 |
7068898 | Buretea et al. | Jun 2006 | B2 |
7072020 | Sutherland et al. | Jul 2006 | B1 |
7075273 | O'Gorman et al. | Jul 2006 | B2 |
7077984 | Natarajan et al. | Jul 2006 | B1 |
7081215 | Natarajan et al. | Jul 2006 | B2 |
7088457 | Zou et al. | Aug 2006 | B1 |
7088515 | Lipton | Aug 2006 | B2 |
7095562 | Peng et al. | Aug 2006 | B1 |
7099080 | Lipton et al. | Aug 2006 | B2 |
7101048 | Travis | Sep 2006 | B2 |
7108383 | Mitchell et al. | Sep 2006 | B1 |
7110184 | Yona et al. | Sep 2006 | B1 |
7119965 | Rolland et al. | Oct 2006 | B1 |
7123418 | Weber et al. | Oct 2006 | B2 |
7123421 | Moskovich et al. | Oct 2006 | B1 |
7126418 | Hunton et al. | Oct 2006 | B2 |
7126583 | Breed | Oct 2006 | B1 |
7132200 | Ueda et al. | Nov 2006 | B1 |
7133084 | Moskovich et al. | Nov 2006 | B2 |
7139109 | Mukawa | Nov 2006 | B2 |
RE39424 | Moskovich | Dec 2006 | E |
7145729 | Kreitzer et al. | Dec 2006 | B2 |
7149385 | Parikka et al. | Dec 2006 | B2 |
7151246 | Fein et al. | Dec 2006 | B2 |
7158095 | Jenson et al. | Jan 2007 | B2 |
7167286 | Anderson et al. | Jan 2007 | B2 |
7167616 | Ling et al. | Jan 2007 | B2 |
7175780 | Sutherland et al. | Feb 2007 | B1 |
7181105 | Teramura et al. | Feb 2007 | B2 |
7181108 | Levola | Feb 2007 | B2 |
7184002 | Lipton et al. | Feb 2007 | B2 |
7184615 | Levola | Feb 2007 | B2 |
7186567 | Sutherland et al. | Mar 2007 | B1 |
7190849 | Katase | Mar 2007 | B2 |
7198737 | Natarajan et al. | Apr 2007 | B2 |
7199934 | Yamasaki | Apr 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7205964 | Yokoyama et al. | Apr 2007 | B1 |
7206107 | Levola | Apr 2007 | B2 |
7212175 | Magee et al. | May 2007 | B1 |
7218817 | Magnusson et al. | May 2007 | B2 |
7230767 | Walck et al. | Jun 2007 | B2 |
7230770 | Kreitzer et al. | Jun 2007 | B2 |
7242527 | Spitzer et al. | Jul 2007 | B2 |
7248128 | Mattila et al. | Jul 2007 | B2 |
7248765 | Lee et al. | Jul 2007 | B2 |
7256915 | Sutherland et al. | Aug 2007 | B2 |
7259906 | Islam | Aug 2007 | B1 |
7265882 | Sutherland et al. | Sep 2007 | B2 |
7265903 | Sutherland et al. | Sep 2007 | B2 |
7268946 | Wang | Sep 2007 | B2 |
7280722 | Temkin et al. | Oct 2007 | B2 |
7285903 | Cull et al. | Oct 2007 | B2 |
7286272 | Mukawa | Oct 2007 | B2 |
7289069 | Ranta | Oct 2007 | B2 |
RE39911 | Moskovich | Nov 2007 | E |
7299983 | Piikivi | Nov 2007 | B2 |
7301601 | Lin et al. | Nov 2007 | B2 |
7312906 | Sutherland et al. | Dec 2007 | B2 |
7313291 | Okhotnikov et al. | Dec 2007 | B2 |
D559250 | Pombo | Jan 2008 | S |
7319573 | Nishiyama | Jan 2008 | B2 |
7320534 | Sugikawa et al. | Jan 2008 | B2 |
7323275 | Otaki et al. | Jan 2008 | B2 |
7333685 | Stone et al. | Feb 2008 | B2 |
7336271 | Ozeki et al. | Feb 2008 | B2 |
7339737 | Urey et al. | Mar 2008 | B2 |
7339742 | Amitai et al. | Mar 2008 | B2 |
7349612 | Nishii et al. | Mar 2008 | B2 |
7356218 | Kato et al. | Apr 2008 | B2 |
7356224 | Levner et al. | Apr 2008 | B2 |
7369911 | Volant et al. | May 2008 | B1 |
7375870 | Schorpp | May 2008 | B2 |
7375886 | Lipton et al. | May 2008 | B2 |
7376068 | Khoury | May 2008 | B1 |
7376307 | Singh et al. | May 2008 | B2 |
7389023 | Yeo et al. | Jun 2008 | B2 |
7391573 | Amitai | Jun 2008 | B2 |
7394865 | Borran et al. | Jul 2008 | B2 |
7394961 | Kornilovich et al. | Jul 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7397606 | Peng et al. | Jul 2008 | B1 |
7401920 | Kranz et al. | Jul 2008 | B1 |
7404644 | Evans et al. | Jul 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7411637 | Weiss | Aug 2008 | B2 |
7413678 | Natarajan et al. | Aug 2008 | B1 |
7413679 | Sutherland et al. | Aug 2008 | B1 |
7415173 | Kassamakov et al. | Aug 2008 | B2 |
7416818 | Sutherland et al. | Aug 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7420733 | Natarajan et al. | Sep 2008 | B1 |
7433116 | Islam | Oct 2008 | B1 |
7436568 | Kuykendall, Jr. | Oct 2008 | B1 |
D581447 | Yee | Nov 2008 | S |
7447967 | Onggosanusi et al. | Nov 2008 | B2 |
7453612 | Mukawa | Nov 2008 | B2 |
7454103 | Parriaux | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7466994 | Pihlaja et al. | Dec 2008 | B2 |
7477206 | Cowan et al. | Jan 2009 | B2 |
7479354 | Ueda et al. | Jan 2009 | B2 |
7480215 | Makela et al. | Jan 2009 | B2 |
7482996 | Larson et al. | Jan 2009 | B2 |
7483604 | Levola | Jan 2009 | B2 |
7492512 | Niv et al. | Feb 2009 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7499217 | Cakmakci et al. | Mar 2009 | B2 |
7500104 | Goland | Mar 2009 | B2 |
7511891 | Messerschmidt | Mar 2009 | B2 |
7513668 | Peng et al. | Apr 2009 | B1 |
7522344 | Curatu et al. | Apr 2009 | B1 |
7525448 | Wilson et al. | Apr 2009 | B1 |
7528385 | Volodin et al. | May 2009 | B2 |
7542210 | Chirieleison | Jun 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7550234 | Otaki et al. | Jun 2009 | B2 |
7558446 | Wimberger-Friedl et al. | Jul 2009 | B2 |
7567372 | Schorpp | Jul 2009 | B2 |
7570322 | Sutherland et al. | Aug 2009 | B1 |
7570405 | Sutherland et al. | Aug 2009 | B1 |
7570429 | Maliah et al. | Aug 2009 | B2 |
7572555 | Takizawa et al. | Aug 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7576916 | Amitai | Aug 2009 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7579119 | Ueda et al. | Aug 2009 | B2 |
7583423 | Sutherland et al. | Sep 2009 | B2 |
7587110 | Singh et al. | Sep 2009 | B2 |
7588863 | Takizawa et al. | Sep 2009 | B2 |
7589900 | Powell | Sep 2009 | B1 |
7589901 | DeJong et al. | Sep 2009 | B2 |
7592988 | Katase | Sep 2009 | B2 |
7593575 | Houle et al. | Sep 2009 | B2 |
7597447 | Larson et al. | Oct 2009 | B2 |
7599012 | Nakamura et al. | Oct 2009 | B2 |
7600893 | Laino et al. | Oct 2009 | B2 |
7602552 | Blumenfeld | Oct 2009 | B1 |
7605719 | Wenger et al. | Oct 2009 | B1 |
7605774 | Brandt et al. | Oct 2009 | B1 |
7605882 | Sutherland et al. | Oct 2009 | B1 |
7616270 | Hirabayashi et al. | Nov 2009 | B2 |
7617022 | Wood et al. | Nov 2009 | B1 |
7618750 | Ueda et al. | Nov 2009 | B2 |
7619739 | Sutherland et al. | Nov 2009 | B1 |
7619825 | Peng et al. | Nov 2009 | B1 |
7629086 | Otaki et al. | Dec 2009 | B2 |
7639208 | Ha et al. | Dec 2009 | B1 |
7639911 | Lee et al. | Dec 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7643225 | Tsai | Jan 2010 | B1 |
7656585 | Powell et al. | Feb 2010 | B1 |
7660047 | Travis et al. | Feb 2010 | B1 |
7672024 | Kuan | Mar 2010 | B2 |
7672055 | Amitai | Mar 2010 | B2 |
7672549 | Ghosh et al. | Mar 2010 | B2 |
7675021 | Lapstun | Mar 2010 | B2 |
7675684 | Weissman et al. | Mar 2010 | B1 |
7691248 | Ikeda et al. | Apr 2010 | B2 |
7710622 | Takabayashi et al. | May 2010 | B2 |
7710654 | Ashkenazi et al. | May 2010 | B2 |
7711228 | Noda et al. | May 2010 | B2 |
7724441 | Amitai | May 2010 | B2 |
7724442 | Amitai | May 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7733571 | Li | Jun 2010 | B1 |
7733572 | Brown et al. | Jun 2010 | B1 |
7740387 | Schultz et al. | Jun 2010 | B2 |
7747113 | Mukawa et al. | Jun 2010 | B2 |
7751122 | Amitai | Jul 2010 | B2 |
7751662 | Kleemann et al. | Jul 2010 | B2 |
7764413 | Levola | Jul 2010 | B2 |
7777819 | Simmonds | Aug 2010 | B2 |
7778305 | Parriaux et al. | Aug 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7843642 | Shaoulov et al. | Nov 2010 | B2 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7864427 | Korenaga et al. | Jan 2011 | B2 |
7865080 | Hecker et al. | Jan 2011 | B2 |
7866869 | Karakawa | Jan 2011 | B2 |
7872707 | Sutherland et al. | Jan 2011 | B1 |
7872804 | Moon et al. | Jan 2011 | B2 |
7884593 | Simmonds et al. | Feb 2011 | B2 |
7884985 | Amitai et al. | Feb 2011 | B2 |
7887186 | Watanabe | Feb 2011 | B2 |
7903921 | Ostergard | Mar 2011 | B2 |
7907342 | Simmonds et al. | Mar 2011 | B2 |
7920787 | Gentner et al. | Apr 2011 | B2 |
7928862 | Matthews | Apr 2011 | B1 |
7936513 | Wu et al. | May 2011 | B2 |
7936519 | Mukawa et al. | May 2011 | B2 |
7944428 | Travis | May 2011 | B2 |
7944616 | Mukawa | May 2011 | B2 |
7949214 | DeJong et al. | May 2011 | B2 |
D640310 | Suzuki et al. | Jun 2011 | S |
7961117 | Zimmerman et al. | Jun 2011 | B1 |
7969644 | Tilleman et al. | Jun 2011 | B2 |
7969657 | Cakmakci et al. | Jun 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
7984884 | Iliev et al. | Jul 2011 | B1 |
7999982 | Endo et al. | Aug 2011 | B2 |
8000020 | Amitai et al. | Aug 2011 | B2 |
8000491 | Brodkin et al. | Aug 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
8014050 | McGrew | Sep 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8018579 | Krah | Sep 2011 | B1 |
8022942 | Bathiche et al. | Sep 2011 | B2 |
8023783 | Mukawa et al. | Sep 2011 | B2 |
RE42992 | David | Dec 2011 | E |
8073296 | Mukawa et al. | Dec 2011 | B2 |
8077274 | Sutherland et al. | Dec 2011 | B2 |
8079713 | Ashkenazi | Dec 2011 | B2 |
8082222 | Rangarajan et al. | Dec 2011 | B2 |
8086030 | Gordon et al. | Dec 2011 | B2 |
8089568 | Brown et al. | Jan 2012 | B1 |
8093451 | Spangenberg et al. | Jan 2012 | B2 |
8098439 | Amitai et al. | Jan 2012 | B2 |
8105662 | Cherkaoui et al. | Jan 2012 | B2 |
8107023 | Simmonds et al. | Jan 2012 | B2 |
8107780 | Simmonds | Jan 2012 | B2 |
8120548 | Barber | Feb 2012 | B1 |
8120848 | Isano | Feb 2012 | B2 |
8132948 | Owen et al. | Mar 2012 | B2 |
8132976 | Odell et al. | Mar 2012 | B2 |
8134434 | Diederichs et al. | Mar 2012 | B2 |
8136690 | Fang et al. | Mar 2012 | B2 |
8137981 | Andrew et al. | Mar 2012 | B2 |
8142016 | Legerton et al. | Mar 2012 | B2 |
8149086 | Klein et al. | Apr 2012 | B2 |
8152315 | Travis et al. | Apr 2012 | B2 |
8152353 | Yang et al. | Apr 2012 | B2 |
8155489 | Saarikko et al. | Apr 2012 | B2 |
8159752 | Wertheim et al. | Apr 2012 | B2 |
8160409 | Large | Apr 2012 | B2 |
8160411 | Levola et al. | Apr 2012 | B2 |
D659137 | Matsumoto | May 2012 | S |
8167173 | Simmonds et al. | May 2012 | B1 |
8186874 | Sinbar et al. | May 2012 | B2 |
8188925 | DeJean | May 2012 | B2 |
8189263 | Wang et al. | May 2012 | B1 |
8189973 | Travis et al. | May 2012 | B2 |
D661334 | Cho et al. | Jun 2012 | S |
D661335 | Jeon | Jun 2012 | S |
8194325 | Levola et al. | Jun 2012 | B2 |
8199803 | Hauske et al. | Jun 2012 | B2 |
8202405 | Meneghini et al. | Jun 2012 | B2 |
8213065 | Mukawa | Jul 2012 | B2 |
8213755 | Mukawa et al. | Jul 2012 | B2 |
8220966 | Mukawa | Jul 2012 | B2 |
8224133 | Popovich et al. | Jul 2012 | B2 |
8233204 | Robbins et al. | Jul 2012 | B1 |
8253914 | Kajiya et al. | Aug 2012 | B2 |
8254031 | Levola | Aug 2012 | B2 |
8264498 | Vanderkamp et al. | Sep 2012 | B1 |
8294749 | Cable | Oct 2012 | B2 |
8295710 | Marcus | Oct 2012 | B2 |
8301031 | Gentner et al. | Oct 2012 | B2 |
8305577 | Kivioja et al. | Nov 2012 | B2 |
8306423 | Gottwald et al. | Nov 2012 | B2 |
8310327 | Willers et al. | Nov 2012 | B2 |
8314819 | Kimmel et al. | Nov 2012 | B2 |
8314993 | Levola et al. | Nov 2012 | B2 |
8320032 | Levola | Nov 2012 | B2 |
8321810 | Heintze | Nov 2012 | B2 |
8325166 | Akutsu et al. | Dec 2012 | B2 |
8329773 | Fäcke et al. | Dec 2012 | B2 |
8335040 | Mukawa et al. | Dec 2012 | B2 |
8335414 | Zinoviev et al. | Dec 2012 | B2 |
D673996 | Kim et al. | Jan 2013 | S |
8351744 | Travis et al. | Jan 2013 | B2 |
8354640 | Hamre et al. | Jan 2013 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8355610 | Simmonds | Jan 2013 | B2 |
8369019 | Baker et al. | Feb 2013 | B2 |
8376548 | Schultz | Feb 2013 | B2 |
8382293 | Phillips, III et al. | Feb 2013 | B2 |
8384504 | Diederichs et al. | Feb 2013 | B2 |
8384694 | Powell et al. | Feb 2013 | B2 |
8384730 | Vanderkamp et al. | Feb 2013 | B1 |
8396339 | Mukawa et al. | Mar 2013 | B2 |
8396341 | Lee et al. | Mar 2013 | B2 |
8398242 | Yamamoto et al. | Mar 2013 | B2 |
8403490 | Sugiyama et al. | Mar 2013 | B2 |
8422840 | Large | Apr 2013 | B2 |
8427439 | Larsen et al. | Apr 2013 | B2 |
8432363 | Saarikko et al. | Apr 2013 | B2 |
8432372 | Butler et al. | Apr 2013 | B2 |
8432614 | Amitai | Apr 2013 | B2 |
8441731 | Sprague | May 2013 | B2 |
8447365 | Imanuel | May 2013 | B1 |
8466953 | Levola | Jun 2013 | B2 |
8472119 | Kelly | Jun 2013 | B1 |
8472120 | Border et al. | Jun 2013 | B2 |
8477261 | Travis et al. | Jul 2013 | B2 |
8481130 | Harding et al. | Jul 2013 | B2 |
8482858 | Sprague | Jul 2013 | B2 |
8488246 | Border et al. | Jul 2013 | B2 |
8491121 | Tilleman et al. | Jul 2013 | B2 |
8491136 | Travis et al. | Jul 2013 | B2 |
8493366 | Bathiche et al. | Jul 2013 | B2 |
8493562 | Kopp et al. | Jul 2013 | B2 |
8493662 | Noui | Jul 2013 | B2 |
8494229 | Jarvenpaa et al. | Jul 2013 | B2 |
8503841 | Kopp et al. | Aug 2013 | B2 |
8508848 | Saarikko | Aug 2013 | B2 |
8520309 | Sprague | Aug 2013 | B2 |
D691192 | Stanley et al. | Oct 2013 | S |
8547638 | Levola | Oct 2013 | B2 |
8548290 | Travers et al. | Oct 2013 | B2 |
8565560 | Popovich et al. | Oct 2013 | B2 |
D694310 | Cho et al. | Nov 2013 | S |
D694311 | Cho et al. | Nov 2013 | S |
8578038 | Kaikuranta et al. | Nov 2013 | B2 |
8581831 | Travis | Nov 2013 | B2 |
8582206 | Travis | Nov 2013 | B2 |
8593734 | Laakkonen | Nov 2013 | B2 |
8611014 | Valera et al. | Dec 2013 | B2 |
8619062 | Powell et al. | Dec 2013 | B2 |
D697130 | Lövgren | Jan 2014 | S |
8633786 | Ermolov et al. | Jan 2014 | B2 |
8634120 | Popovich et al. | Jan 2014 | B2 |
8634139 | Brown et al. | Jan 2014 | B1 |
8639072 | Popovich et al. | Jan 2014 | B2 |
8643691 | Rosenfeld et al. | Feb 2014 | B2 |
8643948 | Amitai et al. | Feb 2014 | B2 |
8649099 | Schultz et al. | Feb 2014 | B2 |
8654420 | Simmonds | Feb 2014 | B2 |
8659826 | Brown et al. | Feb 2014 | B1 |
D701206 | Luckey et al. | Mar 2014 | S |
8670029 | McEldowney | Mar 2014 | B2 |
8693087 | Nowatzyk et al. | Apr 2014 | B2 |
8698705 | Burke | Apr 2014 | B2 |
8731350 | Lin et al. | May 2014 | B1 |
8736802 | Kajiya et al. | May 2014 | B2 |
8736963 | Robbins et al. | May 2014 | B2 |
8742952 | Bold | Jun 2014 | B1 |
8746008 | Mauritsen et al. | Jun 2014 | B1 |
8749886 | Gupta | Jun 2014 | B2 |
8749890 | Wood et al. | Jun 2014 | B1 |
8767294 | Chen et al. | Jul 2014 | B2 |
8786923 | Chuang et al. | Jul 2014 | B2 |
8810600 | Bohn et al. | Aug 2014 | B2 |
8810913 | Simmonds et al. | Aug 2014 | B2 |
8810914 | Amitai | Aug 2014 | B2 |
8814691 | Haddick et al. | Aug 2014 | B2 |
8816578 | Peng et al. | Aug 2014 | B1 |
8817350 | Robbins et al. | Aug 2014 | B1 |
8824836 | Sugiyama | Sep 2014 | B2 |
8830143 | Pitchford et al. | Sep 2014 | B1 |
8830584 | Saarikko et al. | Sep 2014 | B2 |
8830588 | Brown et al. | Sep 2014 | B1 |
8842368 | Simmonds et al. | Sep 2014 | B2 |
8859412 | Jain | Oct 2014 | B2 |
8872435 | Kreitzer et al. | Oct 2014 | B2 |
8873149 | Bohn et al. | Oct 2014 | B2 |
8873150 | Amitai | Oct 2014 | B2 |
D718304 | Heinrich | Nov 2014 | S |
D718366 | Mehin et al. | Nov 2014 | S |
8885112 | Popovich et al. | Nov 2014 | B2 |
8885997 | Nguyen et al. | Nov 2014 | B2 |
8903207 | Brown et al. | Dec 2014 | B1 |
8906088 | Pugh et al. | Dec 2014 | B2 |
8913324 | Schrader | Dec 2014 | B2 |
8913865 | Bennett | Dec 2014 | B1 |
8917453 | Bohn | Dec 2014 | B2 |
8917962 | Nichol et al. | Dec 2014 | B1 |
8929589 | Publicover et al. | Jan 2015 | B2 |
8933144 | Enomoto et al. | Jan 2015 | B2 |
8934743 | Nishiwaki et al. | Jan 2015 | B2 |
8937771 | Robbins et al. | Jan 2015 | B2 |
8937772 | Burns et al. | Jan 2015 | B1 |
8938141 | Magnusson | Jan 2015 | B2 |
8950867 | Macnamara | Feb 2015 | B2 |
8964298 | Haddick et al. | Feb 2015 | B2 |
8965152 | Simmonds | Feb 2015 | B2 |
D725102 | Lee et al. | Mar 2015 | S |
8985803 | Bohn | Mar 2015 | B2 |
8989535 | Robbins | Mar 2015 | B2 |
D726180 | Roat et al. | Apr 2015 | S |
9019595 | Jain | Apr 2015 | B2 |
9025253 | Hadad et al. | May 2015 | B2 |
9035344 | Jain | May 2015 | B2 |
D733709 | Kawai | Jul 2015 | S |
9075184 | Popovich et al. | Jul 2015 | B2 |
9081178 | Simmonds et al. | Jul 2015 | B2 |
9097890 | Miller et al. | Aug 2015 | B2 |
9103978 | Nishiwaki et al. | Aug 2015 | B2 |
9122015 | Shimizu | Sep 2015 | B2 |
9128226 | Fattal et al. | Sep 2015 | B2 |
9129295 | Border et al. | Sep 2015 | B2 |
9164290 | Robbins et al. | Oct 2015 | B2 |
9176324 | Scherer et al. | Nov 2015 | B1 |
9188717 | Nishiwaki | Nov 2015 | B2 |
9201270 | Fattal et al. | Dec 2015 | B2 |
9215293 | Miller | Dec 2015 | B2 |
D746896 | Markovitz et al. | Jan 2016 | S |
9239507 | Chen et al. | Jan 2016 | B2 |
9244275 | Li | Jan 2016 | B1 |
9244280 | Tiana et al. | Jan 2016 | B1 |
9244281 | Zimmerman et al. | Jan 2016 | B1 |
D749074 | Cazalet et al. | Feb 2016 | S |
9253359 | Takahashi | Feb 2016 | B2 |
9269854 | Jain | Feb 2016 | B2 |
D751551 | Ho et al. | Mar 2016 | S |
D752129 | Lee et al. | Mar 2016 | S |
9274338 | Robbins et al. | Mar 2016 | B2 |
9274339 | Brown et al. | Mar 2016 | B1 |
9274349 | Popovich et al. | Mar 2016 | B2 |
D754782 | Kokinakis et al. | Apr 2016 | S |
9310566 | Valera et al. | Apr 2016 | B2 |
9316786 | Nishiwaki et al. | Apr 2016 | B2 |
9329325 | Simmonds et al. | May 2016 | B2 |
9335548 | Cakmakci et al. | May 2016 | B1 |
9335604 | Popovich et al. | May 2016 | B2 |
9341846 | Popovich et al. | May 2016 | B2 |
9354366 | Jain | May 2016 | B2 |
9366862 | Haddick et al. | Jun 2016 | B2 |
9366864 | Brown et al. | Jun 2016 | B1 |
9372347 | Levola et al. | Jun 2016 | B1 |
9377623 | Robbins et al. | Jun 2016 | B2 |
9377852 | Shapiro et al. | Jun 2016 | B1 |
9389415 | Fattal et al. | Jul 2016 | B2 |
9400395 | Travers et al. | Jul 2016 | B2 |
9423360 | Kostamo et al. | Aug 2016 | B1 |
9429692 | Saarikko et al. | Aug 2016 | B1 |
9431794 | Jain | Aug 2016 | B2 |
9435961 | Jiang | Sep 2016 | B2 |
9456744 | Popovich et al. | Oct 2016 | B2 |
9459451 | Saarikko et al. | Oct 2016 | B2 |
9464779 | Popovich et al. | Oct 2016 | B2 |
9465213 | Simmonds | Oct 2016 | B2 |
9465227 | Popovich et al. | Oct 2016 | B2 |
9484482 | Hsu et al. | Nov 2016 | B2 |
9494799 | Robbins et al. | Nov 2016 | B2 |
9507150 | Stratton et al. | Nov 2016 | B1 |
9513480 | Saarikko et al. | Dec 2016 | B2 |
9516193 | Aramaki | Dec 2016 | B2 |
9519089 | Brown et al. | Dec 2016 | B1 |
9519115 | Yashiki et al. | Dec 2016 | B2 |
9523852 | Brown et al. | Dec 2016 | B1 |
9535253 | Levola et al. | Jan 2017 | B2 |
9541383 | Abovitz et al. | Jan 2017 | B2 |
9541763 | Heberlein et al. | Jan 2017 | B1 |
9547174 | Gao et al. | Jan 2017 | B2 |
9551468 | Jones | Jan 2017 | B2 |
9551874 | Amitai | Jan 2017 | B2 |
9551880 | Amitai | Jan 2017 | B2 |
9599813 | Stratton et al. | Mar 2017 | B1 |
9612403 | Abovitz et al. | Apr 2017 | B2 |
9632226 | Waldern et al. | Apr 2017 | B2 |
9635352 | Henry et al. | Apr 2017 | B1 |
9648313 | Henry et al. | May 2017 | B1 |
9651368 | Abovitz et al. | May 2017 | B2 |
9664824 | Simmonds et al. | May 2017 | B2 |
9664910 | Mansharof et al. | May 2017 | B2 |
9671612 | Kress et al. | Jun 2017 | B2 |
9674413 | Tiana et al. | Jun 2017 | B1 |
9678345 | Melzer et al. | Jun 2017 | B1 |
9679367 | Wald | Jun 2017 | B1 |
9715067 | Brown et al. | Jul 2017 | B1 |
9715110 | Brown et al. | Jul 2017 | B1 |
D793468 | Yu et al. | Aug 2017 | S |
D795865 | Porter et al. | Aug 2017 | S |
D795866 | Porter et al. | Aug 2017 | S |
9726540 | Popovich et al. | Aug 2017 | B2 |
9727772 | Popovich et al. | Aug 2017 | B2 |
9733475 | Brown et al. | Aug 2017 | B1 |
9739950 | Sqalli et al. | Aug 2017 | B2 |
9746688 | Popovich et al. | Aug 2017 | B2 |
9754507 | Wenger et al. | Sep 2017 | B1 |
9762895 | Henry et al. | Sep 2017 | B1 |
9766465 | Tiana et al. | Sep 2017 | B1 |
9785231 | Zimmerman | Oct 2017 | B1 |
9791694 | Haverkamp et al. | Oct 2017 | B1 |
9791696 | Woltman et al. | Oct 2017 | B2 |
9791703 | Vallius et al. | Oct 2017 | B1 |
9804316 | Drolet et al. | Oct 2017 | B2 |
9804389 | Popovich et al. | Oct 2017 | B2 |
9823423 | Waldern et al. | Nov 2017 | B2 |
9857605 | Popovich et al. | Jan 2018 | B2 |
9874931 | Koenck et al. | Jan 2018 | B1 |
9891436 | Wall et al. | Feb 2018 | B2 |
9899800 | Ferrotti et al. | Feb 2018 | B2 |
9915825 | Robbins et al. | Mar 2018 | B2 |
9933684 | Brown et al. | Apr 2018 | B2 |
9939577 | Inoue et al. | Apr 2018 | B2 |
9939628 | Basset et al. | Apr 2018 | B2 |
9959818 | Bohn | May 2018 | B2 |
9977247 | Brown et al. | May 2018 | B1 |
9989763 | Woltman et al. | Jun 2018 | B2 |
10025093 | Wall et al. | Jul 2018 | B2 |
D827641 | Morisawa | Sep 2018 | S |
10067347 | Vallius et al. | Sep 2018 | B2 |
10088675 | Brown et al. | Oct 2018 | B1 |
10088686 | Robbins et al. | Oct 2018 | B2 |
10089516 | Popovich et al. | Oct 2018 | B2 |
10095045 | Robbins et al. | Oct 2018 | B2 |
10107966 | Horibe et al. | Oct 2018 | B1 |
10114220 | Grey et al. | Oct 2018 | B2 |
10126552 | Brown et al. | Nov 2018 | B2 |
10156681 | Waldern et al. | Dec 2018 | B2 |
10162181 | Webster et al. | Dec 2018 | B2 |
10185154 | Popovich et al. | Jan 2019 | B2 |
D840454 | Han et al. | Feb 2019 | S |
10197804 | Stenberg et al. | Feb 2019 | B2 |
10209517 | Popovich et al. | Feb 2019 | B2 |
10216061 | Popovich et al. | Feb 2019 | B2 |
10234696 | Popovich et al. | Mar 2019 | B2 |
10241330 | Popovich et al. | Mar 2019 | B2 |
10241332 | Vallius | Mar 2019 | B2 |
10247943 | Yu et al. | Apr 2019 | B1 |
10281725 | Yokoyama | May 2019 | B2 |
10330777 | Popovich et al. | Jun 2019 | B2 |
10345519 | Miller et al. | Jul 2019 | B1 |
10359627 | Wall et al. | Jul 2019 | B2 |
10359635 | Grey et al. | Jul 2019 | B2 |
10359736 | Popovich et al. | Jul 2019 | B2 |
D855687 | Villalpando | Aug 2019 | S |
D859510 | Harmon et al. | Sep 2019 | S |
10409144 | Popovich et al. | Sep 2019 | B2 |
10423222 | Popovich et al. | Sep 2019 | B2 |
10423813 | Popovich et al. | Sep 2019 | B2 |
10437051 | Popovich et al. | Oct 2019 | B2 |
10437064 | Popovich et al. | Oct 2019 | B2 |
10444510 | Lee et al. | Oct 2019 | B1 |
10459145 | Popovich et al. | Oct 2019 | B2 |
10459311 | Popovich et al. | Oct 2019 | B2 |
D871494 | Yamada et al. | Dec 2019 | S |
10509241 | Robbins et al. | Dec 2019 | B1 |
D872170 | Evans et al. | Jan 2020 | S |
D872794 | Wilkins | Jan 2020 | S |
10527797 | Waldern et al. | Jan 2020 | B2 |
10532594 | Akahane et al. | Jan 2020 | B2 |
10545346 | Waldern et al. | Jan 2020 | B2 |
10551616 | Wall et al. | Feb 2020 | B2 |
10560688 | Robbins | Feb 2020 | B2 |
10569449 | Curts et al. | Feb 2020 | B1 |
10578876 | Lam et al. | Mar 2020 | B1 |
10591756 | Popovich et al. | Mar 2020 | B2 |
10598938 | Huang et al. | Mar 2020 | B1 |
D880575 | Thixton | Apr 2020 | S |
10613268 | Colburn et al. | Apr 2020 | B1 |
10642058 | Popovich et al. | May 2020 | B2 |
10649119 | Mohanty et al. | May 2020 | B2 |
10670876 | Popovich et al. | Jun 2020 | B2 |
10678053 | Waldern et al. | Jun 2020 | B2 |
10690831 | Calafiore | Jun 2020 | B2 |
10690851 | Waldern et al. | Jun 2020 | B2 |
10690915 | Popovich et al. | Jun 2020 | B2 |
10690916 | Popovich et al. | Jun 2020 | B2 |
10698214 | Vallius et al. | Jun 2020 | B2 |
10705281 | Fattal et al. | Jul 2020 | B2 |
10712571 | Popovich et al. | Jul 2020 | B2 |
10725312 | Popovich et al. | Jul 2020 | B2 |
10732351 | Colburn et al. | Aug 2020 | B2 |
10732569 | Waldern et al. | Aug 2020 | B2 |
10746989 | Brown et al. | Aug 2020 | B2 |
10747982 | Popovich et al. | Aug 2020 | B2 |
10795160 | Stanley et al. | Oct 2020 | B1 |
10823887 | Calafiore et al. | Nov 2020 | B1 |
10859768 | Popovich et al. | Dec 2020 | B2 |
10859837 | Adema et al. | Dec 2020 | B2 |
10890707 | Waldern et al. | Jan 2021 | B2 |
10914950 | Waldern et al. | Feb 2021 | B2 |
10942430 | Waldern et al. | Mar 2021 | B2 |
10983257 | Colburn et al. | Apr 2021 | B1 |
10983340 | Popovich et al. | Apr 2021 | B2 |
10983346 | Vallius et al. | Apr 2021 | B2 |
11009699 | Popovich et al. | May 2021 | B2 |
11103892 | Liao et al. | Aug 2021 | B1 |
11106048 | Popovich et al. | Aug 2021 | B2 |
11107972 | Diest et al. | Aug 2021 | B2 |
11137603 | Zhang | Oct 2021 | B2 |
11169314 | Popovich et al. | Nov 2021 | B2 |
11175512 | Waldern et al. | Nov 2021 | B2 |
11194098 | Waldern et al. | Dec 2021 | B2 |
11194159 | Popovich et al. | Dec 2021 | B2 |
11194162 | Waldern et al. | Dec 2021 | B2 |
11204540 | Popovich et al. | Dec 2021 | B2 |
11231544 | Lin et al. | Jan 2022 | B2 |
11243333 | Ouderkirk et al. | Feb 2022 | B1 |
11256155 | Popovich et al. | Feb 2022 | B2 |
11281013 | Popovich et al. | Mar 2022 | B2 |
11300795 | Stanley et al. | Apr 2022 | B1 |
11306193 | Lane et al. | Apr 2022 | B1 |
11307357 | Mohanty | Apr 2022 | B2 |
11307432 | Popovich et al. | Apr 2022 | B2 |
11320571 | Brown et al. | May 2022 | B2 |
11340386 | Ouderkirk et al. | May 2022 | B1 |
11378732 | Waldern et al. | Jul 2022 | B2 |
11391950 | Calafiore | Jul 2022 | B2 |
11402801 | Waldern et al. | Aug 2022 | B2 |
11442222 | Waldern et al. | Sep 2022 | B2 |
11448937 | Brown et al. | Sep 2022 | B2 |
11460621 | Popovich et al. | Oct 2022 | B2 |
11513350 | Waldern | Nov 2022 | B2 |
11586046 | Waldern et al. | Feb 2023 | B2 |
11604314 | Popovich et al. | Mar 2023 | B2 |
11703645 | Waldern et al. | Jul 2023 | B2 |
11726323 | Popovich et al. | Aug 2023 | B2 |
11726332 | Waldern et al. | Aug 2023 | B2 |
11754842 | Popovich et al. | Sep 2023 | B2 |
11815781 | Brown et al. | Nov 2023 | B2 |
20010024177 | Popovich | Sep 2001 | A1 |
20010033400 | Sutherland et al. | Oct 2001 | A1 |
20010036012 | Nakai et al. | Nov 2001 | A1 |
20010043163 | Waldern et al. | Nov 2001 | A1 |
20010046142 | Van Santen et al. | Nov 2001 | A1 |
20010050756 | Lipton et al. | Dec 2001 | A1 |
20020003509 | Lipton et al. | Jan 2002 | A1 |
20020009299 | Lipton | Jan 2002 | A1 |
20020011969 | Lipton et al. | Jan 2002 | A1 |
20020012064 | Yamaguchi | Jan 2002 | A1 |
20020018040 | Aye et al. | Feb 2002 | A1 |
20020021407 | Elliott | Feb 2002 | A1 |
20020021461 | Ono et al. | Feb 2002 | A1 |
20020036825 | Lipton et al. | Mar 2002 | A1 |
20020047837 | Suyama et al. | Apr 2002 | A1 |
20020071472 | Dickson et al. | Jun 2002 | A1 |
20020075240 | Lieberman et al. | Jun 2002 | A1 |
20020093701 | Zhang et al. | Jul 2002 | A1 |
20020110077 | Drobot et al. | Aug 2002 | A1 |
20020126332 | Popovich | Sep 2002 | A1 |
20020127497 | Brown et al. | Sep 2002 | A1 |
20020131175 | Yagi et al. | Sep 2002 | A1 |
20020150032 | Nishiuchi et al. | Oct 2002 | A1 |
20020150337 | Fujimaki | Oct 2002 | A1 |
20020154264 | Suzuki | Oct 2002 | A1 |
20020167462 | Lewis et al. | Nov 2002 | A1 |
20020196332 | Lipton et al. | Dec 2002 | A1 |
20030007070 | Lipton et al. | Jan 2003 | A1 |
20030025881 | Hwang | Feb 2003 | A1 |
20030030912 | Gleckman et al. | Feb 2003 | A1 |
20030038912 | Broer et al. | Feb 2003 | A1 |
20030039422 | Nisley et al. | Feb 2003 | A1 |
20030039442 | Bond et al. | Feb 2003 | A1 |
20030058490 | Brotherton-ratcliffe et al. | Mar 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030063884 | Smith et al. | Apr 2003 | A1 |
20030067685 | Niv | Apr 2003 | A1 |
20030076590 | Kramer | Apr 2003 | A1 |
20030086670 | Moridaira et al. | May 2003 | A1 |
20030107809 | Chen et al. | Jun 2003 | A1 |
20030129542 | Shih et al. | Jul 2003 | A1 |
20030149346 | Arnone et al. | Aug 2003 | A1 |
20030175004 | Garito et al. | Sep 2003 | A1 |
20030184868 | Geist | Oct 2003 | A1 |
20030193709 | Mallya et al. | Oct 2003 | A1 |
20030197154 | Manabe et al. | Oct 2003 | A1 |
20030197157 | Sutherland et al. | Oct 2003 | A1 |
20030202247 | Niv et al. | Oct 2003 | A1 |
20030206329 | Ikeda et al. | Nov 2003 | A1 |
20030228019 | Eichler et al. | Dec 2003 | A1 |
20040004767 | Song | Jan 2004 | A1 |
20040004989 | Shigeoka | Jan 2004 | A1 |
20040012833 | Newswanger et al. | Jan 2004 | A1 |
20040047938 | Kosuga et al. | Mar 2004 | A1 |
20040057138 | Tanijiri et al. | Mar 2004 | A1 |
20040075830 | Miyake et al. | Apr 2004 | A1 |
20040087049 | Gill et al. | May 2004 | A1 |
20040089842 | Sutehrland et al. | May 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109234 | Levola | Jun 2004 | A1 |
20040112862 | Smith et al. | Jun 2004 | A1 |
20040125454 | Kawasaki et al. | Jul 2004 | A1 |
20040130797 | Leigh | Jul 2004 | A1 |
20040141217 | Endo et al. | Jul 2004 | A1 |
20040156008 | Reznikov et al. | Aug 2004 | A1 |
20040174348 | David | Sep 2004 | A1 |
20040175627 | Sutherland et al. | Sep 2004 | A1 |
20040179764 | Melikechi et al. | Sep 2004 | A1 |
20040184156 | Gunn, III et al. | Sep 2004 | A1 |
20040188617 | Devitt et al. | Sep 2004 | A1 |
20040200368 | Ogino et al. | Oct 2004 | A1 |
20040208446 | Bond et al. | Oct 2004 | A1 |
20040208466 | Mossberg et al. | Oct 2004 | A1 |
20040225025 | Sullivan et al. | Nov 2004 | A1 |
20040239869 | Cavanaugh et al. | Dec 2004 | A1 |
20040263969 | Lipton et al. | Dec 2004 | A1 |
20040263971 | Lipton et al. | Dec 2004 | A1 |
20050018304 | Lipton et al. | Jan 2005 | A1 |
20050047705 | Domash et al. | Mar 2005 | A1 |
20050079663 | Masutani et al. | Apr 2005 | A1 |
20050083564 | Mallya et al. | Apr 2005 | A1 |
20050105909 | Stone | May 2005 | A1 |
20050122395 | Lipton et al. | Jun 2005 | A1 |
20050134404 | Kajiya et al. | Jun 2005 | A1 |
20050135747 | Greiner et al. | Jun 2005 | A1 |
20050136260 | Garcia | Jun 2005 | A1 |
20050141066 | Ouchi | Jun 2005 | A1 |
20050141811 | Yang et al. | Jun 2005 | A1 |
20050169579 | Temkin et al. | Aug 2005 | A1 |
20050174321 | Ikeda et al. | Aug 2005 | A1 |
20050180687 | Amitai | Aug 2005 | A1 |
20050195276 | Lipton et al. | Sep 2005 | A1 |
20050218377 | Lawandy | Oct 2005 | A1 |
20050231774 | Hayashi et al. | Oct 2005 | A1 |
20050232530 | Kekas | Oct 2005 | A1 |
20050254752 | Domash et al. | Nov 2005 | A1 |
20050259217 | Lin et al. | Nov 2005 | A1 |
20050259302 | Metz et al. | Nov 2005 | A9 |
20050259944 | Anderson et al. | Nov 2005 | A1 |
20050265585 | Rowe | Dec 2005 | A1 |
20050269481 | David et al. | Dec 2005 | A1 |
20050271258 | Rowe | Dec 2005 | A1 |
20050286133 | Lipton | Dec 2005 | A1 |
20060002274 | Kihara et al. | Jan 2006 | A1 |
20060012878 | Lipton et al. | Jan 2006 | A1 |
20060013977 | Duke et al. | Jan 2006 | A1 |
20060043938 | O'Gorman et al. | Mar 2006 | A1 |
20060055993 | Kobayashi et al. | Mar 2006 | A1 |
20060093012 | Singh et al. | May 2006 | A1 |
20060093793 | Miyakawa et al. | May 2006 | A1 |
20060114564 | Sutherland et al. | Jun 2006 | A1 |
20060119837 | Raguin et al. | Jun 2006 | A1 |
20060119916 | Sutherland et al. | Jun 2006 | A1 |
20060126179 | Levola | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060142455 | Agarwal et al. | Jun 2006 | A1 |
20060146422 | Koike | Jul 2006 | A1 |
20060159864 | Natarajan et al. | Jul 2006 | A1 |
20060164593 | Peyghambarian et al. | Jul 2006 | A1 |
20060171647 | Ye et al. | Aug 2006 | A1 |
20060177180 | Tazawa et al. | Aug 2006 | A1 |
20060181683 | Bhowmik et al. | Aug 2006 | A1 |
20060191293 | Kuczma | Aug 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060215976 | Singh et al. | Sep 2006 | A1 |
20060221063 | Ishihara | Oct 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060262250 | Hobbs | Nov 2006 | A1 |
20060268104 | Cowan et al. | Nov 2006 | A1 |
20060268412 | Downing et al. | Nov 2006 | A1 |
20060279662 | Kapellner et al. | Dec 2006 | A1 |
20060284974 | Lipton et al. | Dec 2006 | A1 |
20060285205 | Lipton et al. | Dec 2006 | A1 |
20060291021 | Mukawa | Dec 2006 | A1 |
20060291052 | Lipton et al. | Dec 2006 | A1 |
20060292493 | Shinotsuka et al. | Dec 2006 | A1 |
20070012777 | Tsikos et al. | Jan 2007 | A1 |
20070019152 | Caputo et al. | Jan 2007 | A1 |
20070019297 | Stewart et al. | Jan 2007 | A1 |
20070034600 | Willson et al. | Feb 2007 | A1 |
20070041684 | Popovich et al. | Feb 2007 | A1 |
20070045596 | King et al. | Mar 2007 | A1 |
20070052929 | Allman et al. | Mar 2007 | A1 |
20070053032 | Popovich | Mar 2007 | A1 |
20070070476 | Yamada et al. | Mar 2007 | A1 |
20070070504 | Akutsu et al. | Mar 2007 | A1 |
20070070859 | Hirayama | Mar 2007 | A1 |
20070089625 | Grinberg et al. | Apr 2007 | A1 |
20070097502 | Lipton et al. | May 2007 | A1 |
20070109400 | Woodgate et al. | May 2007 | A1 |
20070109401 | Lipton et al. | May 2007 | A1 |
20070115553 | Chang-Hasnain et al. | May 2007 | A1 |
20070116409 | Bryan et al. | May 2007 | A1 |
20070127348 | Ooi et al. | Jun 2007 | A1 |
20070133089 | Lipton et al. | Jun 2007 | A1 |
20070133920 | Lee et al. | Jun 2007 | A1 |
20070133983 | Traff | Jun 2007 | A1 |
20070146624 | Duston et al. | Jun 2007 | A1 |
20070146625 | Ooi et al. | Jun 2007 | A1 |
20070154153 | Fomitchov et al. | Jul 2007 | A1 |
20070160325 | Son et al. | Jul 2007 | A1 |
20070177007 | Lipton et al. | Aug 2007 | A1 |
20070182915 | Osawa et al. | Aug 2007 | A1 |
20070183650 | Lipton et al. | Aug 2007 | A1 |
20070188602 | Cowan et al. | Aug 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070195409 | Yun et al. | Aug 2007 | A1 |
20070206155 | Lipton | Sep 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20070236560 | Lipton et al. | Oct 2007 | A1 |
20070237456 | Blauvelt et al. | Oct 2007 | A1 |
20070247687 | Handschy et al. | Oct 2007 | A1 |
20070258138 | Cowan et al. | Nov 2007 | A1 |
20070263169 | Lipton | Nov 2007 | A1 |
20080001909 | Lim | Jan 2008 | A1 |
20080018851 | Lipton et al. | Jan 2008 | A1 |
20080024598 | Perlin et al. | Jan 2008 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080049100 | Lipton et al. | Feb 2008 | A1 |
20080062259 | Lipton et al. | Mar 2008 | A1 |
20080089073 | Hikmet | Apr 2008 | A1 |
20080106775 | Amitai et al. | May 2008 | A1 |
20080106779 | Peterson et al. | May 2008 | A1 |
20080117289 | Schowengerdt et al. | May 2008 | A1 |
20080136916 | Wolff | Jun 2008 | A1 |
20080136923 | Inbar et al. | Jun 2008 | A1 |
20080138013 | Parriaux | Jun 2008 | A1 |
20080143964 | Cowan et al. | Jun 2008 | A1 |
20080143965 | Cowan et al. | Jun 2008 | A1 |
20080149517 | Lipton et al. | Jun 2008 | A1 |
20080151370 | Cook et al. | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080186573 | Lipton | Aug 2008 | A1 |
20080186574 | Robinson et al. | Aug 2008 | A1 |
20080186604 | Amitai | Aug 2008 | A1 |
20080193085 | Singh et al. | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080225187 | Yamanaka | Sep 2008 | A1 |
20080226281 | Lipton | Sep 2008 | A1 |
20080239067 | Lipton | Oct 2008 | A1 |
20080239068 | Lipton | Oct 2008 | A1 |
20080273081 | Lipton | Nov 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20080285137 | Simmonds et al. | Nov 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080297731 | Powell et al. | Dec 2008 | A1 |
20080297807 | Feldman et al. | Dec 2008 | A1 |
20080298649 | Ennis et al. | Dec 2008 | A1 |
20080298740 | Hlousek et al. | Dec 2008 | A1 |
20080303895 | Akka et al. | Dec 2008 | A1 |
20080303896 | Lipton et al. | Dec 2008 | A1 |
20080304111 | Queenan et al. | Dec 2008 | A1 |
20080309586 | Vitale | Dec 2008 | A1 |
20080316303 | Chiu et al. | Dec 2008 | A1 |
20080316375 | Lipton et al. | Dec 2008 | A1 |
20090001632 | Stumpe et al. | Jan 2009 | A1 |
20090010135 | Ushiro et al. | Jan 2009 | A1 |
20090017424 | Yoeli et al. | Jan 2009 | A1 |
20090019222 | Verma et al. | Jan 2009 | A1 |
20090052017 | Sasaki | Feb 2009 | A1 |
20090052046 | Amitai | Feb 2009 | A1 |
20090052047 | Amitai | Feb 2009 | A1 |
20090067774 | Magnusson | Mar 2009 | A1 |
20090074356 | Sanchez et al. | Mar 2009 | A1 |
20090097122 | Niv | Apr 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090116790 | Mossberg et al. | May 2009 | A1 |
20090121301 | Chang | May 2009 | A1 |
20090122413 | Hoffman et al. | May 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090128495 | Kong et al. | May 2009 | A1 |
20090128781 | Li | May 2009 | A1 |
20090128902 | Niv et al. | May 2009 | A1 |
20090128911 | Itzkovitch et al. | May 2009 | A1 |
20090136246 | Murakami | May 2009 | A1 |
20090141324 | Mukawa | Jun 2009 | A1 |
20090153437 | Aharoni | Jun 2009 | A1 |
20090169152 | Oestergard | Jul 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20090213208 | Glatt | Aug 2009 | A1 |
20090237804 | Amitai et al. | Sep 2009 | A1 |
20090242021 | Petkie et al. | Oct 2009 | A1 |
20090296218 | Ryytty | Dec 2009 | A1 |
20090303599 | Levola | Dec 2009 | A1 |
20090316246 | Asai et al. | Dec 2009 | A1 |
20100014022 | Nagata et al. | Jan 2010 | A1 |
20100014312 | Travis et al. | Jan 2010 | A1 |
20100039796 | Mukawa | Feb 2010 | A1 |
20100053565 | Mizushima et al. | Mar 2010 | A1 |
20100060551 | Sugiyama et al. | Mar 2010 | A1 |
20100060990 | Wertheim et al. | Mar 2010 | A1 |
20100065726 | Zhong et al. | Mar 2010 | A1 |
20100079841 | Levola | Apr 2010 | A1 |
20100079865 | Saarikko et al. | Apr 2010 | A1 |
20100084261 | Lee et al. | Apr 2010 | A1 |
20100086256 | Ben Bakir et al. | Apr 2010 | A1 |
20100092124 | Magnusson et al. | Apr 2010 | A1 |
20100096562 | Klunder et al. | Apr 2010 | A1 |
20100097674 | Kasazumi et al. | Apr 2010 | A1 |
20100097820 | Owen et al. | Apr 2010 | A1 |
20100103078 | Mukawa et al. | Apr 2010 | A1 |
20100134534 | Seesselberg et al. | Jun 2010 | A1 |
20100135615 | Ho et al. | Jun 2010 | A1 |
20100136319 | Imai et al. | Jun 2010 | A1 |
20100141555 | Rorberg et al. | Jun 2010 | A1 |
20100141905 | Burke | Jun 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100165465 | Levola | Jul 2010 | A1 |
20100165660 | Weber et al. | Jul 2010 | A1 |
20100171680 | Lapidot et al. | Jul 2010 | A1 |
20100177388 | Cohen et al. | Jul 2010 | A1 |
20100202725 | Popovich et al. | Aug 2010 | A1 |
20100214659 | Levola | Aug 2010 | A1 |
20100220261 | Mizushima et al. | Sep 2010 | A1 |
20100220293 | Mizushima et al. | Sep 2010 | A1 |
20100225834 | Li | Sep 2010 | A1 |
20100225876 | Escuti et al. | Sep 2010 | A1 |
20100231532 | Nho et al. | Sep 2010 | A1 |
20100231693 | Levola | Sep 2010 | A1 |
20100231705 | Yahav et al. | Sep 2010 | A1 |
20100232003 | Baldy et al. | Sep 2010 | A1 |
20100232016 | Landa et al. | Sep 2010 | A1 |
20100245756 | Sugihara et al. | Sep 2010 | A1 |
20100245757 | Sugihara et al. | Sep 2010 | A1 |
20100246003 | Simmonds et al. | Sep 2010 | A1 |
20100246004 | Simmonds | Sep 2010 | A1 |
20100246993 | Rieger et al. | Sep 2010 | A1 |
20100253987 | Leopold et al. | Oct 2010 | A1 |
20100260030 | Yuyama et al. | Oct 2010 | A1 |
20100265117 | Weiss | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100284090 | Simmonds | Nov 2010 | A1 |
20100284180 | Popovich et al. | Nov 2010 | A1 |
20100296163 | Saarikko | Nov 2010 | A1 |
20100299814 | Celona et al. | Dec 2010 | A1 |
20100302798 | Papakonstantinou et al. | Dec 2010 | A1 |
20100315719 | Saarikko et al. | Dec 2010 | A1 |
20100321781 | Levola et al. | Dec 2010 | A1 |
20100322555 | Vermeulen et al. | Dec 2010 | A1 |
20110001895 | Dahl | Jan 2011 | A1 |
20110002143 | Saarikko et al. | Jan 2011 | A1 |
20110013423 | Selbrede et al. | Jan 2011 | A1 |
20110019250 | Aiki et al. | Jan 2011 | A1 |
20110019874 | Jarvenpaa et al. | Jan 2011 | A1 |
20110026128 | Baker et al. | Feb 2011 | A1 |
20110026774 | Flohr et al. | Feb 2011 | A1 |
20110032459 | Ihm et al. | Feb 2011 | A1 |
20110032602 | Rothenberg et al. | Feb 2011 | A1 |
20110032618 | Handerek et al. | Feb 2011 | A1 |
20110032706 | Mukawa | Feb 2011 | A1 |
20110038024 | Wang et al. | Feb 2011 | A1 |
20110050548 | Blumenfeld et al. | Mar 2011 | A1 |
20110058122 | Shikii et al. | Mar 2011 | A1 |
20110063604 | Hamre et al. | Mar 2011 | A1 |
20110096401 | Levola | Apr 2011 | A1 |
20110102711 | Sutherland et al. | May 2011 | A1 |
20110103762 | Lee et al. | May 2011 | A1 |
20110109880 | Nummela | May 2011 | A1 |
20110157707 | Tilleman et al. | Jun 2011 | A1 |
20110164221 | Tilleman et al. | Jul 2011 | A1 |
20110187293 | Travis et al. | Aug 2011 | A1 |
20110211239 | Mukawa et al. | Sep 2011 | A1 |
20110216255 | Miyauchi et al. | Sep 2011 | A1 |
20110221656 | Haddick et al. | Sep 2011 | A1 |
20110232211 | Farahi | Sep 2011 | A1 |
20110235179 | Simmonds | Sep 2011 | A1 |
20110235365 | McCollum et al. | Sep 2011 | A1 |
20110236803 | Weiser et al. | Sep 2011 | A1 |
20110238399 | Ophir et al. | Sep 2011 | A1 |
20110242349 | Izuha et al. | Oct 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20110242670 | Simmonds | Oct 2011 | A1 |
20110249309 | McPheters et al. | Oct 2011 | A1 |
20110274435 | Fini et al. | Nov 2011 | A1 |
20110299075 | Meade et al. | Dec 2011 | A1 |
20110310356 | Vallius | Dec 2011 | A1 |
20120007979 | Schneider et al. | Jan 2012 | A1 |
20120027347 | Mathal et al. | Feb 2012 | A1 |
20120033306 | Valera et al. | Feb 2012 | A1 |
20120044572 | Simmonds et al. | Feb 2012 | A1 |
20120044573 | Simmonds et al. | Feb 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120062998 | Schultz et al. | Mar 2012 | A1 |
20120067864 | Kusuda et al. | Mar 2012 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120081789 | Mukawa et al. | Apr 2012 | A1 |
20120092632 | McLeod et al. | Apr 2012 | A1 |
20120099203 | Boubis et al. | Apr 2012 | A1 |
20120105634 | Meidan et al. | May 2012 | A1 |
20120105740 | Jannard et al. | May 2012 | A1 |
20120120493 | Simmonds et al. | May 2012 | A1 |
20120127577 | Desserouer | May 2012 | A1 |
20120162549 | Gao et al. | Jun 2012 | A1 |
20120162764 | Shimizu | Jun 2012 | A1 |
20120176665 | Song et al. | Jul 2012 | A1 |
20120183888 | Oliveira et al. | Jul 2012 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120194914 | Van | Aug 2012 | A1 |
20120200532 | Powell et al. | Aug 2012 | A1 |
20120206811 | Mukawa et al. | Aug 2012 | A1 |
20120206937 | Travis et al. | Aug 2012 | A1 |
20120207432 | Travis et al. | Aug 2012 | A1 |
20120207434 | Large | Aug 2012 | A1 |
20120214089 | Hönel et al. | Aug 2012 | A1 |
20120214090 | Weiser et al. | Aug 2012 | A1 |
20120218481 | Popovich et al. | Aug 2012 | A1 |
20120224062 | Lacoste et al. | Sep 2012 | A1 |
20120235884 | Miller et al. | Sep 2012 | A1 |
20120235886 | Border et al. | Sep 2012 | A1 |
20120235900 | Border et al. | Sep 2012 | A1 |
20120242661 | Takagi et al. | Sep 2012 | A1 |
20120280956 | Yamamoto et al. | Nov 2012 | A1 |
20120281943 | Popovich et al. | Nov 2012 | A1 |
20120287675 | Mukawa | Nov 2012 | A1 |
20120290973 | Robertson et al. | Nov 2012 | A1 |
20120294037 | Holman et al. | Nov 2012 | A1 |
20120300311 | Simmonds et al. | Nov 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20120326950 | Park et al. | Dec 2012 | A1 |
20120328234 | Lu et al. | Dec 2012 | A1 |
20130016324 | Travis | Jan 2013 | A1 |
20130016362 | Gong et al. | Jan 2013 | A1 |
20130021392 | Travis | Jan 2013 | A1 |
20130021586 | Lippey | Jan 2013 | A1 |
20130027006 | Holloway et al. | Jan 2013 | A1 |
20130033485 | Kollin et al. | Feb 2013 | A1 |
20130039619 | Laughlin | Feb 2013 | A1 |
20130044376 | Valera et al. | Feb 2013 | A1 |
20130051730 | Travers et al. | Feb 2013 | A1 |
20130059233 | Askham | Mar 2013 | A1 |
20130069850 | Mukawa et al. | Mar 2013 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20130088637 | Duparre | Apr 2013 | A1 |
20130093893 | Schofield et al. | Apr 2013 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130107186 | Ando et al. | May 2013 | A1 |
20130107343 | Shekel | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130125027 | Abovitz et al. | May 2013 | A1 |
20130128230 | Macnamara | May 2013 | A1 |
20130138275 | Nauman et al. | May 2013 | A1 |
20130141934 | Hartung | Jun 2013 | A1 |
20130141937 | Katsuta et al. | Jun 2013 | A1 |
20130143336 | Jain | Jun 2013 | A1 |
20130163089 | Bohn | Jun 2013 | A1 |
20130163928 | Wang et al. | Jun 2013 | A1 |
20130170031 | Bohn et al. | Jul 2013 | A1 |
20130176704 | Lanman et al. | Jul 2013 | A1 |
20130184904 | Gadzinski | Jul 2013 | A1 |
20130200710 | Robbins | Aug 2013 | A1 |
20130207887 | Raffle et al. | Aug 2013 | A1 |
20130224634 | Berneth et al. | Aug 2013 | A1 |
20130229717 | Amitai | Sep 2013 | A1 |
20130249895 | Westerinen et al. | Sep 2013 | A1 |
20130250207 | Bohn | Sep 2013 | A1 |
20130250380 | Fujikawa et al. | Sep 2013 | A1 |
20130250430 | Robbins et al. | Sep 2013 | A1 |
20130250431 | Robbins et al. | Sep 2013 | A1 |
20130257848 | Westerinen et al. | Oct 2013 | A1 |
20130258701 | Westerinen et al. | Oct 2013 | A1 |
20130267309 | Robbins et al. | Oct 2013 | A1 |
20130271731 | Popovich et al. | Oct 2013 | A1 |
20130277890 | Bowman et al. | Oct 2013 | A1 |
20130286053 | Fleck et al. | Oct 2013 | A1 |
20130300997 | Popovich et al. | Nov 2013 | A1 |
20130301014 | DeJong et al. | Nov 2013 | A1 |
20130305437 | Weller et al. | Nov 2013 | A1 |
20130308185 | Robinson et al. | Nov 2013 | A1 |
20130312811 | Aspnes et al. | Nov 2013 | A1 |
20130314789 | Saarikko et al. | Nov 2013 | A1 |
20130314793 | Robbins et al. | Nov 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20130328948 | Kunkel et al. | Dec 2013 | A1 |
20130342525 | Benko et al. | Dec 2013 | A1 |
20140002514 | Richards | Jan 2014 | A1 |
20140003762 | Macnamara | Jan 2014 | A1 |
20140009809 | Pyun et al. | Jan 2014 | A1 |
20140022616 | Popovich et al. | Jan 2014 | A1 |
20140024159 | Jain | Jan 2014 | A1 |
20140027006 | Foley et al. | Jan 2014 | A1 |
20140037242 | Popovich et al. | Feb 2014 | A1 |
20140043672 | Clarke et al. | Feb 2014 | A1 |
20140043689 | Mason | Feb 2014 | A1 |
20140055845 | Jain | Feb 2014 | A1 |
20140063055 | Osterhout et al. | Mar 2014 | A1 |
20140064655 | Nguyen et al. | Mar 2014 | A1 |
20140071538 | Muller | Mar 2014 | A1 |
20140098010 | Travis | Apr 2014 | A1 |
20140104665 | Popovich et al. | Apr 2014 | A1 |
20140104685 | Bohn et al. | Apr 2014 | A1 |
20140118647 | Momonoi et al. | May 2014 | A1 |
20140126029 | Fuetterer | May 2014 | A1 |
20140126175 | Amitai et al. | May 2014 | A1 |
20140130132 | Cahill et al. | May 2014 | A1 |
20140138581 | Archetti et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140140654 | Brown et al. | May 2014 | A1 |
20140146394 | Tout et al. | May 2014 | A1 |
20140152778 | Ihlenburg et al. | Jun 2014 | A1 |
20140154614 | Xie et al. | Jun 2014 | A1 |
20140160576 | Robbins et al. | Jun 2014 | A1 |
20140168055 | Smith | Jun 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140168735 | Yuan et al. | Jun 2014 | A1 |
20140168783 | Luebke et al. | Jun 2014 | A1 |
20140172296 | Shtukater | Jun 2014 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140177023 | Gao et al. | Jun 2014 | A1 |
20140185286 | Popovich et al. | Jul 2014 | A1 |
20140198128 | Hong et al. | Jul 2014 | A1 |
20140198896 | Hemmendorff et al. | Jul 2014 | A1 |
20140204455 | Popovich et al. | Jul 2014 | A1 |
20140211322 | Bohn et al. | Jul 2014 | A1 |
20140218468 | Gao et al. | Aug 2014 | A1 |
20140218801 | Simmonds et al. | Aug 2014 | A1 |
20140232759 | Simmonds et al. | Aug 2014 | A1 |
20140240834 | Mason | Aug 2014 | A1 |
20140240842 | Nguyen et al. | Aug 2014 | A1 |
20140255662 | Enomoto et al. | Sep 2014 | A1 |
20140267420 | Schowengerdt et al. | Sep 2014 | A1 |
20140268017 | Sweis et al. | Sep 2014 | A1 |
20140268353 | Fujimura et al. | Sep 2014 | A1 |
20140300947 | Fattal et al. | Oct 2014 | A1 |
20140300960 | Santori et al. | Oct 2014 | A1 |
20140300966 | Travers et al. | Oct 2014 | A1 |
20140327970 | Bohn et al. | Nov 2014 | A1 |
20140330159 | Costa et al. | Nov 2014 | A1 |
20140367719 | Jain | Dec 2014 | A1 |
20140375542 | Robbins et al. | Dec 2014 | A1 |
20140375789 | Lou et al. | Dec 2014 | A1 |
20140375790 | Robbins et al. | Dec 2014 | A1 |
20150001677 | Palumbo et al. | Jan 2015 | A1 |
20150003796 | Bennett | Jan 2015 | A1 |
20150009550 | Misago et al. | Jan 2015 | A1 |
20150010265 | Popovich et al. | Jan 2015 | A1 |
20150015946 | Muller | Jan 2015 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150035744 | Robbins et al. | Feb 2015 | A1 |
20150036068 | Fattal et al. | Feb 2015 | A1 |
20150058791 | Robertson et al. | Feb 2015 | A1 |
20150062675 | Ayres et al. | Mar 2015 | A1 |
20150062707 | Simmonds et al. | Mar 2015 | A1 |
20150086163 | Valera et al. | Mar 2015 | A1 |
20150086907 | Mizuta et al. | Mar 2015 | A1 |
20150107671 | Bodan et al. | Apr 2015 | A1 |
20150109763 | Shinkai et al. | Apr 2015 | A1 |
20150125109 | Robbins et al. | May 2015 | A1 |
20150148728 | Sallum et al. | May 2015 | A1 |
20150160529 | Popovich et al. | Jun 2015 | A1 |
20150167868 | Boncha | Jun 2015 | A1 |
20150176775 | Gu et al. | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150177686 | Lee et al. | Jun 2015 | A1 |
20150177688 | Popovich et al. | Jun 2015 | A1 |
20150185475 | Saarikko et al. | Jul 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150211960 | Shimizu | Jul 2015 | A1 |
20150219834 | Nichol et al. | Aug 2015 | A1 |
20150235447 | Abovitz et al. | Aug 2015 | A1 |
20150235448 | Schowengerdt et al. | Aug 2015 | A1 |
20150243068 | Solomon | Aug 2015 | A1 |
20150247975 | Abovitz et al. | Sep 2015 | A1 |
20150260994 | Akutsu et al. | Sep 2015 | A1 |
20150262424 | Tabaka et al. | Sep 2015 | A1 |
20150268399 | Futterer | Sep 2015 | A1 |
20150268415 | Schowengerdt et al. | Sep 2015 | A1 |
20150277375 | Large et al. | Oct 2015 | A1 |
20150285682 | Popovich et al. | Oct 2015 | A1 |
20150288129 | Jain | Oct 2015 | A1 |
20150289762 | Popovich et al. | Oct 2015 | A1 |
20150309264 | Abovitz et al. | Oct 2015 | A1 |
20150316768 | Simmonds | Nov 2015 | A1 |
20150338689 | Min et al. | Nov 2015 | A1 |
20150346490 | Tekolste et al. | Dec 2015 | A1 |
20150346495 | Welch et al. | Dec 2015 | A1 |
20150355394 | Leighton et al. | Dec 2015 | A1 |
20160003847 | Ryan et al. | Jan 2016 | A1 |
20160004090 | Popovich et al. | Jan 2016 | A1 |
20160018673 | Wang | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160033705 | Fattal | Feb 2016 | A1 |
20160033706 | Fattal et al. | Feb 2016 | A1 |
20160038992 | Arthur et al. | Feb 2016 | A1 |
20160041387 | Valera et al. | Feb 2016 | A1 |
20160055822 | Bell | Feb 2016 | A1 |
20160060529 | Hegmann et al. | Mar 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160085008 | Banerjee et al. | Mar 2016 | A1 |
20160085300 | Robbins et al. | Mar 2016 | A1 |
20160097959 | Bruizeman et al. | Apr 2016 | A1 |
20160116739 | TeKolste et al. | Apr 2016 | A1 |
20160124223 | Shinbo et al. | May 2016 | A1 |
20160124241 | Popovich et al. | May 2016 | A1 |
20160132025 | Taff et al. | May 2016 | A1 |
20160147067 | Hua et al. | May 2016 | A1 |
20160170226 | Popovich et al. | Jun 2016 | A1 |
20160178901 | Ishikawa | Jun 2016 | A1 |
20160195664 | Fattal et al. | Jul 2016 | A1 |
20160209648 | Haddick et al. | Jul 2016 | A1 |
20160209657 | Popovich et al. | Jul 2016 | A1 |
20160231568 | Saarikko et al. | Aug 2016 | A1 |
20160231570 | Levola et al. | Aug 2016 | A1 |
20160238772 | Waldern | Aug 2016 | A1 |
20160266398 | Poon et al. | Sep 2016 | A1 |
20160274356 | Mason | Sep 2016 | A1 |
20160274362 | Tinch et al. | Sep 2016 | A1 |
20160283773 | Popovich et al. | Sep 2016 | A1 |
20160291328 | Popovich et al. | Oct 2016 | A1 |
20160299344 | Dobschal et al. | Oct 2016 | A1 |
20160320536 | Simmonds et al. | Nov 2016 | A1 |
20160327705 | Simmonds et al. | Nov 2016 | A1 |
20160336033 | Tanaka | Nov 2016 | A1 |
20160341964 | Amitai | Nov 2016 | A1 |
20160363840 | Mizoguchi et al. | Dec 2016 | A1 |
20160370615 | Wu et al. | Dec 2016 | A1 |
20160377879 | Popovich et al. | Dec 2016 | A1 |
20170003505 | Vallius et al. | Jan 2017 | A1 |
20170010466 | Klug et al. | Jan 2017 | A1 |
20170010488 | Klug et al. | Jan 2017 | A1 |
20170030550 | Popovich et al. | Feb 2017 | A1 |
20170031160 | Popovich et al. | Feb 2017 | A1 |
20170031171 | Vallius et al. | Feb 2017 | A1 |
20170032166 | Raguin et al. | Feb 2017 | A1 |
20170034435 | Vallius | Feb 2017 | A1 |
20170038579 | Yeoh et al. | Feb 2017 | A1 |
20170052374 | Waldern et al. | Feb 2017 | A1 |
20170052376 | Amitai et al. | Feb 2017 | A1 |
20170059759 | Ayres et al. | Mar 2017 | A1 |
20170059775 | Coles et al. | Mar 2017 | A1 |
20170102543 | Vallius | Apr 2017 | A1 |
20170115487 | Travis et al. | Apr 2017 | A1 |
20170123208 | Vallius | May 2017 | A1 |
20170131460 | Lin et al. | May 2017 | A1 |
20170131545 | Wall et al. | May 2017 | A1 |
20170131546 | Woltman et al. | May 2017 | A1 |
20170131551 | Robbins et al. | May 2017 | A1 |
20170138789 | Ivanov | May 2017 | A1 |
20170160546 | Bull et al. | Jun 2017 | A1 |
20170160548 | Woltman et al. | Jun 2017 | A1 |
20170176747 | Vallius et al. | Jun 2017 | A1 |
20170180404 | Bersch et al. | Jun 2017 | A1 |
20170180408 | Yu et al. | Jun 2017 | A1 |
20170192246 | Popovich et al. | Jul 2017 | A9 |
20170192499 | Trail | Jul 2017 | A1 |
20170199333 | Waldern et al. | Jul 2017 | A1 |
20170212295 | Vasylyev | Jul 2017 | A1 |
20170219841 | Popovich et al. | Aug 2017 | A1 |
20170235142 | Wall et al. | Aug 2017 | A1 |
20170236463 | Chi et al. | Aug 2017 | A1 |
20170255257 | Tiana et al. | Sep 2017 | A1 |
20170270637 | Perreault et al. | Sep 2017 | A1 |
20170276940 | Popovich et al. | Sep 2017 | A1 |
20170299793 | Fattal | Oct 2017 | A1 |
20170299794 | Fattal | Oct 2017 | A1 |
20170299860 | Wall et al. | Oct 2017 | A1 |
20170299865 | Vallius et al. | Oct 2017 | A1 |
20170307800 | Fattal | Oct 2017 | A1 |
20170322426 | Tervo | Nov 2017 | A1 |
20170356801 | Popovich et al. | Dec 2017 | A1 |
20170357841 | Popovich et al. | Dec 2017 | A1 |
20180003805 | Popovich et al. | Jan 2018 | A1 |
20180011324 | Popovich et al. | Jan 2018 | A1 |
20180052277 | Schowengerdt et al. | Feb 2018 | A1 |
20180059305 | Popovich et al. | Mar 2018 | A1 |
20180067251 | Baldwin et al. | Mar 2018 | A1 |
20180067318 | St. Hilaire | Mar 2018 | A1 |
20180074265 | Waldern et al. | Mar 2018 | A1 |
20180074340 | Robbins et al. | Mar 2018 | A1 |
20180074352 | Popovich et al. | Mar 2018 | A1 |
20180081190 | Lee et al. | Mar 2018 | A1 |
20180082644 | Bohn | Mar 2018 | A1 |
20180088325 | Brown et al. | Mar 2018 | A1 |
20180107011 | Lu et al. | Apr 2018 | A1 |
20180112097 | Raghavanpillai et al. | Apr 2018 | A1 |
20180113303 | Popovich et al. | Apr 2018 | A1 |
20180120669 | Popovich et al. | May 2018 | A1 |
20180129060 | Lee et al. | May 2018 | A1 |
20180143438 | Oh | May 2018 | A1 |
20180143449 | Popovich et al. | May 2018 | A1 |
20180164583 | Wall et al. | Jun 2018 | A1 |
20180172995 | Lee et al. | Jun 2018 | A1 |
20180188542 | Waldern et al. | Jul 2018 | A1 |
20180188691 | Fattal | Jul 2018 | A1 |
20180203230 | Vallius et al. | Jul 2018 | A1 |
20180210198 | Brown et al. | Jul 2018 | A1 |
20180210396 | Popovich et al. | Jul 2018 | A1 |
20180232048 | Popovich et al. | Aug 2018 | A1 |
20180246354 | Popovich et al. | Aug 2018 | A1 |
20180252869 | Ayres et al. | Sep 2018 | A1 |
20180265774 | Huang et al. | Sep 2018 | A1 |
20180275350 | Oh et al. | Sep 2018 | A1 |
20180275402 | Popovich et al. | Sep 2018 | A1 |
20180275410 | Yeoh et al. | Sep 2018 | A1 |
20180284440 | Popovich et al. | Oct 2018 | A1 |
20180338131 | Robbins | Nov 2018 | A1 |
20180348524 | Blum et al. | Dec 2018 | A1 |
20180373115 | Brown et al. | Dec 2018 | A1 |
20190041634 | Popovich et al. | Feb 2019 | A1 |
20190042827 | Popovich et al. | Feb 2019 | A1 |
20190064526 | Connor | Feb 2019 | A1 |
20190064735 | Waldern et al. | Feb 2019 | A1 |
20190072723 | Waldern et al. | Mar 2019 | A1 |
20190072767 | Vallius et al. | Mar 2019 | A1 |
20190094548 | Nicholson et al. | Mar 2019 | A1 |
20190113751 | Waldern et al. | Apr 2019 | A9 |
20190113829 | Waldern et al. | Apr 2019 | A1 |
20190114484 | Keech et al. | Apr 2019 | A1 |
20190121027 | Popovich et al. | Apr 2019 | A1 |
20190129085 | Waldern et al. | May 2019 | A1 |
20190162962 | Leighton et al. | May 2019 | A1 |
20190162963 | Leighton et al. | May 2019 | A1 |
20190171031 | Popovich et al. | Jun 2019 | A1 |
20190179153 | Popovich et al. | Jun 2019 | A1 |
20190187538 | Popovich et al. | Jun 2019 | A1 |
20190188471 | Osterhout et al. | Jun 2019 | A1 |
20190212195 | Popovich et al. | Jul 2019 | A9 |
20190212557 | Waldern et al. | Jul 2019 | A1 |
20190212573 | Popovich et al. | Jul 2019 | A1 |
20190212588 | Waldern et al. | Jul 2019 | A1 |
20190212589 | Waldern et al. | Jul 2019 | A1 |
20190212596 | Waldern et al. | Jul 2019 | A1 |
20190212597 | Waldern et al. | Jul 2019 | A1 |
20190212698 | Waldern et al. | Jul 2019 | A1 |
20190212699 | Waldern et al. | Jul 2019 | A1 |
20190219822 | Popovich et al. | Jul 2019 | A1 |
20190226830 | Edwin et al. | Jul 2019 | A1 |
20190243142 | Tekolste et al. | Aug 2019 | A1 |
20190265486 | Hansotte et al. | Aug 2019 | A1 |
20190278224 | Schlottau et al. | Sep 2019 | A1 |
20190285796 | Waldern et al. | Sep 2019 | A1 |
20190293880 | Nishiwaki et al. | Sep 2019 | A1 |
20190319426 | Lu et al. | Oct 2019 | A1 |
20190339558 | Waldern et al. | Nov 2019 | A1 |
20190361096 | Popovich et al. | Nov 2019 | A1 |
20200012839 | Popovich et al. | Jan 2020 | A1 |
20200026072 | Brown et al. | Jan 2020 | A1 |
20200026074 | Waldern et al. | Jan 2020 | A1 |
20200033190 | Popovich et al. | Jan 2020 | A1 |
20200033801 | Waldern et al. | Jan 2020 | A1 |
20200033802 | Popovich et al. | Jan 2020 | A1 |
20200041787 | Popovich et al. | Feb 2020 | A1 |
20200057353 | Popovich et al. | Feb 2020 | A1 |
20200064637 | Popovich et al. | Feb 2020 | A1 |
20200081317 | Popovich et al. | Mar 2020 | A1 |
20200089319 | Popovich et al. | Mar 2020 | A1 |
20200096692 | Popovich et al. | Mar 2020 | A1 |
20200096772 | Adema et al. | Mar 2020 | A1 |
20200103661 | Kamakura | Apr 2020 | A1 |
20200142131 | Waldern et al. | May 2020 | A1 |
20200150469 | Popovich et al. | May 2020 | A1 |
20200159023 | Bhargava et al. | May 2020 | A1 |
20200159026 | Waldern et al. | May 2020 | A1 |
20200183163 | Waldern et al. | Jun 2020 | A1 |
20200192088 | Yu et al. | Jun 2020 | A1 |
20200201042 | Wang et al. | Jun 2020 | A1 |
20200201051 | Popovich et al. | Jun 2020 | A1 |
20200225471 | Waldern et al. | Jul 2020 | A1 |
20200241304 | Popovich et al. | Jul 2020 | A1 |
20200247016 | Calafiore | Aug 2020 | A1 |
20200247017 | Waldern et al. | Aug 2020 | A1 |
20200249484 | Waldern et al. | Aug 2020 | A1 |
20200249491 | Popovich et al. | Aug 2020 | A1 |
20200249568 | Rao et al. | Aug 2020 | A1 |
20200264378 | Grant et al. | Aug 2020 | A1 |
20200271973 | Waldern et al. | Aug 2020 | A1 |
20200292745 | Waldern et al. | Sep 2020 | A1 |
20200292840 | Popovich et al. | Sep 2020 | A1 |
20200319404 | Waldern et al. | Oct 2020 | A1 |
20200333606 | Popovich et al. | Oct 2020 | A1 |
20200341194 | Waldern et al. | Oct 2020 | A1 |
20200341272 | Popovich et al. | Oct 2020 | A1 |
20200348519 | Waldern et al. | Nov 2020 | A1 |
20200348531 | Popovich et al. | Nov 2020 | A1 |
20200363771 | Waldern et al. | Nov 2020 | A1 |
20200372236 | Popovich et al. | Nov 2020 | A1 |
20200386947 | Waldern et al. | Dec 2020 | A1 |
20200400946 | Waldern et al. | Dec 2020 | A1 |
20210026297 | Waldern et al. | Jan 2021 | A1 |
20210033857 | Waldern et al. | Feb 2021 | A1 |
20210055551 | Chi et al. | Feb 2021 | A1 |
20210063634 | Waldern et al. | Mar 2021 | A1 |
20210063672 | Bodiya | Mar 2021 | A1 |
20210088705 | Drazic et al. | Mar 2021 | A1 |
20210109285 | Jiang et al. | Apr 2021 | A1 |
20210109353 | Nicholson et al. | Apr 2021 | A1 |
20210191122 | Yaroshchuk et al. | Jun 2021 | A1 |
20210199873 | Shi et al. | Jul 2021 | A1 |
20210199971 | Lee et al. | Jul 2021 | A1 |
20210216040 | Waldern et al. | Jul 2021 | A1 |
20210223585 | Waldern et al. | Jul 2021 | A1 |
20210231874 | Popovich et al. | Jul 2021 | A1 |
20210231955 | Waldern et al. | Jul 2021 | A1 |
20210238374 | Ye et al. | Aug 2021 | A1 |
20210239984 | Popovich et al. | Aug 2021 | A1 |
20210247560 | Waldern et al. | Aug 2021 | A1 |
20210247620 | Popovich et al. | Aug 2021 | A1 |
20210247719 | Waldern et al. | Aug 2021 | A1 |
20210255463 | Popovich et al. | Aug 2021 | A1 |
20210278739 | Brown et al. | Sep 2021 | A1 |
20210349328 | Popovich et al. | Nov 2021 | A1 |
20210364836 | Waldern et al. | Nov 2021 | A1 |
20210405299 | Grant et al. | Dec 2021 | A1 |
20210405365 | Popovich et al. | Dec 2021 | A1 |
20210405514 | Waldern et al. | Dec 2021 | A1 |
20220019015 | Calafiore et al. | Jan 2022 | A1 |
20220043287 | Grant et al. | Feb 2022 | A1 |
20220057749 | Popovich et al. | Feb 2022 | A1 |
20220075196 | Waldern et al. | Mar 2022 | A1 |
20220075242 | Popovich et al. | Mar 2022 | A1 |
20220082739 | Franke et al. | Mar 2022 | A1 |
20220091323 | Yaroshchuk et al. | Mar 2022 | A1 |
20220099898 | Waldern et al. | Mar 2022 | A1 |
20220128754 | Popovich et al. | Apr 2022 | A1 |
20220155623 | Waldern et al. | May 2022 | A1 |
20220163728 | Waldern et al. | May 2022 | A1 |
20220163801 | Waldern et al. | May 2022 | A1 |
20220187692 | Popovich et al. | Jun 2022 | A1 |
20220204790 | Zhang et al. | Jun 2022 | A1 |
20220206232 | Zhang et al. | Jun 2022 | A1 |
20220214503 | Waldern et al. | Jul 2022 | A1 |
20220244559 | Popovich et al. | Aug 2022 | A1 |
20220260838 | Popovich et al. | Aug 2022 | A1 |
20220283377 | Popovich et al. | Sep 2022 | A1 |
20220317356 | Popovich et al. | Oct 2022 | A1 |
20220404538 | Waldern et al. | Dec 2022 | A1 |
20230081115 | Brown et al. | Mar 2023 | A1 |
20230114549 | Brown et al. | Apr 2023 | A1 |
20230358962 | Popovich et al. | Nov 2023 | A1 |
20230359028 | Waldern et al. | Nov 2023 | A1 |
20230359035 | Waldern et al. | Nov 2023 | A1 |
20230359144 | Waldern et al. | Nov 2023 | A1 |
20230359146 | Waldern et al. | Nov 2023 | A1 |
20240019640 | Waldern et al. | Jan 2024 | A1 |
20240027670 | Waldern et al. | Jan 2024 | A1 |
20240134244 | Brown et al. | Apr 2024 | A1 |
20240151890 | Popovich et al. | May 2024 | A1 |
20240255760 | Popovich et al. | Aug 2024 | A1 |
Number | Date | Country |
---|---|---|
PI0720469 | Jan 2014 | BR |
2889727 | Jun 2014 | CA |
1066936 | Dec 1992 | CN |
1320217 | Oct 2001 | CN |
1357010 | Jul 2002 | CN |
1886680 | Dec 2006 | CN |
200944140 | Sep 2007 | CN |
101103297 | Jan 2008 | CN |
101151562 | Mar 2008 | CN |
101241348 | Aug 2008 | CN |
101263412 | Sep 2008 | CN |
100492099 | May 2009 | CN |
101589326 | Nov 2009 | CN |
101688977 | Mar 2010 | CN |
101726857 | Jun 2010 | CN |
101793555 | Aug 2010 | CN |
101881936 | Nov 2010 | CN |
101910900 | Dec 2010 | CN |
101945612 | Jan 2011 | CN |
102314092 | Jan 2012 | CN |
102360093 | Feb 2012 | CN |
102393548 | Mar 2012 | CN |
102498425 | Jun 2012 | CN |
102608762 | Jul 2012 | CN |
102782563 | Nov 2012 | CN |
102928981 | Feb 2013 | CN |
103000188 | Mar 2013 | CN |
103031557 | Apr 2013 | CN |
103389580 | Nov 2013 | CN |
103562802 | Feb 2014 | CN |
103777282 | May 2014 | CN |
103823267 | May 2014 | CN |
103946732 | Jul 2014 | CN |
103959133 | Jul 2014 | CN |
104035157 | Sep 2014 | CN |
104040308 | Sep 2014 | CN |
104040410 | Sep 2014 | CN |
104136952 | Nov 2014 | CN |
104204901 | Dec 2014 | CN |
104246626 | Dec 2014 | CN |
303019849 | Dec 2014 | CN |
104520751 | Apr 2015 | CN |
303217936 | May 2015 | CN |
104956252 | Sep 2015 | CN |
105074537 | Nov 2015 | CN |
105074539 | Nov 2015 | CN |
105190407 | Dec 2015 | CN |
105229514 | Jan 2016 | CN |
105393159 | Mar 2016 | CN |
105408801 | Mar 2016 | CN |
105408802 | Mar 2016 | CN |
105408803 | Mar 2016 | CN |
105487170 | Apr 2016 | CN |
105531716 | Apr 2016 | CN |
105705981 | Jun 2016 | CN |
105940451 | Sep 2016 | CN |
106125308 | Nov 2016 | CN |
106716223 | May 2017 | CN |
106773255 | May 2017 | CN |
106842397 | Jun 2017 | CN |
106950744 | Jul 2017 | CN |
107466372 | Dec 2017 | CN |
107533137 | Jan 2018 | CN |
107873086 | Apr 2018 | CN |
108107506 | Jun 2018 | CN |
108474945 | Aug 2018 | CN |
108780224 | Nov 2018 | CN |
109073889 | Dec 2018 | CN |
109154717 | Jan 2019 | CN |
208621784 | Mar 2019 | CN |
103823267 | May 2019 | CN |
110383117 | Oct 2019 | CN |
107873086 | Mar 2020 | CN |
111025657 | Apr 2020 | CN |
111323867 | Jun 2020 | CN |
111386495 | Jul 2020 | CN |
111566571 | Aug 2020 | CN |
305973971 | Aug 2020 | CN |
111615655 | Sep 2020 | CN |
111684362 | Sep 2020 | CN |
111902768 | Nov 2020 | CN |
107466372 | Jan 2021 | CN |
109073889 | Apr 2021 | CN |
108780224 | Aug 2021 | CN |
113424095 | Sep 2021 | CN |
108474945 | Oct 2021 | CN |
113692544 | Nov 2021 | CN |
113728075 | Nov 2021 | CN |
113728258 | Nov 2021 | CN |
113759555 | Dec 2021 | CN |
111684362 | Mar 2022 | CN |
114207492 | Mar 2022 | CN |
114341686 | Apr 2022 | CN |
109154717 | May 2022 | CN |
111566571 | May 2022 | CN |
114450608 | May 2022 | CN |
114721242 | Jul 2022 | CN |
113759555 | Sep 2024 | CN |
19751190 | May 1999 | DE |
10221837 | Dec 2003 | DE |
102006003785 | Jul 2007 | DE |
102006036831 | Feb 2008 | DE |
102012108424 | Mar 2014 | DE |
102013209436 | Nov 2014 | DE |
001747551-0002 | Aug 2012 | EM |
007234190-0001 | Nov 2019 | EM |
0795775 | Sep 1997 | EP |
0822441 | Feb 1998 | EP |
1347641 | Sep 2003 | EP |
1413972 | Apr 2004 | EP |
1526709 | Apr 2005 | EP |
1748305 | Jan 2007 | EP |
1938152 | Jul 2008 | EP |
1413972 | Oct 2008 | EP |
2110701 | Oct 2009 | EP |
2196729 | Jun 2010 | EP |
2225592 | Sep 2010 | EP |
2244114 | Oct 2010 | EP |
2326983 | Jun 2011 | EP |
2381290 | Oct 2011 | EP |
1828832 | May 2013 | EP |
2733517 | May 2014 | EP |
1573369 | Jul 2014 | EP |
2748670 | Jul 2014 | EP |
2634605 | Oct 2015 | EP |
2929378 | Oct 2015 | EP |
2748670 | Nov 2015 | EP |
2995986 | Mar 2016 | EP |
1402298 | Sep 2016 | EP |
2995986 | Apr 2017 | EP |
3198192 | Aug 2017 | EP |
3245444 | Nov 2017 | EP |
3245551 | Nov 2017 | EP |
3248026 | Nov 2017 | EP |
3256888 | Dec 2017 | EP |
3359999 | Aug 2018 | EP |
2494388 | Nov 2018 | EP |
3398007 | Nov 2018 | EP |
3433658 | Jan 2019 | EP |
3433659 | Jan 2019 | EP |
2842003 | Feb 2019 | EP |
3499278 | Jun 2019 | EP |
3245551 | Sep 2019 | EP |
3548939 | Oct 2019 | EP |
3698214 | Aug 2020 | EP |
3710876 | Sep 2020 | EP |
3710887 | Sep 2020 | EP |
3710893 | Sep 2020 | EP |
3710894 | Sep 2020 | EP |
3245444 | Sep 2021 | EP |
3894938 | Oct 2021 | EP |
3924759 | Dec 2021 | EP |
3927793 | Dec 2021 | EP |
3938821 | Jan 2022 | EP |
3980825 | Apr 2022 | EP |
4004615 | Jun 2022 | EP |
4022370 | Jul 2022 | EP |
2831659 | May 2023 | EP |
3433658 | Aug 2023 | EP |
3256888 | Apr 2024 | EP |
4350422 | Apr 2024 | EP |
3433659 | Oct 2024 | EP |
20176157 | Jun 2019 | FI |
20176158 | Jun 2019 | FI |
20176161 | Jun 2019 | FI |
2677463 | Dec 1992 | FR |
2975506 | Nov 2012 | FR |
2115178 | Sep 1983 | GB |
2140935 | Dec 1984 | GB |
2500631 | Oct 2013 | GB |
2508661 | Jun 2014 | GB |
2509536 | Jul 2014 | GB |
2512077 | Sep 2014 | GB |
2514658 | Dec 2014 | GB |
1204684 | Nov 2015 | HK |
1205563 | Dec 2015 | HK |
1205793 | Dec 2015 | HK |
1206101 | Dec 2015 | HK |
S49092850 | Aug 1974 | JP |
57089722 | Jun 1982 | JP |
02186319 | Jul 1990 | JP |
03239384 | Oct 1991 | JP |
H04303812 | Oct 1992 | JP |
H04303813 | Oct 1992 | JP |
H05066427 | Mar 1993 | JP |
5-224018 | Sep 1993 | JP |
06294952 | Oct 1994 | JP |
7-66383 | Mar 1995 | JP |
07098439 | Apr 1995 | JP |
0990312 | Apr 1997 | JP |
H09185313 | Jul 1997 | JP |
2689851 | Dec 1997 | JP |
H10503279 | Mar 1998 | JP |
10096903 | Apr 1998 | JP |
11109320 | Apr 1999 | JP |
11142806 | May 1999 | JP |
2953444 | Sep 1999 | JP |
H11271535 | Oct 1999 | JP |
2000056259 | Feb 2000 | JP |
2000511306 | Aug 2000 | JP |
2000261706 | Sep 2000 | JP |
2000267042 | Sep 2000 | JP |
2000321962 | Nov 2000 | JP |
2001027739 | Jan 2001 | JP |
2001296503 | Oct 2001 | JP |
2002090858 | Mar 2002 | JP |
2002122906 | Apr 2002 | JP |
2002156617 | May 2002 | JP |
2002162598 | Jun 2002 | JP |
2002523802 | Jul 2002 | JP |
2002529790 | Sep 2002 | JP |
2002311379 | Oct 2002 | JP |
2003066428 | Mar 2003 | JP |
2003270419 | Sep 2003 | JP |
2003315540 | Nov 2003 | JP |
2003532918 | Nov 2003 | JP |
2004157245 | Jun 2004 | JP |
2005037872 | Feb 2005 | JP |
2005222963 | Aug 2005 | JP |
2005309125 | Nov 2005 | JP |
2006017931 | Jan 2006 | JP |
2006350129 | Dec 2006 | JP |
2007011057 | Jan 2007 | JP |
2007094175 | Apr 2007 | JP |
2007199699 | Aug 2007 | JP |
2007219106 | Aug 2007 | JP |
2007279313 | Oct 2007 | JP |
2008112187 | May 2008 | JP |
2008145619 | Jun 2008 | JP |
2009036955 | Feb 2009 | JP |
2009515225 | Apr 2009 | JP |
2009132221 | Jun 2009 | JP |
2009133999 | Jun 2009 | JP |
2009211091 | Sep 2009 | JP |
4367775 | Nov 2009 | JP |
2010044326 | Feb 2010 | JP |
2010256631 | Nov 2010 | JP |
2010278001 | Dec 2010 | JP |
2011075681 | Apr 2011 | JP |
2011158907 | Aug 2011 | JP |
2011164545 | Aug 2011 | JP |
2011232510 | Nov 2011 | JP |
2012137616 | Jul 2012 | JP |
2012163642 | Aug 2012 | JP |
2012533089 | Dec 2012 | JP |
2013061480 | Apr 2013 | JP |
5303928 | Oct 2013 | JP |
2013235256 | Nov 2013 | JP |
2014132328 | Jul 2014 | JP |
5588794 | Aug 2014 | JP |
5646748 | Nov 2014 | JP |
2015053163 | Mar 2015 | JP |
2015523586 | Aug 2015 | JP |
2015172713 | Oct 2015 | JP |
2016030503 | Mar 2016 | JP |
2018508037 | Mar 2018 | JP |
2018512562 | May 2018 | JP |
2018533069 | Nov 2018 | JP |
2019512745 | May 2019 | JP |
2019520595 | Jul 2019 | JP |
6598269 | Oct 2019 | JP |
6680793 | Mar 2020 | JP |
2020514783 | May 2020 | JP |
1664536 | Jul 2020 | JP |
6734933 | Jul 2020 | JP |
2020-537187 | Dec 2020 | JP |
2021509488 | Mar 2021 | JP |
2021509736 | Apr 2021 | JP |
2021509737 | Apr 2021 | JP |
2021509739 | Apr 2021 | JP |
6895451 | Jun 2021 | JP |
2022513896 | Feb 2022 | JP |
2022-520472 | Mar 2022 | JP |
2022-523365 | Apr 2022 | JP |
2022-525165 | May 2022 | JP |
2022091982 | Jun 2022 | JP |
2022535460 | Aug 2022 | JP |
7250799 | Mar 2023 | JP |
20060132474 | Dec 2006 | KR |
100803288 | Feb 2008 | KR |
20100092059 | Aug 2010 | KR |
20140140063 | Dec 2014 | KR |
20140142337 | Dec 2014 | KR |
20160084416 | Jul 2016 | KR |
20170031357 | Mar 2017 | KR |
30-1061010 | May 2020 | KR |
10-2020- 0106932 | Sep 2020 | KR |
10-2020-0108030 | Sep 2020 | KR |
2020-0106170 | Sep 2020 | KR |
20200104402 | Sep 2020 | KR |
20210100174 | Aug 2021 | KR |
10-2021-0127237 | Oct 2021 | KR |
10-2021-0138609 | Nov 2021 | KR |
20210134763 | Nov 2021 | KR |
10-2022-0036963 | Mar 2022 | KR |
1020220038452 | Mar 2022 | KR |
10-2022-0054386 | May 2022 | KR |
200535633 | Nov 2005 | TW |
200801583 | Jan 2008 | TW |
201314263 | Apr 2013 | TW |
201600943 | Jan 2016 | TW |
201604601 | Feb 2016 | TW |
9216880 | Oct 1992 | WO |
1997001133 | Jan 1997 | WO |
1997027519 | Jul 1997 | WO |
1998004650 | Feb 1998 | WO |
1999009440 | Feb 1999 | WO |
9931658 | Jun 1999 | WO |
1999052002 | Oct 1999 | WO |
2000016136 | Mar 2000 | WO |
2000023830 | Apr 2000 | WO |
2000023832 | Apr 2000 | WO |
2000023847 | Apr 2000 | WO |
2000028369 | May 2000 | WO |
2000028369 | Oct 2000 | WO |
2001050200 | Jul 2001 | WO |
0186200 | Nov 2001 | WO |
2001090822 | Nov 2001 | WO |
2002082168 | Oct 2002 | WO |
02093204 | Nov 2002 | WO |
2003081320 | Oct 2003 | WO |
2004023174 | Mar 2004 | WO |
2004053531 | Nov 2004 | WO |
2004102226 | Nov 2004 | WO |
2004109349 | Dec 2004 | WO |
2004109349 | Jan 2005 | WO |
2005001753 | Jan 2005 | WO |
2005006065 | Jan 2005 | WO |
2005006065 | Feb 2005 | WO |
2005047988 | May 2005 | WO |
2005073798 | Aug 2005 | WO |
2006002870 | Jan 2006 | WO |
2006064301 | Jun 2006 | WO |
2006064325 | Jun 2006 | WO |
2006064334 | Jun 2006 | WO |
2006102073 | Sep 2006 | WO |
2006132614 | Dec 2006 | WO |
2006102073 | Jan 2007 | WO |
2007015141 | Feb 2007 | WO |
2007029032 | Mar 2007 | WO |
2007058348 | May 2007 | WO |
2007074787 | Jul 2007 | WO |
2007085682 | Aug 2007 | WO |
2007130130 | Nov 2007 | WO |
2007141587 | Dec 2007 | WO |
2007141589 | Dec 2007 | WO |
2008011066 | Jan 2008 | WO |
2008038058 | Apr 2008 | WO |
2008038539 | Apr 2008 | WO |
2008011066 | May 2008 | WO |
2008081070 | Jul 2008 | WO |
2008100545 | Aug 2008 | WO |
2008011066 | Dec 2008 | WO |
2009013597 | Jan 2009 | WO |
2009013597 | Jan 2009 | WO |
2009077802 | Jun 2009 | WO |
2009077803 | Jun 2009 | WO |
2009101238 | Aug 2009 | WO |
2007130130 | Sep 2009 | WO |
2009155437 | Dec 2009 | WO |
2009155437 | Mar 2010 | WO |
2010023444 | Mar 2010 | WO |
2010057219 | May 2010 | WO |
2010067114 | Jun 2010 | WO |
2010067117 | Jun 2010 | WO |
2010078856 | Jul 2010 | WO |
2010104692 | Sep 2010 | WO |
2010122330 | Oct 2010 | WO |
2010125337 | Nov 2010 | WO |
2010125337 | Nov 2010 | WO |
2010131046 | Nov 2010 | WO |
2011012825 | Feb 2011 | WO |
2011032005 | Mar 2011 | WO |
2011042711 | Apr 2011 | WO |
2011051660 | May 2011 | WO |
2011055109 | May 2011 | WO |
2011042711 | Jun 2011 | WO |
2011073673 | Jun 2011 | WO |
2011107831 | Sep 2011 | WO |
2011110821 | Sep 2011 | WO |
2011131978 | Oct 2011 | WO |
2012052352 | Apr 2012 | WO |
2012062658 | May 2012 | WO |
2012136970 | Oct 2012 | WO |
2012158950 | Nov 2012 | WO |
2012172295 | Dec 2012 | WO |
2013027004 | Feb 2013 | WO |
2013027006 | Feb 2013 | WO |
2013033274 | Mar 2013 | WO |
2013034879 | Mar 2013 | WO |
2013049012 | Apr 2013 | WO |
2013054972 | Apr 2013 | WO |
2013102759 | Jul 2013 | WO |
2013163347 | Oct 2013 | WO |
2013167864 | Nov 2013 | WO |
2013190257 | Dec 2013 | WO |
2014064427 | May 2014 | WO |
2014080155 | May 2014 | WO |
2014085734 | Jun 2014 | WO |
2014090379 | Jun 2014 | WO |
2014091200 | Jun 2014 | WO |
2014093601 | Jun 2014 | WO |
2014100182 | Jun 2014 | WO |
2014113506 | Jul 2014 | WO |
2014116615 | Jul 2014 | WO |
2014130383 | Aug 2014 | WO |
2014144526 | Sep 2014 | WO |
2014156167 | Oct 2014 | WO |
2014159621 | Oct 2014 | WO |
2014164901 | Oct 2014 | WO |
2014176695 | Nov 2014 | WO |
2014179632 | Nov 2014 | WO |
2014188149 | Nov 2014 | WO |
2014209733 | Dec 2014 | WO |
2014209819 | Dec 2014 | WO |
2014209820 | Dec 2014 | WO |
2014209821 | Dec 2014 | WO |
2014210349 | Dec 2014 | WO |
2015006784 | Jan 2015 | WO |
2015015138 | Feb 2015 | WO |
2015017291 | Feb 2015 | WO |
2015069553 | May 2015 | WO |
2015081313 | Jun 2015 | WO |
2015117039 | Aug 2015 | WO |
2015145119 | Oct 2015 | WO |
2016010289 | Jan 2016 | WO |
2016020630 | Feb 2016 | WO |
2016020643 | Feb 2016 | WO |
2016025350 | Feb 2016 | WO |
2016020630 | Mar 2016 | WO |
2016042283 | Mar 2016 | WO |
2016044193 | Mar 2016 | WO |
2016046514 | Mar 2016 | WO |
2016048729 | Mar 2016 | WO |
2016054092 | Apr 2016 | WO |
2016069606 | May 2016 | WO |
2016087442 | Jun 2016 | WO |
2016103263 | Jun 2016 | WO |
2016111706 | Jul 2016 | WO |
2016111707 | Jul 2016 | WO |
2016111708 | Jul 2016 | WO |
2016111709 | Jul 2016 | WO |
2016113533 | Jul 2016 | WO |
2016113534 | Jul 2016 | WO |
2016116733 | Jul 2016 | WO |
2016118107 | Jul 2016 | WO |
2016122679 | Aug 2016 | WO |
2016130509 | Aug 2016 | WO |
2016135434 | Sep 2016 | WO |
2016113533 | Oct 2016 | WO |
2016156776 | Oct 2016 | WO |
2016162606 | Oct 2016 | WO |
2016181108 | Nov 2016 | WO |
2016046514 | Apr 2017 | WO |
2017060665 | Apr 2017 | WO |
2017094129 | Jun 2017 | WO |
2017120320 | Jul 2017 | WO |
2017134412 | Aug 2017 | WO |
2017160367 | Sep 2017 | WO |
2017162999 | Sep 2017 | WO |
2017178781 | Oct 2017 | WO |
2017180403 | Oct 2017 | WO |
2017180923 | Oct 2017 | WO |
2017182771 | Oct 2017 | WO |
2017203200 | Nov 2017 | WO |
2017203201 | Nov 2017 | WO |
2017207987 | Dec 2017 | WO |
2018102834 | Jun 2018 | WO |
2018102834 | Jun 2018 | WO |
2018096359 | Jul 2018 | WO |
2018129398 | Jul 2018 | WO |
2017162999 | Aug 2018 | WO |
2018150163 | Aug 2018 | WO |
2018206487 | Nov 2018 | WO |
2019046649 | Mar 2019 | WO |
2019077307 | Apr 2019 | WO |
2019079350 | Apr 2019 | WO |
2019079350 | Apr 2019 | WO |
2019046649 | May 2019 | WO |
2019122806 | Jun 2019 | WO |
2019135784 | Jul 2019 | WO |
2019135796 | Jul 2019 | WO |
2019135837 | Jul 2019 | WO |
2019136470 | Jul 2019 | WO |
2019136471 | Jul 2019 | WO |
2019136473 | Jul 2019 | WO |
2019171038 | Sep 2019 | WO |
2019185973 | Oct 2019 | WO |
2019185975 | Oct 2019 | WO |
2019185976 | Oct 2019 | WO |
2019185977 | Oct 2019 | WO |
2019217453 | Nov 2019 | WO |
2020023779 | Jan 2020 | WO |
2020123506 | Jun 2020 | WO |
2020149956 | Jul 2020 | WO |
2020163524 | Aug 2020 | WO |
2020168348 | Aug 2020 | WO |
2020172681 | Aug 2020 | WO |
2020186113 | Sep 2020 | WO |
2020212682 | Oct 2020 | WO |
2020219092 | Oct 2020 | WO |
2020227236 | Nov 2020 | WO |
2020247930 | Dec 2020 | WO |
2021016371 | Jan 2021 | WO |
2021021926 | Feb 2021 | WO |
2021032982 | Feb 2021 | WO |
2021032983 | Feb 2021 | WO |
2021041949 | Mar 2021 | WO |
2021044121 | Mar 2021 | WO |
2021138607 | Jul 2021 | WO |
2021242898 | Dec 2021 | WO |
2021262759 | Dec 2021 | WO |
2022015878 | Jan 2022 | WO |
2022099312 | May 2022 | WO |
2022109615 | May 2022 | WO |
2022150841 | Jul 2022 | WO |
Entry |
---|
Extended European Search Report for EP Application No. 13192383.1, dated Apr. 2, 2014, 7 pgs. |
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pgs. |
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, mailed Jan. 28, 2016, 5 pgs. |
Extended European Search Report for European Application No. 19736108.2, Search completed Sep. 15, 2021, Mailed Sep. 27, 2021, 8 pgs. |
Extended European Search Report for European Application No. 18727645.6, Search completed Oct. 14, 2020, Mailed Oct. 23, 2020, 13 pgs. |
Supplementary Partial European Search Report for European Application No. 18727645.6, Search completed Jul. 2, 2020, Mailed Jul. 13, 2020, 13 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, issued Nov. 1, 2011, mailed Nov. 10, 2011, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, issued Apr. 11, 2012, mailed Apr. 19, 2012, 10 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report issued May 1, 2012, mailed May 10, 2012, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2013/000273, issued Dec. 23, 2014, mailed Dec. 31, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, issued Mar. 21, 2017, mailed Mar. 30, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, issued Aug. 29, 2017, mailed Sep. 8, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000051, Report issued Sep. 19, 2017, Mailed Sep. 28, 2017, 7 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000065, issued Oct. 3, 2017, mailed Oct. 12, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/012227, Report issued Jul. 30, 2019, Mailed Aug. 8, 2019, 7 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/012758, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 4 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/012759, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT /US2018/015553, Report issued Jun. 4, 2019, Mailed Jun. 13, 2019, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, issued Jun. 14, 2011, mailed Jun. 23, 2011, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, issued Sep. 18, 2012, mailed Sep. 27, 2012, 10 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, issued Oct. 8, 2013, mailed Oct. 17, 2013, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, issued Feb. 25, 2014, mailed Mar. 6, 2014, 5 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, issued Jul. 8, 2014, mailed Jul. 17, 2014, 12 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, issued Feb. 2, 2016, mailed Feb. 11, 2016, 4 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, issued Feb. 14, 2017, mailed Feb. 23, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2015/000228, issued Feb. 14, 2017, mailed Feb. 23, 2017, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2015/000274, Issued Mar. 28, 2017, mailed Apr. 6, 2017, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, issued Jul. 25, 2017, mailed Aug. 3, 2017, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report issued Sep. 25, 2018, Mailed Oct. 4, 2018, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, issued Oct. 16, 2018, Mailed Oct. 25, 2018, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/011736, issued Jul. 21, 2015, mailed Jul. 30, 2015, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2016/017091, issued Aug. 15, 2017, mailed Aug. 24, 2017, 5 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2018/012691, issued Jul. 9, 2019, Mailed Jul. 18, 2019, 10 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2018/048960, Report issued on Mar. 3, 2020, Mailed on Mar. 12, 2020, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/012764, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 5 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/022482, issued Aug. 25, 2021, Mailed Sep. 23, 2021, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/031363, issued Nov. 2, 2021, Mailed Nov. 18, 2021, 7 pgs. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, mailed Nov. 8, 2010, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, mailed Apr. 6, 2011, 15 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2015/000228, Search completed May 4, 2011, Mailed Jul. 15, 2011, 15 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, mailed Jul. 13, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2016/000065, completed Jul. 14, 2016, mailed Jul. 27, 2016, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, Search completed Jul. 19, 2017, Mailed Jul. 26, 2017, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, mailed Aug. 14, 2013, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, mailed May 8, 2014, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/012227, Search completed Feb. 28, 2018, Mailed Mar. 14, 2018, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, mailed Mar. 28, 2018, 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, Mailed Sep. 19, 2018, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/037410, Search completed Aug. 16, 2018, Mailed Aug. 30, 2018, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/048636, Search completed Nov. 1, 2018, Mailed Nov. 15, 2018, 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/048960, Search completed Dec. 14, 2018, Mailed Jan. 8, 2019, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/056150, Search completed Dec. 4, 2018, Mailed Dec. 26, 2018, 10 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/062835, Search completed Jan. 14, 2019, Mailed Jan. 31, 2019, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/012758, completed Mar. 12, 2019, mailed Mar. 27, 2019, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/012764, completed Mar. 1, 2019, mailed Mar. 18, 2019, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/031163, Search completed Jul. 9, 2019, Mailed Jul. 29, 2019, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/022482, Search completed May 12, 2020, Mailed Jun. 9, 2020, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/031363, completed May 28, 2020, Mailed Jun. 10, 2020, 8 pgs. |
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, mailed May 18, 2010, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, mailed Feb. 27, 2017, 21 pgs. |
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office on Apr. 20, 2016, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/US2019/012759, completed Mar. 14, 2019, mailed Apr. 15, 2019, 12 pgs. |
International Search Report for International Application PCT/GB2014/000295, completed Nov. 18, 2014, mailed Jan. 5, 2015, 4 pgs. |
International Search Report for International Application PCT/GB2017/000040, mailed Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs. |
International Search Report for PCT/GB2010/001982, completed by the European Patent Office on Feb. 24, 2011, 4 pgs. |
International Search Report for PCT/GB2011/000349, completed by the European Patent Office on Aug. 17, 2011, 4 pgs. |
International Search Report for PCT/GB2012/000331, completed by the European Patent Office on Aug. 29, 2012, 4 pgs. |
International Search Report for PCT/GB2012/000677, completed by the European Patent Office on Dec. 10, 2012, 4 pgs. |
International Search Report for PCT/GB2013/000005, completed by the European Patent Office on Jul. 16, 2013, 3 pgs. |
International Search Report for PCT/GB2013/000273, completed by the European Patent Office on Aug. 30, 2013, 4 pgs. |
International Search Report for PCT/GB2015/000203, completed by the European Patent Office on Oct. 9, 2015, 4 pgs. |
International Search Report for PCT/GB2015/000225, completed by the European Patent Office on Nov. 10, 2015, mailed Dec. 2, 2016, 5 pgs. |
International Search Report for PCT/GB2015/000274, completed by the European Patent Office on Jan. 7, 2016, 4 pgs. |
International Search Report for PCT/GB2016/000014, completed by the European Patent Office on Jun. 27, 2016, 4 pgs. |
International Search Report for PCT/GB2016/000051, Completed Aug. 11, 2016, 3 Pgs. |
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, mailed Mar. 8, 2011, 6 pgs. |
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, mailed Aug. 25, 2011, 9 pgs. |
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, mailed Sep. 6, 2012, 7 pgs. |
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, mailed Dec. 17, 2012, 4 pgs. |
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, mailed Jul. 24, 2013, 11 pgs. |
Written Opinion for International Application No. PCT/GB2013/000273, completed Aug. 30, 2013, mailed Sep. 9, 2013, 7 pgs. |
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, mailed Jan. 5, 2015, 3 pgs. |
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, mailed Nov. 16, 2015, 7 pgs. |
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, mailed Feb. 4, 2016, 7 pgs. |
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, mailed Jan. 19, 2016, 7 pgs. |
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, mailed Jul. 7, 2016, 6 pgs. |
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016, Mailed Aug. 22, 2016, 6 Pgs. |
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, mailed Jul. 18, 2017, 6 pgs. |
Written Opinion for International Application PCT/GB2016/000003, completed May 31, 2016, mailed Aug. 12, 2016, 10 pgs. |
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs. |
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs. |
“Application Note AN16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs. |
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs. |
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg. |
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs. |
“BragGrate—Deflector: Transmitting vol. Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com. |
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs. |
“Desmodur N 3900”, Bayer MaterialScience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs. |
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs. |
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261. |
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs. |
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs. |
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs. |
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs. |
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs. |
“LED325W UVTOP UV LED with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs. |
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs. |
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs. |
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs. |
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs. |
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 20130221, www.philipslumileds.com, 2013, 33 pgs. |
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs. |
“Molecular Imprints Imprio 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-Imprint.asp, Dec. 28, 2015, 2 pgs. |
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2. |
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs. |
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs. |
“Plastic has replaced glass in photochromic lens”, www.plastemart.com, 2003, 1 page. |
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs. |
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs. |
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs. |
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniqueICs, Jul. 15, 2004, 11 pgs. |
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs. |
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs. |
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs. |
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs. |
“USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, Press Release, SBG Labs DigiLens, Apr. 2014, 2 pgs. |
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs. |
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs. |
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs. |
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 28, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs. |
“X-Cubes—Revisited for LCOS”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs. |
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs. |
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs. |
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc. of SPIE, 2009, vol. 7176 717606-1, 12 pgs., doi:10.1117/12.808855. |
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs. |
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356. |
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55. No. 2, pp. 1646-1654. |
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103, first published Dec. 22, 2008. |
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-Induced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243. |
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285. |
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, May 18, 2009, vol. 17, No. 8, pp. 659-664, DOI: 10.1889/JSID17.8.659. |
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86. |
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108. |
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350, DOI: 10.1080/02678290310001605910. |
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62. |
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631, doi:10.1039/B922303G. |
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs. |
Bleha et al., “D-ILA Technology for High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, 11 pgs., doi:10.1117/12.497532. |
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs. |
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707. |
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs. |
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8. |
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11, DOI: 10.1063/1.1383566. |
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1738, DOI: 10.1080/00222348.2013.808926. |
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs. |
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the Society for Information Display, vol. 17, No. 12, Dec. 2009, pp. 1043-1049, DOI: 10.1189/JSID17.12.1043. |
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs. |
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs. |
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs. |
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs. |
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII, Iam-Choon Khoo, Editor, Dec. 2003, pp. 123-129. |
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135. |
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annual Review of Material Science, 2000, vol. 30, pp. 83-115. |
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Journal of Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833. |
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662, DOI: 10.1002/adma.200900298. |
Butler et al., “Diffractive Properties of Highly Birefringent Volume Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189. |
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Materials Horizons, 2015, vol. 2, pp. 37-53, DOI: 10.1038/c4mh00140k. |
Cameron, “Optical Waveguide Technology & Its Application in Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11, doi: 10.1117/12.923660. |
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc. of SPIE, 2009, vol. 7326, 11 pages, doi:10.1117/12.818581. |
Caputo et al., “POLICRYPS Composite Materials: Features and Applications”, Advances in Composite Materials—Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118. |
Caputo et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51, DOI: 10.1109/JDT.2005.864156. |
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs. |
Chen et al., “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558, first published Apr. 5, 2011. |
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs., DOI:10.1364/OE.22.020705. |
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408, first published Apr. 19, 2012. |
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?journalCode=tlcy20, 15 pgs. |
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753. |
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090. |
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 DIGEST, May 2000, pp. 770-773. |
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59. |
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' N Revista Mexicana De Fi'sica, Feb. 2011, vol. 57, No. 1, pp. 6-16. |
Dabrowski, “High Birefringence Liquid Crystals”, Crystals, Sep. 3, 2013, vol. 3, No. 3, pp. 443-482, doi:10.3390/cryst3030443. |
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772. |
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, No. 2, pp. 289-294. |
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10. 1889/1.1832877. |
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22. |
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418. |
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs. |
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489. |
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6. |
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, pp. 2499-2505. |
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, pp. 177/[529]-185/[537], DOI: 10.1080/15421400802432584. |
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212, DOI: 10.1063/1.1807027. |
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579. |
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103. |
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, pp. 348-351. |
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776. |
Forman et al., “Materials development for PhotolNhibited SuperResolution (PINSR) lithography”, Proc. of SPIE, 2012, vol. 8249, pp. 824904-1-824904-9, doi: 10.1117/12.908512. |
Forman et al., “Radical diffusion limits to photoinhibited superresolution lithography”, Phys. Chem. Chem. Phys., May 31, 2013, vol. 15, pp. 14862-14867, DOI: 10.1039/c3cp51512. |
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs. |
Fuh et al., “Thermally and Electrically Switchable Gratings Based Upon the Polymer-Balls Type Polymer-Dispersed Liquid Crystal Films”, Appl. Phys. vol. 41, No. 22, Aug. 1, 2002, pp. 4585-4589. |
Fujii et al., “Nanoparticle-polymer-composite vol. gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs. |
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs. |
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514. |
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs. |
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, pp. 121-122. |
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150. |
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75. |
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs. |
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335. |
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012, Article ID 803439, Academic Editor: Sergi Gallego, 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012. |
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs. |
Harbers et al., “I-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350. |
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs. |
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs. |
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. vol. 10, 2003, pp. 1585-1588. |
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs. |
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378. |
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231-233. |
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs. |
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., received May 21, 1999, 7 pgs. |
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, vol. 14, No. 2, Feb. 1997, pp. 405-409. |
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs. |
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, vol. 16, 1997, pp. 1-25. |
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optical Materials Express, vol. 1, No. 2, Jun. 1, 2011, pp. 207-222. |
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684. |
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160. |
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, pp. 842-848, doi: 10.1117/12.580978. |
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942. |
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, pp. 072601-1-072601-4. |
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs. |
Holmes et al., “Controlling the Anisotropy of Holographic Polymer-Dispersed Liquid-Crystal Gratings”, Physical Review E, Jun. 11, 2002, vol. 65, pp. 066603-1-066603-4. |
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc., 2003 Conference, 6 pgs. |
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs. |
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899. |
Huang et al., “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020. |
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430. |
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC. |
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs. |
Jeong et al., “Memory Effect of Polymer Dispersed Liquid Crystal by Hybridization with Nanoclay”, express Polymer Letters, vol. 4, No. 1, 2010, pp. 39-46, DOI: 10.3144/expresspolymlett.2010.7. |
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606. |
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010. |
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961. |
Jurbergs et al., “New recording materials for the holographic industry”, Proc. of SPIE, 2009 Vol. 7233, p. 72330K-1 -72330L-10, doi: 10.1117/12.809579. |
Kahn et al., “Private Line Report on Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs. |
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, Oct. 1997, vol. 36, No. 10, pp. 6388-6392. |
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, pp. 74070D-1-74070D-11, CCC code: 0277-786X/09, doi: 10.1117/12.826531. |
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133. |
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE, 1998, vol. 3297, pp. 52-57. |
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs. |
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 DIGEST, 2004, ISSN/0004-0966X/04/3502, pp. 943-945. |
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 DIGEST, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715. |
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335. |
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295. |
Kim et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853. |
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., vol. 368, 2001, pp. 3855-3864. |
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs. |
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, Nov. 1969, pp. 2909-2945. |
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs. |
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session: Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482. |
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs. |
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs. |
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475. |
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862. |
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, 2007, pp. 2067-2074. |
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs. |
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs. |
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs. |
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs. |
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242. |
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book: Holograms—Recording Materials and Applications, Nov. 9, 2011, 21 pgs. |
Liu et al., “Holographic Polymer Dispersed Liquid Crystals” Materials, Formation and Applications, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs. |
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs. |
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851. |
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, vol. 95, No. 3, Feb. 1, 2004, pp. 810-815. |
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs. |
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106. |
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685. |
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80- 53, Mar. 1981, 100 pgs. |
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs. |
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280. |
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002, vol. 53, No. 3-4, pp. 86-90. |
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs. |
Matic, “Blazed phase liquid crystal beam steering”, Proc. of the SPIE, 1994, vol. 2120, pp. 194-205. |
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169. |
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096. |
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298. |
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs. |
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs. |
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007. |
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742. |
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989. |
Natarajan et al., “Electro Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668. |
Natarajan et al., “Electro-Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98. |
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420. |
Naydenova et al., “Low-scattering Volume Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs. |
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886. |
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs. |
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs. |
Nordin et al., “Diffraction Properties of Stratified vol. Holographic Optical Elements”, Journal of the Optical Society of America A. Dec. 1992, vol. 9, No. 12, pp. 2206-2217. |
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289. |
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890. |
Ondax, Inc., “vol. Holographic Gratings (VHG)”, 2005, 7 pgs. |
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs. |
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105. |
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs. |
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs. |
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs. |
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762. |
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252. |
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45. |
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs. |
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101-6. |
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359. |
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, 117 pgs., DOI:http://dx.doi.org/10.6100/IR634422. |
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs. |
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489. |
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs. |
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs. |
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs. |
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. vol. 4294, Jan. 24, 2001, pp. 75-83. |
Saleh et al., “Fourier Optics: 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143. |
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs. |
Schreiber et al., “Laser display with single-mirror MEMS scanner” Journal of the SID 17/7, 2009, pp. 591-595. |
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs. |
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791. |
Shechter et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240. |
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421. |
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852. |
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs. |
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs. |
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs. |
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs. |
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149. |
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97. |
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs. |
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat.1708, 8 pgs. |
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, pp. 6289DH-1-6289DH-10, doi: 10.1117/12.679416. |
Sun et al., “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81. |
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538. |
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076. |
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629. |
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs. |
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA, 1996, SPIE, vol. 2689, pp. 158-169. |
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391. |
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs. |
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, pp. 18623-18629. |
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs. |
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9. |
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs. |
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 3 pgs., doi: 10.1117/2.1200612.0475. |
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13. |
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs. |
Tzeng et al., “Axially symmetric polarization converters based on photo-aligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775. |
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287. |
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, Nov. 10, 2001, vol. 40, Issue 32, pp. 5840-5851. |
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149. |
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs. |
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80. |
Vecchi, “Studi ESR Di Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs. |
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494. |
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs. |
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs. |
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555. |
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769. |
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775. |
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456. |
Webster, “Webster's Third New International Dictionary 433”, (1986), 3 pages. |
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs. |
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs. |
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg. |
Wicht et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs. |
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969. |
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, pp. 12874-12883. |
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc. of SPIE, 2009, 10 pages, vol. 7327. |
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs. |
Yang et al., “Robust and Accurate Surface Measurement Using Structured Light”, IEEE, Apr. 30, 2008, vol. 57, Issue 6, pp. 1275-1280, DOI:10.1109/TIM.2007.915103. |
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262. |
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, pp. 021902-1-021902-3. |
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs. |
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, pp. 073115-1-073115-4. |
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779. |
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater., 2010, vol. 22, pp. 622-626. |
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063. |
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507. |
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73. |
Zlçbacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs. |
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526, doi:10.1016/j.sna.2006.12.006. |
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/047097 issued Sep. 28, 2021, Mailed on Nov. 4, 2021, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/064765, Report issued Oct. 19, 2020, Mailed Oct. 28, 2020, 27 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/065478, Report issued Jun. 8, 2021, mailed on Jun. 24, 2021, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/018686, Report issued Aug. 10, 2021, Mailed Aug. 26, 2021, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/019549, Report issued Aug. 10, 2021, Mailed Sep. 2, 2021, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/036654, Report issued Dec. 7, 2021, Mailed Dec. 16, 2021, 9 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/043107, Report issued Jan. 25, 2022, Mailed on Feb. 3, 2022, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/044060, Report issued Feb. 1, 2022, Mailed on Feb. 10, 2022, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/048590, Report issued Mar. 1, 2022, Mailed on Mar. 10, 2022, 12 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2020/067737, Report issued Jul. 5, 2022, Mailed Jul. 14, 2022, 6 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/IB2008/001909, Search completed Feb. 4, 2009, Mailed Feb. 17, 2009, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/043496, Search completed Sep. 28, 2019, Mailed Nov. 14, 2019, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/064765, Search completed Feb. 3, 2020, Mailed Mar. 18, 2020, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2019/065478, Search completed Jan. 29, 2020, Mailed Feb. 11, 2020, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/018686, Search completed Apr. 25, 2020, Mailed May 22, 2020, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/019549, Search completed Apr. 14, 2020, Mailed May 22, 2020, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/036654, Search completed Aug. 21, 2020, Mailed Sep. 4, 2020, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/043107, Search completed Sep. 28, 2020, Mailed Oct. 15, 2020, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/044060, Search completed Oct. 9, 2020, Mailed Nov. 9, 2020, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/048590, Search completed Dec. 7, 2020, Mailed Jan. 11, 2021, 19 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2020/067737, Search completed Mar. 3, 2021, Mailed Mar. 25, 2021, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2021/038542, search Completed Sep. 21, 2021, Mailed Oct. 20, 2021 16 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2021/072287, Search completed Jan. 10, 2022, Mailed Feb. 17, 2022, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2021/072548, Search completed Jan. 25, 2022, Mailed Feb. 8, 2022, 15 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2022/070095, Search completed Mar. 10, 2022, Mailed Mar. 22, 2022, 13 pgs. |
International Search Report and Written Opinion for International Application PCT/US2019/047097, completed Nov. 22, 2015, mailed Dec. 16, 2019, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2020/016875, Report Completed Apr. 9, 2020, Mailed Apr. 29, 2020, 11 pgs. |
International Search Report for PCT/GB2013/000210, completed by the European Patent Office on Aug. 12, 2013, 3 pgs. |
International Search Report for PCT/GB2014/000197, Completed by the European Patent Office on Jul. 31, 2014, 3 pgs. |
International Search Report for PCT/GB2016/000003, Completed by the European Patent Office May 31, 2016, 6 pgs. |
International Search Report for PCT/GB2016/000005, completed by the European Patent Office on May 27, 2016, 4 pgs. |
Written Opinion for International Application No. PCT/GB2014/000197, Search completed Jul. 31, 2014, Mailed Aug. 7, 2014, 6 Pgs. |
Written Opinion for International Application PCT/GB2013/000210, completed Aug. 12, 2013, Mailed Aug. 20, 2013, 5 pgs. |
Written Opinion for International Application PCT/GB2016/000005, search completed May 27, 2016, mailed Jun. 6, 2016, 6 pgs. |
Google search: “digilens waveguide” [site visited Sep. 14, 2020], https://www.google.com/search?q=digilens+waveguide&sxsrf=ALeKk02RFwZAZ0vrlxVH0M_2fiXFkhW1 FA: 1604777621684&source=Inms&tbm=isch&sa=X&ved=2ah UKEwjjyNXAlvHsAh U Rh HI EHTufCvsQ_AUoAnoECBwQBA&biw=1200&bih= 1777. |
Google search: “eyewear display devices” [site visited Sep. 14, 2020], https://www.google.com/search?q=eyewear+display+devices&sxsrf=ALeKk01 WWfnOAgsQR_bhydJaYK3e37r J Lg: 1604779001617&source=Inms&tbm=isch&sa=X&ved=2ah U KEwi99txSm_HsAhVaoH IEHawtD8QQ_AUoAnoECC8QBA&biw=1200&bih= 1777. |
Google search: “smart glasses” [site visited Sep. 14, 2020], https://www.google.com/search?q=smart+glasses&sxsrf=ALeKk01 KN 1wj23-NqP -KCnrcsUpCgxyKA:1604779046920&source=Inms&tbm=isch&sa=X&ved=2ah U KEwipkqPom_HsAhVKhXI EHQGFBp8Q_AUoBHoECCgQBg&biw= 1200&bih= 1777. |
Bhuvaneshwaran et al., “Spectral response of Bragg gratings in multimode polymer waveguides”, Applied Optics, Dec. 1, 2017, vol. 56. No. 34, pp. 9573-9582, doi: 10.1364/AO.56.009573. |
Caputo et al., “POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications”, Journal of Optics A: Pure and Applied Optics, Jan. 15, 2009, vol. 11, No. 2, 13 pgs., doi:10.1088/1464-4258/11/2/024017. |
Carothers, “Polymers and polyfunctionality”, Transactions of the Faraday Society, Jan. 1, 1936, vol. 32, pp. 39-49, doi:10.1039/TF9363200039. |
D'Alessandro et al., “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices”, Opt. Lett., vol. 29, No. 12, Jun. 15, 2004, pp. 1405-1407. |
De Sarkar et al., “Effect of Monomer Functionality on the Morphology and Performance of Holographic Transmission Gratings Recorded on Polymer Dispersed Liquid Crystals”, Macromolecules, 2003, vol. 36, No. 3, pp. 630-638. |
Doolittle, “Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space”, Journal of Applied Physics, 1951, vol. 22, Issue 12, pp. 1471-1475, published online Apr. 29, 2004, https://doi.org/10.1063/1.1699894. |
Escuti et al., “Holographic photonic crystals”, Society of Photo-Optical Instrumentation Engineers, Sep. 2004, vol. 43, No. 9, pp. 1973-1987, DOI: 10.1117/1.1773773. |
Flory, “Molecular size distribution in three-dimensional polymers. I. Gelation”, J. Am. Chem. Soc., Nov. 1941, vol. 63, pp. 3083-3090. |
Fries et al., “Real-time beam shaping without additional optical elements”, Light Science & Applications, Jun. 20, 2018, vol. 7, No. 18, doi: 10.1038/s41377-018-0014-0. |
Gaylord et al., “Thin and thick gratings: terminology clarification”, Applied Optics, Oct. 1, 1981, vol. 20, pp. 3271-3273. |
Gerritsen et al., “Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings”, Applied Optics, Mar. 1, 1991, vol. 30; No. 7, pp. 807-814. |
Golub et al., “Bragg properties of efficient surface relief gratings in the resonance domain”, Optics Communications, Feb. 24, 2004, vol. 235, pp. 261-267, doi: 10.1016/j.optcom.2004.02.069. |
Goodman, “Introduction to Fourier Optics”, Second Edition, Jan. 1996, 457 pgs. |
Guo et al., “Analysis of the effects of viscosity, volume and temperature in photopolymer material for holographic applications”, Proc. SPIE, May 2013, vol. 8776, pp. 87760J-1-87760-J15, DOI:10.1117/12.2018330. |
He et al., “Transmission Holographic Gratings Using Siloxane Containing Liquid Crystalline Compounds, Importance of Chemical Structure of Polymer Matrix Components”, Polymer Journal, Jun. 9, 2006, vol. 38, No. 7, pp. 678-685. |
Jang et al., “Low Driving Voltage Holographic Polymer Dispersed Liquid Crystals with Chemically Incorporated Graphene Oxide”, Journal of Materials Chemistry, 2011, vol. 21, pp. 19226-19232, doi.10.1039/1jm13827h. |
Kakiuchida et al., “Multiple Bragg Diffractions with Different Wavelengths and Polarizations Composed of Liquid Crystal/Polymer Periodic Phases”, ACS Omega, Sep. 22, 2017, pp. 6081-6090, doi: 10.1021/acsomega.7b01149. |
Konuray et al., “State of the Art in Dual-Curing Acrylate Systems”, Polymers, Feb. 12, 2018, vol. 10, No. 178, 24 pgs., doi: 10.3390/polym10020178. |
Kwon et al., “Polymer waveguide notch filter using two stacked thermooptic long-period gratings”, IEEE Photonics Technology Letters, Apr. 4, 2005, vol. 17, Issue 4, pp. 792-794, DOI: 10.1109/LPT.2005.844008. |
Levin et al., “A Closed Form Solution to Natural Image Matting”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, 2014, 8 pgs. |
Li et al., “A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities”, Sensors and Actuators B: Chemical, Jan. 2015, vol. 206, pp. 371-380, https://doi.org/10.1016/j.snb.2014.09.065. |
Liu et al., “Effect of Surfactant on the Electro-Optical Properties of Holographic Polymer Dispersed Liquid Crystal Bragg Gratings”, Optical Materials, 2005, vol. 27, pp. 1451-1455, available online Dec. 25, 2004, doi: 10.1016/j.optmat.2004.10.010. |
Liu et al., “Realization and Optimization of Holographic Waveguide Display System”, Acta Optica Sinica, vol. 37, Issue 5, Issuing date—May 10, 2017, pp. 310-317. |
Lougnot et al., “Polymers for holographic recording: VI. Some basic ideas for modelling the kinetics of the recording process”, Pure and Applied Optics: Journal of the European Optical Society Part A, 1997, vol. 6, No. 2, pp. 225-245, https://doi.org/10.1088/0963-9659/6/2/007. |
Matsushima et al., “Thiol-Isocyanate-Acrylate Ternary Networks by Selective Thiol-Click Chemistry”, Journal of Polymer Science: Part A: Polymer Chemistry, Apr. 16, 2010, vol. 48, 3255-3264, doi: 10.1002/pola.24102. |
Missinne et al., “Flexible thin polymer waveguide Bragg grating sensor foils for strain sensing”, Proc. SPIE, 10101, Organic Photonic Materials and Devices, Feb. 16, 2017, https://doi.org/10.1117/12.2250823. |
Moharam et al., “Diffraction characteristics of photoresist surface-relief gratings”, Applied Optics, Sep. 15, 1984, vol. 23, pp. 3214-3220. |
Mulik, “Adhesion Enhancement of Polymeric Films on Glass Surfaces by a Silane Derivative of Azobisisobutyronitrile (AIBN).”, Polymer Preprints, American Chemical Society (ACS), Jan. 2008, 3 pgs. |
Nielsen et al., “Grating Couplers for Fiber-to-Fiber Characterizations of Stand-Alone Dielectric Loaded Surface Plasmon Waveguide Components”, Journal of Lightwave Technology, Oct. 1, 2012, vol. 30, No. 19, pp. 3118-3125, DOI: 10.1109/JLT.2012.2212418. |
Ogiwara et al., “Temperature Dependence of Anisotropic Diffraction in Holographic Polymer-Dispersed Liquid Crystal Memory”, Applied Optics, Sep. 10, 2013, vol. 52, No. 26, pp. 6529-6536. |
Ogiwara et al., “Thermo-Driven Light Controller by Using Thermal Modulation of Diffraction Wavelength in Holographic Polymer Dispersed Liquid Crystal Grating”, Proc. SPIE, Feb. 19, 2014, 9004, Article 90040Q, 8 pgs., doi: 10.1117/12.2039104. |
Peng et al., “Facile Image Patterning via Sequential Thiol-Michael/Thiol-Yne Click Reactions”, Chemistry of Materials, Nov. 20, 2014, vol. 26, pp. 6819-6826, doi: 10.1021/cm5034436. |
Peng et al., “High Performance Graded Rainbow Holograms via Two-Stage Sequential Orthogonal Thiol-Click Chemistry”, Macromolecules, Mar. 28, 2014, vol. 47, pp. 2306-2315, doi: 10.1021/ma500167x. |
Peng et al., “Low Voltage Driven and Highly Diffractive Holographic Polymer Dispersed Liquid Crystals with Spherical Morphology”, RSC Advances, 2017, vol. 7, pp. 51847-51857, doi: 10.1039/c7ra08949. |
Pierantoni et al., “Efficient modeling of 3-D photonic crystals for integrated optical devices”, IEEE Photonics Technology Letters, Feb. 2006, vol. 18, No. 2, pp. 319-321, DOI: 10.1109/LPT.2005.861991. |
Pogue et al., “Electrically Switchable Bragg Gratings from Liquid Crystal/Polymer Composites”, Applied Spectroscopy, 2000, vol. 54, Issue 1, pp. 12A-28A. |
Prokop et al., “Air-Suspended SU-8 Polymer Waveguide Grating Couplers”, Journal of Lightwave Technology, Sep. 1, 2016, vol. 34, No. 17, pp. 3966-3971, DOI: 10.1109/JLT.2016.2593025. |
Roussel et al., “Photopolymerization Kinetics and Phase Behavior of Acrylate Based Polymers Dispersed Liquid Crystals”, Liquid Crystals, 1998, vol. 24, Issue 4, pp. 555-561. |
Sabel et al., “Simultaneous formation of holographic surface relief gratings and vol. phase gratings in photosensitive polymer”, Materials Research Letters, May 30, 2019, vol. 7, No. 10, pp. 405-411, doi: 10.1080/21663831.2019.1621956. |
Sakhno et al., “Deep surface relief grating in azobenzene-containing materials using a low-intensity 532 nm laser”, Optical Materials: X, Jan. 23, 2019, 100006, pp. 3-7, doi: 10.1016/j.omx.2019.100006. |
Sutherland et al., “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures”, Journal of Applied Physics, Jun. 30, 2004, vol. 96, No. 2, pp. 951-965, https://doi.org/10.1063/1.1762713. |
Tahata et al., “Effects of Polymer Matrix on Electro-Optic Properties of Liquid Crystal Mixed With Polymer”, Proc SPIE, Mar. 11, 1996, vol. 2651, pp. 101-106, doi: 10.1117/12.235342. |
Waldern et al., “Waveguide Optics for All Day Wearable Displays”, Jun. 20, 2017, 35 pgs. |
Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency”, Applied Optics, Jul. 15, 1984, vol. 23; No. 14, pp. 2303-2310. |
Youcef et al., “Phase Behavior of Poly(N-Butyl Acrylate) and Poly(2-Ethylhexyl Acrylate) in Nematic Liquid Crystal E7”, Macromol. Symp. 2011, vol. 303, pp. 10-16, doi: 10.1002/masy.201150502. |
Zeller et al., “Laminated Air Structured and Fluid Infiltrated Polymer Waveguides”, in IEEE Photonics Technology Letters, Nov. 2, 2011, vol. 23, Issue: 21, pp. 1564-1566, first published Aug. 12, 2011, DOI: 10.1109/LPT.2011.2164396. |
Zhao et al., “Diffusion Model of Hologram Formation in Dry Photopolymer Materials”, Journal of Modern Optics, 1994. vol. 41, No. 10, pp. 1929-1939, https://doi.org/10.1080/09500349414551831. |
Zhao et al., “Extension of a diffusion model for holographic photopolymers”, Journal of Modern Optics, 1995, vol. 42, No. 12, pp. 2571-2573, https://doi.org/10.1080/713824349. |
Zheng et al., “Holographic Polymer-Dispersed Liquid Crystal Grating with Low Scattering Losses”, Liquid Crystals, Mar. 2012, vol. 39, Issue 3, pp. 387-391, http://dx.doi.org/10.1080/02678292.2012.656716. |
“Compact linear Fresnel reflector”, Wikipedia, Sep. 16, 2019, https://en.wikipedia.org/wiki/Compact_linear_Fresnel_reflector. |
Digi Lens: Waveguides, announced unknown, [online], [site visited Nov. 6, 2020]. Available from Internet, <URL: https://www.digilens.com/technology/waveguides/> (Year: 2020). |
Extended European Search Report for European Application No. 18867522.7, Search completed Sep. 15, 2021, Mailed Sep. 24, 2021, 9 Pgs. |
Extended European Search Report for European Application No. 18897932.2, Search completed Dec. 22, 2021, Mailed Jan. 12, 2022, 8 pgs. |
Extended European Search Report for European Application No. 18898154.2, Search completed Aug. 13, 2021, Mailed Aug. 23, 2021, 7 pgs. |
Extended European Search Report for European Application No. 19897355.4, Search completed Jul. 12, 2022, Mailed Jul. 21, 2022, 8 Pgs. |
Extended European Search Report for European Application No. 20760111.3, Search completed Sep. 19, 2022, Mailed Sep. 29, 2022, 12 Pgs. |
Extended Search Report for European Application No. 18898841.4, Search completed Mar. 18, 2021, Mailed Mar. 26, 2021, 10 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000005, Report issued Jul. 18, 2017, Mailed Jul. 27, 2017, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/IB2008/001909, Report issued Jan. 26, 2010, Mailed Jan. 26, 2010, 5 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/037410, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/048636, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/062835, Report issued Jul. 14, 2020, Mailed Jul. 23, 2020, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2013/000210, issued Nov. 11, 2014, Mailed Nov. 20, 2014, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2014/000197, issued Nov. 24, 2015, mailed Dec. 3, 2015, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2016/000003, issued Jul. 18, 2017, mailed Jul. 27, 2017, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/GB2017/000015, Report Completed Aug. 7, 2018, Mailed Aug. 16, 2018, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2018/056150, Report Issued on Apr. 21, 2020, Mailed on Apr. 30, 2020, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/031163, Report issued Nov. 10, 2020, Mailed Nov. 19, 2020, 6 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2019/043496 Report issued Jan. 26, 2021, Mailed Feb. 4, 2021, 5 pgs. |
Extended European Search Report for European Application No. 20769981.0, Search completed Dec. 7, 2022, Mailed Mar. 23, 2023, 11 pgs. |
Extended European Search Report for European Application No. 24158294.9, Search completed Apr. 25, 2024, Mailed May 6, 2024, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20230168514 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
62499423 | Jan 2017 | US | |
62497781 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16465834 | US | |
Child | 18059246 | US |