Waveguide device with uniform output illumination

Information

  • Patent Grant
  • 11513350
  • Patent Number
    11,513,350
  • Date Filed
    Friday, January 26, 2018
    6 years ago
  • Date Issued
    Tuesday, November 29, 2022
    a year ago
Abstract
Various embodiments of waveguide devices are described. A debanding optic may be incorporated into waveguide devices, which may help supply uniform output illumination. Accordingly, various waveguide devices are able to output a substantially flat illumination profile eliminating or mitigating banding effects.
Description
FIELD OF THE INVENTION

The present disclosure relates to waveguide devices and more particularly to waveguides having uniform output illumination.


BACKGROUND OF THE INVENTION

Waveguide optics are currently being considered for a range of display and sensor applications for which the ability of waveguide devices to integrate multiple optical functions into a thin, transparent, lightweight substrate is of key importance. This new approach is stimulating new product developments including near-eye displays for Augmented Reality (AR) and Virtual Reality (VR), compact Heads Up Display (HUDs) for aviation and road transport and sensors for biometric and laser radar (LIDAR) applications.


Waveguide devices offer many features that are attractive in HMDs and HUDs. They are thin and transparent. Wide fields of views can be obtained by recording multiple holograms and tiling the field of view regions formed by each hologram.


BRIEF SUMMARY OF THE INVENTION

Several embodiments are directed to a waveguide device that includes at least one optical substrate, at least one light source; at least one light coupler, at least one light extractor, a debanding optic. The at least one light coupler is capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating. The at least one light extractor extracts the light from the optical substrate. The debanding optic is capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding.


In more embodiments, the extracted light has a spatial non-uniformity less than 10%.


In further embodiments, the extracted light has a spatial non-uniformity less than 20%.


In further more embodiments, the debanding optic is an effective input aperture such that when the optical substrate has a thickness D, the input aperture is configured to provide a TIR angle U in the optical substrate, and the angle U is calculated by 2D tan (U).


In even more embodiments, the debanding optic provides spatial variation of the light along the TIR path of at least one of diffraction efficiency, optical transmission, polarization or birefringence.


In even further embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to have multiple gratings, such that each grating provides a small pupil shift to mitigate banding.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as a stacked switchable grating that turns on when a voltage is applied, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as an array of switchable grating elements that can turn on a specific element when a voltage is applied, shifting pupil to mitigate banding effects


In even further more embodiments, the selected at least one grating has a plurality of rolled K-vectors.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to be a plurality of passive grating layers configured to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects.


In even further more embodiments, at least one index layer of the one or more index layers is a gradient index (GRIN) medium.


In even further more embodiments, the waveguide device further includes at least one reflecting surface on at least a part of an edge of the optical substrate. The debanding optic is one or more index layers disposed adjacent to the at least one reflecting surface such that the one or more index layers are configured to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers are configured to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is an input grating having a leading edge able to couple the incident light such that a unique displacement of a ray bundle of the light relative to the leading edge of the input grating is provided by the input grating for any given incident light direction, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is an input grating configured to have a variation of diffraction efficiencies such that a plurality of collimated incident ray paths of the incident light is diffracted into different TIR ray paths, as determined by a ray path input angle, such that a projected pupil is capable of forming at a unique location within the optical substrate for each of the plurality of collimated incident ray paths to mitigate banding effects.


In even further more embodiments, the variation of diffraction efficiencies varies along a principal waveguide direction.


In even further more embodiments, the variation of diffraction efficiencies varies in two dimensions over the aperture of the input grating.


In even further more embodiments, the debanding optic is a partially reflecting layer disposed within the optical substrate such that the partially reflecting layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is a polarization modifying layer disposed within the optical substrate such that the polarization modifying layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, mitigating banding effects.


In even further more embodiments, the selected grating has crossed slant gratings used in conjunction with at least one fold grating exit pupil expander.


In even further more embodiments, the debanding optic is an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil shift to mitigate banding effects.


In even further more embodiments, the debanding optic is a plurality of grating layers within at least one grating of either at least one input grating or at least one output grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in shift of pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is an input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization and birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects.


In even further more embodiments, the plurality of refractive index layers incorporates adhesives of different indices.


In even further more embodiments, the plurality of refractive index layers incorporates layers selected from the group consisting of alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, and birefringent stretched polymer layers.


In even further more embodiments, the debanding optic is a microdisplay projecting spatially varied numerical apertures that shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are mitigated.


In even further more embodiments, the debanding optic is a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along the optical substrate for each angle of incident light, such that banding effects are mitigated along one expansion axis.


In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a prism coupled to the optical substrate, such that a linear relationship between the angles of an exit pupil from the light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).


In even further more embodiments, the debanding optic is a light-absorbing film adjacent to the edges of the optical substrate such that portions of the incident light, that would otherwise give rise to banding, are removed, mitigating banding effects.


In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a first light-absorbing film disposed adjacent to the edges an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).


In even further more embodiments, the thickness of the optical substrate is 3.4 mm, the thickness of the second is substrate 0.5 mm, and the input substrate contains two 0.5 mm thick glass substrates sandwiching the input grating.


In even further more embodiments, the debanding optic is an input grating configured such that the light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect.


In even further more embodiments, the device is integrated into a display selected from the group of head mounted display (HMD) and a head up display (HUD).


In even further more embodiments, a human eye is positioned with an exit pupil of the display.


In even further more embodiments, the device incorporates an eye tracker.


In even further more embodiments, the waveguide device further includes an input image generator that further includes the light source, a microdisplay panel, and optics for collimating the light.


In even further more embodiments, the light source is at least one laser.


In even further more embodiments, the light source is at least one light emitting diode (LED).


In even further more embodiments, the light coupler is an input grating.


In even further more embodiments, the light coupler is a prism.


In even further more embodiments, the light extractor is an input grating.


Several embodiments are directed to a color waveguide device that includes at least two optical substrates, at least one light source, at least one light coupler, at least one light extractor, and at least two input stops. The at least two optical substrates are stacked upon each other. The at least one light coupler is capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating. The at least one light extractor extracts the light from the optical substrate. The at least two input stops are each within a different optical substrate, each in a different plane, and each input stop includes an outer dichroic portion to shift pupil and mitigate color banding.


In more embodiments, each input stop also includes an inner phase compensation coating to compensate for a phase shift.


In further embodiments, the compensation coating includes SiO2.


Several embodiments are directed to a method to mitigate banding in an output illumination of a waveguide device. The method produces incident light from a light source. The method passes the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate. The method also extracts the TIR light from the optical substrate via a light extractor to produce the output illumination. The light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination.


In more embodiments, the output illumination has a spatial non-uniformity less than 10%.


In further embodiments, the output illumination has a spatial non-uniformity less than 20%.


In further more embodiments, the debanding optic is an effective input aperture such that when the optical substrate has a thickness D, the input aperture is configured to provide a TIR angle U in the optical substrate, and the angle U is calculated by 2D tan (U).


In even more embodiments, the debanding optic provides spatial variation of the light along the TIR path of at least one of diffraction efficiency, optical transmission, polarization or birefringence.


In even further embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to have multiple gratings, such that each grating provides a small pupil shift to mitigate banding.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as a stacked switchable grating that turns on when a voltage is applied, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured as an array of switchable grating elements that can turn on a specific element when a voltage is applied, shifting pupil to mitigate banding effects


In even further more embodiments, the selected at least one grating has a plurality of rolled K-vectors.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating. The selected at least one grating is configured to be a plurality of passive grating layers configured to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects.


In even further more embodiments, at least one index layer of the one or more index layers is a gradient index (GRIN) medium.


In even further more embodiments, the waveguide device further includes at least one reflecting surface on at least a part of an edge of the optical substrate. The debanding optic is one or more index layers disposed adjacent to the at least one reflecting surface such that the one or more index layers are configured to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is one or more index layers disposed within the optical substrate such that the one or more index layers are configured to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is an input grating having a leading edge able to couple the incident light such that a unique displacement of a ray bundle of the light relative to the leading edge of the input grating is provided by the input grating for any given incident light direction, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is an input grating configured to have a variation of diffraction efficiencies such that a plurality of collimated incident ray paths of the incident light is diffracted into different TIR ray paths, as determined by a ray path input angle, such that a projected pupil is capable of forming at a unique location within the optical substrate for each of the plurality of collimated incident ray paths to mitigate banding effects.


In even further more embodiments, the variation of diffraction efficiencies varies along a principal waveguide direction.


In even further more embodiments, the variation of diffraction efficiencies varies in two dimensions over the aperture of the input grating.


In even further more embodiments, the debanding optic is a partially reflecting layer disposed within the optical substrate such that the partially reflecting layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is a polarization modifying layer disposed within the optical substrate such that the polarization modifying layer separates incident light into transmitted and reflected light, shifting pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is at least one grating selected from at least one input grating and at least one output grating, and wherein the selected at least one grating is configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, mitigating banding effects.


In even further more embodiments, the selected grating has crossed slant gratings used in conjunction with at least one fold grating exit pupil expander.


In even further more embodiments, the debanding optic is an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil shift to mitigate banding effects.


In even further more embodiments, the debanding optic is a plurality of grating layers within at least one grating of either at least one input grating or at least one output grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in shift of pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is an input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization and birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects.


In even further more embodiments, the plurality of refractive index layers incorporates adhesives of different indices.


In even further more embodiments, the plurality of refractive index layers incorporate layers selected from the group consisting of alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, and birefringent stretched polymer layers.


In even further more embodiments, the debanding optic is a microdisplay projecting spatially varied numerical apertures that shift pupil to mitigate banding effects.


In even further more embodiments, the debanding optic is a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are mitigated.


In even further more embodiments, the debanding optic is a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along the optical substrate for each angle of incident light, such that banding effects are mitigated along one expansion axis.


In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a prism coupled to the optical substrate, such that a linear relationship between the angles of an exit pupil from the light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).


In even further more embodiments, the debanding optic is a light-absorbing film adjacent to the edges of the optical substrate such that portions of the incident light, that would otherwise give rise to banding, are removed, mitigating banding effects.


In even further more embodiments, the optical substrate has a thickness D and the debanding optic is a first light-absorbing film disposed adjacent to the edges of an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U).


In even further more embodiments, the thickness of the optical substrate is 3.4 mm, the thickness of the second is substrate 0.5 mm, and the input substrate contains two 0.5 mm thick glass substrates sandwiching the input grating.


In even further more embodiments, the debanding optic is an input grating configured such that the light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect.


In even further more embodiments, the method is performed by a display selected from the group of head mounted display (HMD) and a head up display (HUD).


In even further more embodiments, a human eye is positioned with an exit pupil of the display.


In even further more embodiments, the display incorporates an eye tracker.


In even further more embodiments, the waveguide device further includes an input image generator that further comprises the light source, a microdisplay panel, and optics for collimating the light.


In even further more embodiments, the light source is at least one laser.


In even further more embodiments, the light source is at least one light emitting diode (LED).


In even further more embodiments, the light coupler is an input grating.


In even further more embodiments, the light coupler is a prism.


In even further more embodiments, the light extractor is an input grating.


INCORPORATION BY REFERENCE

The following related issued patents and patent applications are incorporated by reference herein in their entireties: U.S. Pat. No. 9,075,184 entitled COMPACT EDGE ILLUMINATED DIFFRACTIVE DISPLAY; U.S. Pat. No. 8,233,204 entitled OPTICAL DISPLAYS; PCT Application No. US2006/043938 entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY; PCT Application No. GB2012/000677 entitled WEARABLE DATA DISPLAY; U.S. patent application Ser. No. 13/317,468 entitled COMPACT EDGE ILLUMINATED EYEGLASS DISPLAY; U.S. patent application Ser. No. 13/869,866 entitled HOLOGRAPHIC WIDE ANGLE DISPLAY; U.S. patent application Ser. No. 13/844,456 entitled TRANSPARENT WAVEGUIDE DISPLAY; U.S. patent application Ser. No. 14/620,969 entitled WAVEGUIDE GRATING DEVICE; U.S. Provisional Patent Application No. 62/176,572 entitled ELECTRICALLY FOCUS TUNABLE LENS, U.S. Provisional Patent Application No. 62/177,494 entitled WAVEGUIDE DEVICE INCORPORATING A LIGHT PIPE, U.S. Provisional Patent Application No. 62/071,277 entitled METHOD AND APPARATUS FOR GENERATING INPUT IMAGES FOR HOLOGRAPHIC WAVEGUIDE DISPLAYS; U.S. Provisional Patent Application No. 62/123,282 entitled NEAR EYE DISPLAY USING GRADIENT INDEX OPTICS; U.S. Provisional Patent Application No. 62/124,550 entitled WAVEGUIDE DISPLAY USING GRADIENT INDEX OPTICS; U.S. Provisional Patent Application No. 62/125,064 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION Ind. WINDOWS; U.S. Provisional Patent Application No. 62/125,066 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION Ind. WINDOWS; U.S. Provisional Patent Application No. 62/125,089 entitled HOLOGRAPHIC WAVEGUIDE LIGHT FIELD DISPLAYS; U.S. Pat. No. 8,224,133 entitled LASER ILLUMINATION DEVICE; U.S. Pat. No. 8,565,560 entitled LASER ILLUMINATION DEVICE; U.S. Pat. No. 6,115,152 entitled HOLOGRAPHIC ILLUMINATION SYSTEM; PCT Application No. PCT/GB2013/000005 entitled CONTACT IMAGE SENSOR USING SWITCHABLE BRAGG GRATINGS; PCT Application No. PCT/GB2012/000680 entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES; PCT Application No. PCT/GB2014/000197 entitled HOLOGRAPHIC WAVEGUIDE EYE TRACKER; PCT/GB2013/000210 entitled APPARATUS FOR EYE TRACKING; PCT Application No. GB2013/000210 entitled APPARATUS FOR EYE TRACKING; PCT/GB2015/000274 entitled HOLOGRAPHIC WAVEGUIDE OPTICALTRACKER; U.S. Pat. No. 8,903,207 entitled SYSTEM AND METHOD OF EXTENDING VERTICAL FIELD OF VIEW IN HEAD UP DISPLAY USING A WAVEGUIDE COMBINER; U.S. Pat. No. 8,639,072 entitled COMPACT WEARABLE DISPLAY; U.S. Pat. No. 8,885,112 entitled COMPACT HOLOGRAPHIC EDGE ILLUMINATED EYEGLASS DISPLAY; U.S. Provisional Patent Application No. 62/390,271 entitled HOLOGRAPHIC WAVEGUIDE DEVICES FOR USE WITH UNPOLARIZED LIGHT; U.S. Provisional Patent Application No. 62/391,333 entitled METHOD AND APPARATUS FOR PROVIDING A POLARIZATION SELECTIVE HOLOGRAPHIC WAVEGUIDE DEVICE; U.S. Provisional Patent Application No. 62/493,578 entitled WAVEGUIDE DISPLAY APPARATUS; U.S. Provisional Patent Application No. 62/497,781 entitled APPARATUS FOR HOMOGENIZING THE OUPUT FROM A WAVEGUIDE DEVICE; PCT Application No.: PCT/GB2016000181 entitled WAVEGUIDE DISPLAY; and PCT/GB2016/00005 entitled ENVIRONMENTALLY ISOLATED WAVEGUIDE DISPLAY.





BRIEF DESCRIPTION OF THE DRAWINGS

The description will be more fully understood with reference to the following figures, which are presented as exemplary embodiments of the invention and should not be construed as a complete recitation of the scope of the invention, wherein:



FIG. 1A provides a schematic cross section view of a waveguide exhibiting banding in one embodiment.



FIG. 1B provides a chart showing the integration of light extracted from a waveguide to provide debanded illumination in one embodiment.



FIG. 2 provides a schematic plan view of a detail of a waveguide illustrating a geometrical optical condition for debanding to occur in one embodiment.



FIG. 3 provides a chart showing the spatial variation of an optical characteristic of an optical layer used to provide a pupil shifting means in one embodiment.



FIG. 4 provides a schematic cross section view of a waveguide using a switchable input grating in one embodiment.



FIG. 5 provides a schematic cross section view of a waveguide using a switchable output grating in one embodiment.



FIG. 6A provides a schematic cross section view of a waveguide using a switchable input grating array in one embodiment.



FIG. 6B provides a detail of a switchable grating showing rolled K-vectors in one embodiment.



FIG. 7 provides a schematic plan view of a switchable input grating array in one embodiment.



FIG. 8 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is an optical beam modifying layer disposed on a reflecting surface of the waveguide substrate.



FIG. 9 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is an optical beam modifying layer disposed within the waveguide substrate.



FIG. 10 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is an input grating, varying the separation of an input beam from a leading edge of the input grating as a function of the beam incidence angle in one embodiment.



FIG. 11 provides a schematic cross section view of a detail of a waveguide in which a debanding optic provides projected pupils within the waveguide at locations dependent on the beam incidence angle in one embodiment.



FIG. 12 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a partially reflecting layer in one embodiment.



FIG. 13 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a polarization rotation layer in one embodiment.



FIG. 14 provides a schematic plan view of a waveguide in which a debanding optic is a grating that provides separated light paths through the waveguide for different polarizations of the input light in one embodiment.



FIG. 15 provides a schematic cross section view of a detail of a microdisplay in which a debanding optic provides a variable numerical aperture across principal directions of a microdisplay panel in one embodiment.



FIG. 16A provides a schematic cross section view of a waveguide using stacked switching input gratings in one embodiment.



FIG. 16B provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a switchable input grating array in one embodiment.



FIG. 16C provides a schematic cross section view of a detail of a waveguide in which a debanding optic is an optical beam modifying layer disposed within the waveguide substrate in one embodiment.



FIG. 16D provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a microdisplay panel that provides a variable numerical aperture across principal directions of in one embodiment.



FIG. 16E provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a tilted input image generator providing an exit pupil in one embodiment.



FIG. 16F provides a schematic cross section view of a detail of a waveguide in which a debanding optic a tilted input image generator providing an exit pupil and various projected pupils in one embodiment.



FIG. 16G provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a tilted input image generator and a coupling prism in one embodiment.



FIG. 16H provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a plurality of additional substrates having light absorbing edges in one embodiment.



FIG. 17 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a plurality of additional substrates having light absorbing edges in one embodiment.



FIG. 18 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is a tilted input image generator and a coupling prism in one embodiment.



FIG. 19 provides a schematic cross section of a coating structure for use in balancing color registration in color display in one embodiment.



FIG. 20 provides a schematic cross section view of a detail of a waveguide in which a debanding optic is an input grating offsetting the input beam cross section from its edge.





DETAILED DESCRIPTION OF THE INVENTION

Turning now to the drawings, systems and methods relating to near-eye display or head up display systems are shown according to various embodiments. A number of embodiments are directed to waveguide devices for use in near-eye display or head up display systems. A common complication existing in many waveguide devices is banding in the output illumination that affects its uniformity. Accordingly, various embodiments of waveguide devices having uniform output illumination are provided. In numerous embodiments of waveguide devices, a debanding optic is incorporated to eliminate or mitigate banding effects.


Many embodiments are also directed to holographic waveguide technology that can be advantageously utilized in waveguide devices. In some embodiments, the holographic waveguide technology is used for helmet mounted displays or head mounted displays (HMDs) and head up displays (HUDs). In several embodiments, holographic waveguide technology is used in many applications, including avionics applications and consumer applications (e.g., augmented reality glasses, etc.). In a number of embodiments, an eye is positioned within an exit pupil or an eye box of a display.


In many embodiments, waveguide devices provide pupil expansion in two orthogonal directions using a single waveguide layer. Uniformity of output is achieved, in accordance with various embodiments, by designing an output grating to have diffraction efficiency varying from a low value near an input end of the waveguide substrate to a high value at the furthest extremity of an output grating. In a number of embodiments, input image data is provided by a microdisplay external to a waveguide optical substrate and coupled to the substrate by means of an input grating. A microdisplay, in accordance with multiple embodiments, is a reflective array and illuminated via a beamsplitter. A reflected image light is collimated such that each pixel of the image provides a parallel beam in a unique direction.


In accordance with a number of embodiments, a waveguide device is coupling image content into a waveguide efficiently and in such a way that a waveguide image is free from chromatic dispersion and brightness non-uniformity. One way to prevent chromatic dispersion and to achieve better collimation is to use lasers. The use of lasers, however, suffer from pupil banding artifacts which manifest themselves in the output illumination causing disruption of the uniformity of the image. Banding artifacts are able to form when a collimated pupil is replicated (expanded) in a total internal reflection (TIR) waveguide. Banding occurs when some light beams diffracted out of the waveguide each time the beam interacts with the grating exhibit gaps or overlaps, leading to an illumination ripple. The degree of ripple is a function of field angle, waveguide thickness, and aperture thickness. As portrayed in the various embodiments described herein, it was found by experimentation and simulation that the effect of banding can be smoothed by dispersion with broadband sources such as light-emitting diodes (LEDs). LED illumination, however, is not entirely free from the banding problem, particularly for higher waveguide thickness to waveguide input-aperture ratios. Moreover, LED illumination tends to result in bulky input optics and an increase in the thickness of the waveguide device. Accordingly, a number of embodiments of waveguide devices described herein have a compact and efficient debanding optic for homogenizing the light output from holographs to prevent banding distortion.


Banding effects contribute to non-uniformity of an output illumination. As discovered in several prototype tests, a practical illumination from a waveguide device should achieve less than 20% and preferably not more than 10% non-uniformity to provide an acceptable viewable image. Achieving low non-uniformity requires tradeoffs against other system requirements, particularly image brightness. The tradeoffs are difficult to define in precise terms and are very much dependent on application. Since many optical techniques for reducing non-uniformity generally incur some light loss, output image brightness might be reduced. As the sensitivity of the human visual system to non-uniformity increases with light level, the problem of non-uniformity becomes more acute for displays, such as car HUDs, which require a high luminous flux to achieve high display to background scene contrasts. Accordingly, in some embodiments, extracted light has a spatial non-uniformity less than 10%. In a number of embodiments, extracted light has a spatial non-uniformity less than 20%.


Several embodiments of the invention will now be further described with reference to the accompanying drawings. For the purposes of explaining the various embodiments of the invention, well-known features of optical technology known to those skilled in the art of optical design and visual displays may have been omitted or simplified in order not to obscure the basic principles of the various embodiments. Description of the various embodiments will be presented using terminology commonly employed by those skilled in the art of optical design. Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to various devices. In the following description, the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of electromagnetic radiation along rectilinear trajectories. The term light and illumination may be used in relation to the visible and infrared bands of the electromagnetic spectrum. As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments.


Waveguide Devices


In accordance with a number of embodiments, a waveguide device includes at least one optical substrate, at least one light source, at least one light coupler to couple the light from the source into the optical substrate, and at least one light extractor to extract the light from the optical substrate to form an output illumination. Depicted in FIG. 1A is an embodiment of a waveguide device. Accordingly, the waveguide device (100) includes at least one optical substrate (101), at least one input grating (102), and at least one output grating (103). The input grating (102), which has a maximum aperture W, couples light (ray arrows 1000-1002), from a light source (104) into a total internal reflection (TIR) path (1004) within the waveguide substrate (101). The input (102) and output (103) gratings as depicted in FIG. 1A may exist in any appropriate configuration, such as the grating configurations described herein.


In a number of embodiments, a waveguide device includes an input image generator, which further includes an input image generator having a light source, a microdisplay panel, and optics for collimating the light. In the description of some embodiments, an input generator is referred to as a picture generation unit (PGU). In some embodiments, a source may be configured to provide general illumination that is not modulated with image information. In many embodiments, an input image generator projects the image displayed on the microdisplay panel such that each display pixel is converted into a unique angular direction within the substrate waveguide. In various embodiments, collimation optics include at least a lens and mirrors. In many embodiments, lens and mirrors are diffractive. In some embodiments, a light source is at least one laser. In numerous embodiments, a light source is at least one LED. In many embodiments, various combinations of different light sources are used within an input image generator.


It should be understood that a number of input image generators may be used in accordance with various embodiments of the invention, such as, for example, those described in U.S. patent application Ser. No. 13/869,866 entitled HOLOGRAPHIC WIDE ANGLE DISPLAY and U.S. patent application Ser. No. 13/844,456 entitled TRANSPARENT WAVEGUIDE DISPLAY. In many embodiments, an input image generator contains a beamsplitter for directing light onto the microdisplay and transmitting the reflected light towards the waveguide. In several embodiments, a beamsplitter is a grating recorded in holographic polymer dispersed liquid crystal (HPDLC). In numerous embodiments, a beam splitter is a polarizing beam splitter cube. In some embodiments, an input image generator incorporates a despeckler. Any appropriate despeckler can be used in various embodiments, such as those, for example, described in U.S. Pat. No. 8,565,560 entitled LASER ILLUMINATION DEVICE.


In a number of embodiments, a light source further incorporates one or more lenses for modifying an illumination beam's angular characteristics. In many embodiments, an image source is a microdisplay or laser-based display. Several embodiments of light sources utilize LEDs, which may provide better uniformity than laser. If laser illumination is used, the risk of illumination banding effects are higher, but may still be eliminated or mitigated in accordance with various embodiments as described herein. In numerous embodiments, light from a light source is polarized. In multiple embodiments, an image source is a liquid crystal display (LCD) microdisplay or liquid crystal on silicon (LCoS) microdisplay.


In some embodiments, an input image generator optics includes a polarizing beam splitter cube. In many embodiments, an input image generator optics includes an inclined plate to which a beam splitter coating has been applied. In a number of embodiments, an input image generator optics incorporates a switchable Bragg grating (SBG), which acts as a polarization selective beam splitter. Examples of input image generator optics incorporating a SBG are disclosed in U.S. patent application Ser. No. 13/869,866 entitled HOLOGRAPHIC WIDE ANGLE DISPLAY, and U.S. patent application Ser. No. 13/844,456 entitled TRANSPARENT WAVEGUIDE DISPLAY. In many embodiments, an input image generator optics contains at least one of a refractive component and curved reflecting surfaces or a diffractive optical element for controlling the numerical aperture of the illumination light. In multiple embodiments, an input image generator contains spectral filters for controlling the wavelength characteristics of the illumination light. In several embodiments, an input image generator optics contains apertures, masks, filter, and coatings for controlling stray light. In some embodiments, a microdisplay incorporates birdbath optics.


Returning to an embodiment depicted in FIG. 1A, the external source (102) provides collimated rays in an angular bandwidth (1002). Light in the TIR path (1004) interacts with the output grating (103), extracting a portion of the light each time the TIR light satisfies the condition for diffraction by the grating. In the case of a Bragg grating extraction occurs when the Bragg condition is met. For example, light TIR ray path (1004), which corresponds to the TIR angle U, is diffracted by the output grating into output direction (1005A). It should be apparent from basic geometrical optics that a unique TIR angle is defined by each light incidence angle at the input grating. Light is extracted, and as depicted forms three extraction beams, which are each depicted as flanked by two light rays (1005B & 1005C; 1006A & 1006B; 1007A & 1007B). Perfectly collimated gaps (1006C & 1007C, depicted as cross-hatching) will exit between adjacent beam extracts, resulting in a banding effect. In accordance with a number of embodiments, beam gaps that cause banding are eliminated or minimized by a number of debanding optics as described herein. For example, a debanding optic configures the light such that the input grating has an effective input aperture W that depends on the TIR angle U.


In a multitude of embodiments, a waveguide device incorporates a debanding optic capable of shifting a pupil to configure the light coupled into the waveguide such that the input grating has an effective input aperture which is a function of the TIR angle. The effect of the debanding optic is that successive light extractions from the waveguide by the output grating integrate to provide a substantially flat illumination profile for any light incidence angle at the input grating. In some embodiments, a debanding optic is implemented by combining various types of optical beam-modifying layers, including (but not limited to) gratings, partially reflecting films, liquid crystal alignment layers, isotropic refractive layers and gradient index (GRIN) structures. It should be understood, that the term “beam-modifying” refers to the variation of amplitude, polarization, phase, and wavefront displacement in 3D space as a function of incidence light angle. In each case, beam-modifying layers, in accordance with several embodiments, provide an effective aperture that gives uniform extraction across the output grating for any light incidence angle at the input grating. In many embodiments, beam-modifying layers are used in conjunction with a means for controlling the numerical aperture of the input light as a function of input angle. In some embodiments, beam-modifying layers are used in conjunction with techniques for providing wavelength diversity.



FIG. 1B provides a chart illustrating the effect of pupil shifting optics on the light output (labeled I) from the waveguide along a principal propagation direction labeled as Z (referring to the coordinate system shown in FIG. 1A). Intensity profiles (1008A-1008C) for three successive extractions corresponding to an input light direction are shown. The shape of the intensity profiles is controlled by the prescriptions of beam-modifying layers. In a number of embodiments, intensity profiles are integrated to provide a substantially flat intensity profile. For example, the intensity profiles (1008A-1008C) are integrated into a flat profile (1009).


Input Couplers and Extractors Utilized in Waveguide Devices


Waveguide devices are currently of interest in a range of display and sensor applications. Although much of the earlier work on devices has been directed at reflection holograms, transmission, devices are proving to be much more versatile as optical system building blocks. Accordingly, a number of embodiments are directed to the use of gratings in waveguide devices, which may be used for input or output of pupil. In many embodiments, an input grating is a type of input coupler of light to couple light from a source into a waveguide. In numerous embodiments, an output grating is a type of light extractor of light to extract light from a waveguide to form an output illumination. In several embodiments, waveguide devices utilize a Bragg grating (also referred to as a volume grating). Bragg gratings have high efficiency with little light being diffracted into higher orders. The relative amount of light in the diffracted and zero order can be varied by controlling the refractive index modulation of the grating, a property that is used to make lossy waveguide gratings for extracting light over a large pupil.


As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments. For example, in some embodiments an input grating and/or output grating separately comprise two or more gratings multiplexed into a single layer. It is well established in the literature of holography that more than one holographic prescription can be recorded into a single holographic layer. Methods for recording such multiplexed holograms are well known to those skilled in the art. In some embodiments, an input grating and/or output grating separately comprise two overlapping gratings layers that are in contact or vertically separated by one or more thin optical substrate. In many embodiments, grating layers are sandwiched between flanking glass or plastic substrates. In several embodiments, two or more gratings layers may form a stack within which total internal reflection occurs at the outer substrate and air interfaces. In a number of embodiments, a waveguide device may comprise just one grating layer. In some embodiments, electrodes are applied to faces of substrates to switch gratings between diffracting and clear states. A stack, in accordance with numerous embodiments, further includes additional layers such as beam splitting coatings and environmental protection layers.


In numerous embodiments, a grating layer is broken up into separate layers. A number of layers are laminated together into a single waveguide substrate, in accordance with various embodiments. In some embodiments, a grating layer is made of several pieces including an input coupler, a fold grating, and an output grating (or portions thereof) that are laminated together to form a single substrate waveguide. In many embodiments, pieces of waveguide devices are separated by optical glue or other transparent material of refractive index matching that of the pieces. In a multitude of embodiments, a grating layer is formed via a cell making process by creating cells of the desired grating thickness and vacuum filling each cell with Switchable Bragg Grating (SBG) material for each of an input coupler, a fold grating, and an output grating. In a number of embodiments, a cell is formed by positioning multiple plates of glass with gaps between the plates of glass that define the desired grating thickness for an input coupler, a fold grating, and an output grating. In many embodiments, one cell may be made with multiple apertures such that the separate apertures are filled with different pockets of SBG material. Any intervening spaces, according to various embodiments, are separated by a separating material (e.g., glue, oil, etc.) to define separate areas. In multiple embodiments, SBG material is spin-coated onto a substrate and then covered by a second substrate after curing of the material. By using a fold grating, a waveguide display advantageously requires fewer layers than previous systems and methods of displaying information according to some embodiments. In addition, by using a fold grating, light can travel by total internal refection within the waveguide in a single rectangular prism defined by the waveguide outer surfaces while achieving dual pupil expansion. In many embodiments, an input coupler and gratings can be created by interfering two waves of light at an angle within the substrate to create a holographic wave front, thereby creating light and dark fringes that are set in the waveguide substrate at a desired angle. In numerous embodiments, a grating in a given layer is recorded in stepwise fashion by scanning or stepping the recording laser beams across the grating area. In some embodiments, gratings are recorded using mastering and contact copying process currently used in the holographic printing industry.


Input and output gratings, in accordance with many embodiments, are designed to have common surface grating pitch. In some embodiments, an input grating combines a plurality of gratings orientated such that each grating diffracts a polarization of the incident unpolarized light into a waveguide path. In many embodiments, an output grating combines a plurality of gratings orientated such that the light from the waveguide paths is combined and coupled out of the waveguide as unpolarized light. Each grating is characterized by at least one grating vector (or K-vector) in 3D space, which in the case of a Bragg grating is defined as the vector normal to the Bragg fringes. A grating vector determines an optical efficiency for a given range of input and diffracted angles.


One important class of gratings is known as Switchable Bragg Gratings (SBG), which are utilized in various waveguide devices in accordance with many embodiments. Typically, a holographic polymer dispersed liquid crystal (HPDLC) is used in SBGs. In many embodiments, HPDLC includes a mixture liquid crystal (LC), monomers, photoinitiator dyes, and coinitiators. Often, a mixture also includes a surfactant. The patent and scientific literature contains many examples of material systems and processes that may be used to fabricate SBGs. Two fundamental patents are: U.S. Pat. No. 5,942,157 by Sutherland, and U.S. Pat. No. 5,751,452 by Tanaka et al. Both filings describe monomer and liquid crystal material combinations suitable for fabricating SBG devices. One of the known attributes of transmission SBGs is that the LC molecules tend to align normal to the grating fringe planes. The effect of the LC molecule alignment is that transmission SBGs efficiently diffract P polarized light (i.e., light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (i.e., light with the polarization vector normal to the plane of incidence). Transmission SBGs may not be used at near-grazing incidence as the diffraction efficiency of any grating for P polarization falls to zero when the included angle between the incident and reflected light is small.


In a number of embodiments, SBGs are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. One or both glass plates support electrodes for applying an electric field across the film. In numerous embodiments, electrodes are made at least in part by transparent indium tin oxide films. A volume phase grating can then be recorded by illuminating liquid crystal material (often referred to as the syrup) with two mutually coherent laser beams, which interfere to form a slanted fringe grating structure, in accordance with multiple embodiments. During a recording process, monomers polymerize and the mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer, resulting in a HPDLC. In accordance with several embodiments, alternating liquid crystal-rich and liquid crystal-depleted regions of an HPDLC device form fringe planes of a grating. A resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled, in accordance with various embodiments, by the magnitude of the electric field applied across the film. When an electric field is applied to a grating via transparent electrodes, a natural orientation of the LC droplets is changed, reducing the refractive index modulation of the fringes and dropping a hologram diffraction efficiency to very low levels. Typically, SBG Elements are switched clear in 30 μs, with a longer relaxation time to switch ON. Note that the diffraction efficiency of a device can be adjusted, in accordance with many embodiments, by means of applied voltage over a continuous range. A device exhibits near 100% efficiency when no voltage is applied and near-zero efficiency when a sufficiently high voltage is applied. In certain embodiments, of HPDLC devices, magnetic fields may be used to control the LC orientation. In certain embodiments of HPDLC devices, phase separation of LC material from polymer may be accomplished to such a degree that no discernible droplet structure results. In a number of embodiments, a SBG is also used as a passive grating, which may provide a benefit of a uniquely high refractive index modulation.


According to numerous embodiments, SBGs are used to provide transmission or reflection gratings for free space applications. Various embodiments of SBGs are implemented as waveguide devices in which the HPDLC forms either the waveguide core or an evanescently coupled layer in proximity to the waveguide. In many embodiments, parallel glass plates used to form the HPDLC cell provide a total internal reflection (TIR) light guiding structure. Light is coupled out of a SBG, in accordance with several embodiments, when a switchable grating diffracts light at an angle beyond the TIR condition.


In many embodiments of waveguide devices based on SBGs, gratings are formed in a single layer sandwiched by transparent substrates. In a number of embodiments, a waveguide is just one grating layer. In various embodiments that incorporate switchable gratings, transparent electrodes are applied to opposing surfaces of the substrate layers sandwiching the switchable grating. In some embodiments, cell substrates are fabricated from glass. An exemplary glass substrate is standard Corning Willow glass substrate (index 1.51), which is available in thicknesses down to 50 microns. In a number of embodiments, cell substrates are optical plastics.


It should be understood that Bragg gratings could also be recorded in other materials. In several embodiments, SBGs are recorded in a uniform modulation material, such as POLICRYPS or POLIPHEM having a matrix of solid liquid crystals dispersed in a liquid polymer. In multiple embodiments, SBGs are non-switchable (i.e., passive). Non-switchable SBGs may have the advantage over conventional holographic photopolymer materials of being capable of providing high refractive index modulation due to its liquid crystal component. Exemplary uniform modulation liquid crystal-polymer material systems are disclosed in United State Patent Application Publication No. US2007/0019152 by Caputo et al and PCT Application No.: PCT/EP2005/006950 by Stumpe et al. both of which are incorporated herein by reference in their entireties. Uniform modulation gratings are characterized by high refractive index modulation (and hence high diffraction efficiency) and low scatter. In many embodiments, at least one grating is a surface relief grating. In some embodiments at least one grating is a thin (or Raman-Nath) hologram.


In multiple embodiments, gratings are recorded in a reverse mode HPDLC material. Reverse mode HPDLC differs from conventional HPDLC in that the grating is passive when no electric field is applied and becomes diffractive in the presence of an electric field. Reverse mode HPDLC may be based on any of the recipes and processes disclosed in PCT Application No.: PCT/GB2012/000680, entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES. A grating may be recorded in any of the above material systems, in accordance of various embodiments, but used in a passive (non-switchable) mode. The fabrication process is identical to that used for switchable gratings, but with an electrode coating stage being omitted. LC polymer material systems are highly desirable in view of their high index modulation. In some embodiments, gratings are recorded in HPDLC but are not switchable.


In some embodiments, a grating encodes optical power for adjusting the collimation of the output. In many embodiments, an output image is at infinity. In numerous embodiments, an output image may be formed at distances of several meters from an eye box.


In several embodiments, an input grating may be replaced by another type of input coupler. In particular embodiments, an input grating is replaced with a prism or reflective surface. In a number of embodiments, an input coupler can be a holographic grating, such as a switchable or non-switchable SBG grating. The input coupler is configured to receive collimated light from a display source and to cause the light to travel within the waveguide via total internal reflection between the first surface and second surfaces.


It is well established in the literature of holography that more than one holographic prescriptions can be recorded into a single holographic layer. Methods for recording such multiplexed holograms are well known to those skilled in the art. In some embodiments, at least one of an input or output grating combines two or more angular diffraction prescriptions to expand the angular bandwidth. In many embodiments, at least one of the input or output gratings combines two or more spectral diffraction prescriptions to expand the spectral bandwidth. In numerous embodiments, a color multiplexed grating is used to diffract two or more primary colors.


Many embodiments, as described herein, are operated in monochrome. A color waveguide, however according to various embodiments of the invention, includes a stack of monochrome waveguides. In a number of embodiments, a waveguide device uses red, green and blue waveguide layers. In several embodiments, a waveguide device uses red and blue/green layers. In some embodiments, gratings are all passive, that is, non-switchable. In multiple embodiments, at least one grating is switchable. In a number of embodiments, input gratings in each layer are switchable to avoid color crosstalk between waveguide layers. In some embodiments, color crosstalk is avoided by disposing dichroic filters between the input grating regions of the red and blue and the blue and green waveguides.


In a number of embodiments, light is characterized by a wavelength bandwidth. In many embodiments, a waveguide device is capable of diversifying the wavelength bandwidth of light. In accordance to various embodiments, Bragg gratings, which are inherently spectral bandwidth limited devices, are most efficiently utilized with narrow band sources such as LEDs and lasers. A Bragg grating, in accordance to many embodiments, diffracts two different wavelength bands with high efficiency when the grating prescription and the incident light ray angles satisfy the Bragg equation. Full color waveguides, in accordance to multiple embodiments, utilize separate specific wavelength layers, such as, red, green and blue diffracting waveguide layers. Two-layer solutions in which one layer diffracts two of the three primary colors are used in numerous embodiments. In many embodiments, a natural spectral bandwidth of a Bragg grating is adequate for minimizing color cross talk. For tighter control of color crosstalk, however, additional components such as dichroic filters and narrow band filters integrated between waveguide layers and, typically, overlapping the input gratings may be used.


Debanding Optics


In numerous embodiments, a debanding optic is an effective input aperture such that when the optical substrate has a thickness D, the input aperture is configured to provide a TIR angle U in the optical substrate, and the angle U is calculated by 2D tan (U). Provided in FIG. 2 is an embodiment of a waveguide device (110) incorporating a debanding optic in a form of a waveguide that includes a waveguide substrate (111) and a TIR (1012) such that a condition of zero banding exists. In many embodiments, a condition of zero banding, that is no gaps between successive light extractions along the TIR ray path, occurs when the effective input aperture for a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U).


In some embodiments, a debanding optic provides spatial variation of the light along a TIR path of at least one of diffraction efficiency, optical transmission, polarization or birefringence. A typical spatial variation (120) is provided in the chart FIG. 3 by the curve (1020) where the Y-axis refers to the value of any of the above parameters (e.g., diffraction efficiency) and X-axis is a beam propagation direction within the waveguide. In a number of embodiments, a spatial variation is in two dimensions (in the plane of the waveguide).


In some embodiments, a debanding optic is at least one grating configured to have multiple gratings, such that each grating provides a small pupil shift to eliminate or mitigate banding. In many embodiments, a stack of multiple gratings achieves a small pupil shift when separations between the gratings within the stack are designed to provide a pupil shift for each angle. In a number of embodiments, gratings capable of a pupil shift are separated by transparent substrates. In several embodiments, gratings capable of a pupil shift are passive. Alternatively, in some embodiments, gratings are switched on when a voltage is applied. In some embodiments, multiple gratings arranged to have lateral relative displacements provides a pupil shift. In numerous embodiments, multiple gratings are configured in a two-dimensional array with different sub arrays of grating elements being switched in to their diffraction states according to an incidence angle. In some embodiments, gratings are configured as stacks of arrays. In various embodiments, separate gratings are provided for different wavelength bands. In a number of embodiments, a grating is multiplexed.


In many embodiments, gratings have grating parameters that vary across the principal plane of a waveguide. In some embodiments, a diffraction efficiency is varied to control the amount of light diffracted versus the amount of light transmitted down the waveguide as zero order light, thereby enabling the uniformity of light extracted from the waveguide to be fine-tuned. In several embodiments, K-vectors of at least one grating has rolled K-vectors which have directions optimized to fine tune the uniformity of light extracted from the waveguide. In various embodiments, an index modulation of gratings is varied to fine tune the uniformity of light extracted from the waveguide. In numerous embodiments, a thickness of the gratings is varied to fine tune the uniformity of light extracted from the waveguide.


In a number of embodiments, a debanding optic is at least one grating configured as a stacked switchable grating that turns on when a voltage is applied, shifting pupil to eliminate or mitigate banding effects. Depicted in FIG. 4 is an embodiment of a waveguide device (130) with an optical substrate (131) having stacked switchable input gratings (132A & 1326) and a non-switchable output grating (133). A voltage supply (134) is coupled to the input gratings (132A & 1326) by an electrical connection (135A & 1356) to switch on the input gratings (132A & 132B) to provide pupil shift. Depicted in FIG. 5 is an embodiment of a waveguide device (141) having a non-switchable input grating and a switchable output gating having stacked grating layers (143A & 143B). A voltage supply (144) is coupled to the output gratings (143A & 143B) by an electrical connection (145A & 145B) to switch on the output gratings (143A & 143B) to provide a pupil shift. In various embodiments, a thin substrate layer exits between stacked gratings to provide at least some separation.


In some embodiments, a debanding optic is at least one grating configured as an array of switchable grating elements that can turn on a specific element when a voltage is applied, shifting pupil to eliminate or mitigate banding effects. Depicted in FIG. 6A is an embodiment of a waveguide device (150) having an optical substrate (151) that contains input gratings (152A & 152B) each having a plurality of grating elements (153A-156A & 153B-156B) and an output grating (157). The waveguide device further includes a voltage supply (158) coupled to each input grating (152A & 152B) by an electrical connection (159A & 159B) configured to individually switch on each element (e.g., 156A & 156B) to shift pupil. Although not depicted, it should be understood that a voltage supply can be connected to each and every element to create an array of switchable elements. Furthermore, although FIG. 6A only depicts an input grating configured to be an array, it should be understood that an output grating can also be an array of elements, each element configured to be switchable, in accordance with a number of embodiments of the invention.


In various embodiments, a grating has a plurality of rolled K-vectors. A K-vector is a vector aligned normal to the grating planes (or fringes) which determines the optical efficiency for a given range of input and diffracted angles. Rolling K-vectors, in accordance with a number of embodiments, allows an angular bandwidth of a grating to be expanded without the need to increase the waveguide thickness. Depicted in FIG. 6B is an embodiment of a grating (152C) having four rolled K-vectors (K1-K4). In a number of embodiments, a grating is configured as a two-dimensional array of switchable elements. For example, depicted in FIG. 7, a grating is configured as a two-dimensional array (160) of switchable elements (e.g., 161).


In numerous embodiments, a debanding optic is at least one grating configured to be a plurality of passive grating layers configured to shift pupil to eliminate or mitigate banding effects. When a waveguide device incorporates multiple passive grating layers, in accordance with various embodiments, the basic architecture is similar to some of the embodiments that incorporate active grating layers (e.g., see FIGS. 4 & 5) but without a voltage supply. In some embodiments, it is advantageous to use SBGs in non-switchable mode to take advantage of the higher index modulation afforded by a number of liquid crystal polymer material systems. In many embodiments, a debanding optic is at least one multiplexed grating configured to shift pupil to eliminate or mitigate banding effects.


In some embodiments, a waveguide device includes a fold grating for providing exit pupil expansion. It should be understood that various fold gratings may be used in accordance with various embodiments of the invention. Examples of various fold gratings that may be used in a multitude of embodiments are disclosed in PCT Application No. PCT/GB2016000181 entitled WAVEGUIDE DISPLAY or as described in other references cited herein. A fold grating, in accordance of several embodiments, incorporates multiple gratings for pupil shifting to eliminate or mitigate banding effects, with each grating providing a small pupil shift.


In many embodiments, a debanding optic is one or more index layers disposed within an optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects. In some embodiments, at least one index layer is a GRIN medium. It should be understood that various GRIN mediums may be used in accordance with various embodiments of the invention, such as the examples of various GRIN mediums that are described in U.S. Provisional Patent Application No. 62/123,282 entitled NEAR EYE DISPLAY USING GRADIENT INDEX OPTICS and U.S. Provisional Patent Application No. 62/124,550 entitled WAVEGUIDE DISPLAY USING GRADIENT INDEX OPTICS.


In a number of embodiments, a debanding optic is one or more index layers disposed adjacent to at least one reflecting surface of an edge of an optical substrate such that the one or more layers are configured to provide pupil shifting to eliminate or mitigate banding effects. Depicted in FIG. 8 is an embodiment of a waveguide device (170) having an optical substrate (171) that contains an input grating (172) and an output grating (173) with one or more stacked index layers (174) disposed adjacent an upper reflecting surface of the waveguide such that the one or more index layers provide pupil shifting. In many embodiments, a debanding optic is one or more index layers disposed within an optical substrate such that the one or more layers are configured to provide pupil shifting to eliminate or mitigate banding effects. For example, depicted in FIG. 9 is an embodiment of a waveguide device (180) having an optical substrate (181) that contains an input grating (182) and an output grating (183) with one or more stacked index layers (184) disposed within the optical substrate (181) such that the one or more layers (184) are configured to provide pupil shifting. In some embodiments, a waveguide device incorporates a debanding optic that includes one or more index layers disposed within an optical substrate and one or more index layers also disposed adjacent to at least one reflecting surface of the optical substrate.


In several embodiments, a debanding optic is an input grating having a leading edge able to couple incident light such that a unique displacement of a ray bundle of the light relative to the leading edge of the input grating is provided by the input grating for any given incident light direction, shifting pupil to eliminate or mitigate banding effects. Depicted in FIG. 10 is a detail of an embodiment of a waveguide device (190) having an optical substrate (191) that contains an input grating (192) with a leading edge (193). Collimated input ray paths for two different input angles (1090 & 1091) and the corresponding diffracted rays (1092 & 1093) are depicted. Separations of edges of the two ray sets from the leading edge of the input gratings (1094 & 1095) are depicted. In some embodiments, a displacement of light relative to an edge of an input grating of a ray bundle results in a portion of the beam to fall outside the input grating apertures and therefore not being diffracted into a TIR path inside an optical substrate, depending on the field angle of the incoming light. A suitable absorbing film traps non-diffracted light, in accordance with various embodiments. Hence a beam width can be tailored to meet a debanding condition, when a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U), as was described in greater detail in relation to FIG. 2. An example of such an embodiment will be discussed in greater detail in a subsequent section (see FIG. 20).


In many embodiments, a debanding optic is an input grating configured to have a variation of diffraction efficiencies such that a plurality of collimated incident ray paths of the incident light is diffracted into different TIR ray paths, as determined by a ray path input angle, such that a projected pupil is capable of forming at a unique location within the optical substrate for each of the plurality of collimated incident ray paths to eliminate or mitigate banding effects. Depicted in FIG. 11 is a detail of an embodiment of a waveguide device (200) having an optical substrate (201) that contains an input grating (202). Collimated input ray paths for two different input angles (1100 &1101) are diffracted by the input grating (202) such that the diffracted rays (1102 & 1103) each follow a TIR path down the optical substrate (201). Each TIR ray path (1104 & 1105) forms a projected pupil (1106 & 1107) in a unique location, based on the incident angle, and such that banding effects are eliminated and/or mitigated.


In some embodiments, a variation of diffraction efficiencies varies along a principal waveguide direction to provide, at least in part, pupil shift to eliminate or mitigate banding effects. In many embodiments, a variation of diffraction efficiencies varies in two dimensions over the aperture of the input grating.


In some embodiments, a debanding optic is a partially reflecting layer disposed within an optical substrate such that the partially reflecting layer separates incident light into transmitted and reflected light, shifting pupil to eliminate or mitigate banding effects. Depicted in FIG. 12 is a detail of an embodiment of a waveguide device (210) having an optical substrate (211) that contains a partially reflecting layer (212), capable of separating incident light (1110) into transmitted light (1000) and reflected light (1111). Transmitted and reflected light (1000 & 1111) each follow a TIR path along a waveguide substrate (211), resulting in a pupil shift to eliminate or mitigate banding effects.


In numerous embodiments, a debanding optic is a polarization modifying layer disposed within an optical substrate such that the polarization modifying layer separates incident light into transmitted and reflected light, shifting pupil to eliminate or mitigate banding effects. For example, FIG. 13 provides a detail of an embodiment of a waveguide device (220) having an optical substrate (221) that contains a partially reflecting polarization modifying layer (222), which separates incident light (1120) having a polarization vector (1123) into transmitted light (1121) having a polarization vector (1124), resulting from the retarding effect of a polarization modifying layer (222), and reflected light (1122). Transmitted (1121) and reflected light (1122) follow TIR paths down the optical substrate (221) resulting in a pupil shift to eliminate or mitigate banding effects. In some embodiments, a polarization modifying layer is formed by stretching a polymeric material in at least one dimension. In particular embodiments, a polarization modifying layer is a polymeric material, such as birefringent polyester, polymethylmethacrylate (PMMA), or poly-ethylene terephthalate (PET). Polymeric materials may be used in a single layer or two or more may be combined in a stack.


In many embodiments, a debanding optic is at least one grating configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, eliminating or mitigating banding effects. In several embodiments, a debanding optic includes at least one grating having crossed slant gratings used in conjunction with at least one fold grating exit pupil expander configured to provide a pupil shift to eliminate or mitigate banding effects. Depicted in FIG. 14 is an embodiment of a waveguide device (230) having an optical substrate (231) coupled to an input image generator (232). The optical substrate (231) contains an input grating (233) with crossed slant gratings (233A & 233B), a first fold grating exit pupil expander (234) containing a grating (235), a second fold grating exit pupil expander (236) containing a grating (237), and an output grating (238) with crossed slant gratings (238A & 238B). The input grating (233) receives light from the input image generator (232) in a direction (1130), such that the direction is normal to the surface of the input grating (233). In numerous embodiments, crossed gratings in a grating have a relative angle of approximately ninety degrees in the plane of an optical substrate. It should be noted, however, other angles may be used in practice and still fall within various embodiments of the invention.


In several embodiments, a debanding optic is a system of gratings, such that an input grating and an output grating each combine crossed gratings with peak diffraction efficiency for orthogonal polarizations states. In some embodiments, polarization states created by input and output gratings are S-polarized and P-polarized. In a number of embodiments, polarization states created by input and output gratings are opposing senses of circular polarization. Several embodiments utilize gratings recorded in liquid crystal polymer systems, such as SBGs, which may have an advantage owing to their inherent birefringence and exhibiting strong polarization selectivity. It should be noted, however, that other grating technologies that can be configured to provide unique polarization states may be used and still fall within various embodiments of the invention.


Returning to FIG. 14, a first polarization component of the input light incident on the input grating (233) along a direction (1130) is directed by a grating (233B) into a TIR path along a direction (1131) and a second polarization component is directed by a second grating (233A) into a second TIR path along a direction (1132). Light traveling along the TIR paths (1131 &1132) is expanded in the plane of the optical substrate (231) by fold gratings (234 & 236) and diffracted into second TIR paths (1133 & 1134) towards an output grating (238). Crossed slants (238A & 238B) of the output grating (238) diffract light from the second TIR paths (1133 & 1134) into a uniform output path (1135) such that banding effects are eliminated or mitigated. In some embodiments, a grating prescription is designed to provide dual interaction of guided light with the grating, which may enhance a fold grating angular bandwidth. A number of embodiments of dual interaction fold gratings can be used, such as the gratings described in U.S. patent application Ser. No. 14/620,969 entitled WAVEGUIDE GRATING DEVICE.


In several embodiments, a debanding optic is an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil to eliminate or mitigate banding effects. Depicted in FIG. 15 is an embodiment an input image generator (240) designed to have a numerical aperture (NA) variation ranging from high NA on one side of the microdisplay (241) panel varying smoothly to a low NA at the other side to provide a pupil shift. For the purposes of explanation, a NA in relation to a microdisplay is defined herein as being proportional to the sine of the maximum angle of the image ray cone from a point on the microdisplay surface with respect to an axis normal to the microdisplay. As shown in FIG. 15, the NA of the microdisplay (241) is spatially varied by an optical component (242) which causes the NA to vary across at least one principal dimension of the microdisplay as indicated by the extending light rays (1140-1142). It should be understood that an optical component used to vary a NA may be any appropriate optical component, such as any of the optical components described in PCT Application No.: PCT/GB2016000181 entitled WAVEGUIDE DISPLAY. In multiple embodiments, a microelectromechanical systems (MEMS) array is used to spatially vary the (NA) across a microdisplay display panel. In numerous embodiment, a MEMs array spatially varies the NA of light reflected from a microdisplay panel. In many embodiments, a MEMS array utilizes technology used in data projectors.


In several embodiments, a microdisplay is a reflective device. In some embodiments, a microdisplay is a transmission device, such as, for example, a transmission liquid crystal on silicon (LCoS) device. In many embodiments, an input image generator has a transmission microdisplay panel with a backlight and a variable NA component. When a backlight is employed, in accordance with various embodiments, the illuminated light typically has a uniform NA across, illuminating a back surface of a microdisplay, which is propagated through a variable NA component and converted into an output image modulated light with NA angles varying along a principal axis of the microdisplay.


In a number of embodiments, an emissive display is employed in a microdisplay. Examples of emissive displays for use within a microdisplay include, but not limited to, LED arrays and light emitting polymers arrays. In some embodiments, an input image generator incorporates an emissive microdisplay and a spatially-varying NA component. Light from a microdisplay employing an emissive display, in accordance with various embodiments, typically has a uniform NA across the emitting surface of the display, illuminates the spatially-varying NA component and is converted into an output image modulated light with NA angles varying across the display aperture.


In many embodiments, a debanding optic is a plurality of grating layers within at least one grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in pupil shift to eliminate or mitigate banding effects. Depicted in FIG. 16A is an embodiment of a waveguide device (250) having a picture generation unit (PGU) (251), optically coupled to an optical substrate (252) that extracts light via an output grating (253). The optical substrate (252) contains stacked input gratings (254 & 255) and a fold grating that is not illustrated. Input light (1150) from the PGU (251) is coupled into the waveguide substrate (252) by the input gratings (254 & 255), smearing out any fixed pattern noise, and diffracted into TIR paths (1151), and then diffracted into extracted light (1152) by the output grating (253) resulting in a pupil shift to eliminate or mitigate banding effects. In some embodiments, multiple gratings are combined into a multiplexed grating.


In several embodiments, a debanding optic is the input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to eliminate or mitigate banding effects. In many embodiments, individual grating elements are designed to diffract light incident in predefined input beam angular ranges into corresponding TIR angular ranges. Depicted in FIG. 16B is an embodiment of a waveguide device (260) having a PGU (261), optically coupled to an optical substrate (262) that extracts light via an output grating (253). The optical substrate (262) contains a switchable input grating array (264) of selectively switchable elements (265). Input light (1160) is coupled into the optical substrate (262) by the input grating (264), which provides pupil shift in vertical and horizontal directions that is diffracted into TIR paths (1161), and then diffracted into extracted light (1162) by the output grating (263) with banding effects eliminated or mitigated.


In numerous embodiments, a debanding optic is a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization and birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to eliminate or mitigate banding effects. In several embodiments, a plurality of refractive index layers incorporates adhesives of different indices, especially to influence high angle reflections. In some embodiments, a plurality of refractive index layers incorporate layers, such as alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, or birefringent stretched polymer layers. Depicted in FIG. 16C is an embodiment of a waveguide device (270) having a PGU (271) optically coupled to an optical substrate (272) that extracts light via an output grating (273). The optical substrate (272) contains an input grating (274) and at least one refractive index layer (275). Input light (1170) is coupled into the optical substrate (272) by the input grating (275) and diffracted into TIR paths (1171) that pass through the refractive index layer (275) causing spatial variation, and then diffracted into extracted light (1172) by the output grating (273), resulting in a pupil shift to eliminate or mitigate banding effects.


In some embodiments, a debanding optic is a microdisplay projecting spatially varied NAs that shift pupil to eliminate or mitigate banding effects. In several embodiments, NA can be varied in two orthogonal directions. Depicted in FIG. 16D is an embodiment of a waveguide device (280) having a PGU (281) optically coupled to an optical substrate (282) that extracts light via an output grating (283). The optical substrate (282) contains an input grating (285). Input light (1180) is coupled into the optical substrate (282) by the input grating (285) and diffracted into TIR paths (1181), and then diffracted into extracted light (1182) by the output grating (283). The PGU (281) has a microdisplay (286) overlaid by an NA modification layer (287) capable of spatially varying NA and modifying the light into varying beam profiles (1184-1186), resulting in pupil shift to eliminate or mitigate banding effects. In accordance with various embodiments, a PGU also incorporates other components, such as a projection lens and/or beamsplitter, for example.


In many embodiments, a debanding optic is a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are eliminated or mitigated. In a number of embodiments, an exit pupil changes position on an input grating. This technique, in accordance with various embodiments, can be used to address banding in one beam expansion axis. Depicted in FIG. 16E is an embodiment of a waveguide device (290) having a PGU (291) optically coupled to an optical substrate (292) which extracts light via an output grating (293). Input light (1190) emerging from the tilted PGU exit pupil (295) is coupled into the waveguide via an input grating (294) and diffracted into TIR paths (1191), and then diffracted into extracted light (1192) by the output grating (293), eliminating or mitigating banding effects.


In several embodiments, a debanding optic is a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along an optical substrate for each direction of incident light, such that banding effects are mitigated along one expansion axis. Depicted in FIG. 16F is an embodiment of a waveguide device (300) having a PGU (301) optically coupled to an optical substrate (302), which extracts light via an output grating (303). Input light (1200) emerging from the tilted PGU exit pupil (305) is coupled into the waveguide by an input grating (304) and diffracted into TIR paths (1201). The guided light forms beam angle-dependent projected pupils (1203-1205) at different positions along the substrate (302) for each direction of incident light, and then diffracted into extracted light (1202) by the output grating (303), eliminating or mitigating banding effects.


In numerous embodiments, a debanding optic is a prism coupled to an optical substrate, such that a linear relationship between the angles of an exit pupil from a light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U). In many embodiments, an input grating is replaced with a coupling prism. In several embodiments, input light is provided through a tilted PGU pupil. By selecting a prism angle and cooperative PGU pupil tilt, in accordance with various embodiments, it is possible to achieve an approximately linear relationship between the angles out of the PGU exit pupil and the TIR angles in the waveguide while meeting a debanding condition when the effective input aperture for a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U), over the entire field of view range. Depicted in FIG. 16 G is an embodiment of a waveguide device (310) having a PGU (311) optically coupled to an optical substrate (312), which extracts light via an output grating (313). Input light (1210) emerging from a tilted PGU exit pupil (315) is coupled into the optical substrate (312) by a prism (314) resulting in TIR paths (1211) and then diffracted into extracted light (1192) by the output grating (293), eliminating or mitigating banding effects. In some embodiments, color dispersion due to the prism is compensated by a diffractive surface. In many embodiments, a prism coupler has refracting surface apertures designed to shape the light as a function of angle. Light at the edges of the beam that is not transmitted through the prism into the waveguide is eliminated from the main light path by baffling or light absorbing coatings, in accordance with a number of embodiments.


In some embodiments, a debanding optic is a light-absorbing film adjacent to the edges of an optical substrate such that portions of incident light, that would otherwise give rise to banding, are removed, eliminating or mitigating banding effects. Depicted in FIG. 16H is an embodiment of a waveguide device (320) designed for beam shifting along one axis of beam expansion. The waveguide device has a PGU (321) coupled to a waveguide (322) containing an output grating (323) and an input grating (324), a substrate (325) having a light-absorbing film (326) applied to one of its edges, a substrate (327) having a light-absorbing film (328) applied to one its edges, the substrates (325 & 327) sandwiching the portion of the waveguide (322) that contains the input grating. The input ray at the upper limit of the input beam (1221) is diffracted by the input grating (324) into a TIR path (1223) and absorbed by the light-absorbing film (326) applied to the substrate (325), eliminating or mitigating banding effects. An input ray at the lower limit of the input beam (1222) is diffracted by the input grating (32) into a TIR path (1224) and absorbed by the light-absorbing film (328) applied to the substrate (327), eliminating or mitigating banding effects. An input ray near the central portion of the input beam (1220) is diffracted by the input grating (324) into a TIR path (1225) which does not interact with either of the light-absorbing films (326 & 328) and continues to propagate under TIR until it is extracted by the output grating (323) into the output beam (1226).


In many embodiments, a debanding optic is a first light-absorbing film disposed adjacent to the edges an input substrate containing an input grating and disposed adjacent to an optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U). Depicted in FIG. 17 is an embodiment of a waveguide device (330) configured such that an input grating (334) is disposed within an input substrate (333), which together with the substrate (332) sandwiches a waveguide (331). The cross section of an input beam for a given field of view direction (1230) with peripheral rays (1231 & 1232) enters into the input grating (334). An input beam portion bounded by rays (1233 & 1234) is diffracted into a beam path (1236) and intercepted by an absorbing film (335) applied to the edge of the upper substrate (332). The input beam portion bounded by rays (1232 & 1235) is diffracted into the beam path (1237) undergoes TIR at the outer surface of the upper substrate (332) and intercepted by an absorbing film (336) applied to the input substrate edge. The input beam portions bounded by rays (1231 & 1233) and (1234 & 1235) are diffracted into respective TIR paths (1239 &1240) and (1241 & 1242) which exhibit no gap or overlap in the beam cross section region (1243) and at all beam cross sections thereafter, thereby eliminating banding utilizing a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U). In some particular embodiments, the thickness of a waveguide is 3.4 mm, the thickness of an upper substrate 0.5 mm, and a lower substrate contains two 0.5 mm thick glass substrates sandwiching an input grating. Based on this geometry and the debanding condition of a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U), the throughput efficiency is estimated to be roughly 1−2*0.5/(2*3.4)=84% with some small variation across the field of view.


In some embodiments utilizing an input substrate, an input grating is implemented in separate cells bonded to the main waveguide, thus simplifying indium tin oxide (ITO) coating. In many embodiments utilizing an input substrate, beam shifting techniques based on forming a projected stop and tilting the PGU exit pupil are incorporated, to provide debanding in orthogonal directions.


Depicted in FIG. 18 is a detail of an embodiment of a waveguide device 340 having a waveguide portion (341), a prism (342) with two refracting faces inclined at a relative angle (1250) and an exit pupil (343) of a PGU (not pictured), the exit pupil (343) tilted at an angle (1251) relative to a reference axis (1252).


In some embodiments, a prism is separated from a waveguide by a small air gap. In many embodiments, a prism is separated from a waveguide by a thin layer of low index material.


Returning to FIG. 18, light beams (1253 & 1254) from the exit pupil (343) correspond to two different field angles refracted through the prism (342) as beams (1255 & 1256) and are then coupled into the TIR paths (1257 & 1258) inside the waveguide (341). The beam widths at the waveguide surface adjacent the prism (1259A & 1259B) are depicted. By choosing suitable values for the prism angle, PGU exit pupil tilt angle, prism index, waveguide index and waveguide thickness, utilizing a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U), light is debanded for all field angles while at the same time providing an approximately linear relationship between the field angle at the PGU exit pupil and the TIR angle within the waveguide for any ray in the field of view.


In a number of embodiments incorporating color waveguides, projected stops are required to be created in different waveguides, each on a different plane, such that the waveguides form a stack. Misalignment of these stops leads to misregistration of the color components of the output images from the waveguide and hence color banding. One solution, in accordance with various embodiments, is a waveguide input stop with outer dichroic portions to provide some compensation for the color banding and an inner phase compensation coating (e.g., SiO2) to compensate for the phase shift due to the input stop. In some embodiments, a waveguide input stop has outer dichroic portions, but lacks a phase compensation coating. A waveguide input stop, in accordance with several embodiments, is formed on a thin transparent plate adjacent to an input surface of the waveguide, overlapping an input grating. In multiple embodiments, a waveguide input stop is disposed within a layer inside a grating. In many embodiments, a waveguide input stop is disposed directly adjacent to a waveguide external surface.


When pupils project at different positions along an optical substrate, in accordance with various embodiments, color display application projected stops are created in different planes inside separate red, green and blue transmitting optical substrate layers. In some embodiments, a waveguide input stop includes outer dichroic portions to shift pupil and eliminate or mitigate color banding and an inner phase compensation coating in inner portions to compensate for the phase shift. In many embodiments, an inner phase compensation coating is SiO2. Depicted in FIG. 19 is an embodiment of a waveguide input stop (350) having outer dichroic portions (352 & 353) and inner phase compensation SiO2 coating (351) to shift pupil and eliminate or mitigate color banding.


In numerous embodiments, a debanding optic is an input grating configured such that light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect. Displacement of the light results in a portion of the light beam to fall outside the input grating apertures and therefore not being diffracted into a TIR path inside a waveguide, which varies with field angle. In several embodiments, non-diffracted light can be trapped by a suitable absorbing film. In many embodiments, a beam width can be tailored by displacement to meet the debanding condition a TIR angle U and a waveguide substrate thickness D is given by 2D tan (U). Depicted in FIG. 20 is a detail of an embodiment of a waveguide device (360) having an optical substrate (361), which contains an input grating (362). Collimated input ray paths (1090 & 1091) and (1092 & 1093) for two different input angles are diffracted into rays (1094 & 1095) and (1096 & 1097). For each input beam angle, a portion of the input beam misses the input grating (362) and passes undeviated through the waveguide substrate (361) as exiting rays (1098 and 1099) from each beam. In many embodiments, a light absorbing film applied to the waveguide surface traps non-diffracted light


It should be understood, that the various embodiments of debanding described herein, can be combined. In several embodiments, embodiments for debanding can be combined with a technique to vary the diffraction efficiency of the input grating along a principal waveguide direction. Furthermore, in many embodiments, embodiments of debanding are performed in each beam expansion direction. Accordingly, in some embodiments, two or more of embodiments employing debanding solutions are combined to provide debanding in two dimensions. In a number of embodiments in which a waveguide device operates in two dimensions, the device includes fold gratings, which allow for debanding in two dimensions.


In a number of embodiments, a waveguide display is integrated within a window, for example, a windscreen-integrated HUD for road vehicle applications. It should be understood that any appropriate window-integrated display may be integrated into a waveguide display and fall within various embodiments of the invention. Examples of window-integrated displays are described in U.S. Provisional Patent Application No. 62/125,064 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION Ind. WINDOWS and U.S. Provisional Patent Application No. 62/125,066 entitled OPTICAL WAVEGUIDE DISPLAYS FOR INTEGRATION Ind. WINDOWS.


In many embodiments, a waveguide display includes gradient index (GRIN) wave-guiding components for relaying image content between an input image generator and the waveguide. Exemplary GRIN wave-guiding components are described in U.S. Provisional Patent Application No. 62/123,282 entitled NEAR EYE DISPLAY USING GRADIENT INDEX OPTICS and U.S. Provisional Patent Application No. 62/124,550 entitled WAVEGUIDE DISPLAY USING GRADIENT INDEX OPTICS. In several embodiments, a waveguide display incorporates a light pipe for providing beam expansion in one direction. Examples of light pipes are described in U.S. Provisional Patent Application No. 62/177,494 entitled WAVEGUIDE DEVICE INCORPORATING A LIGHT PIPE. In some embodiments, the input image generator may be based on a laser scanner as disclosed in U.S. Pat. No. 9,075,184 entitled COMPACT EDGE ILLUMINATED DIFFRACTIVE DISPLAY. Various embodiments of the invention are used in wide range of displays, including (but not limited t) HMDs for AR and VR, helmet mounted displays, projection displays, heads up displays (HUDs), Heads Down Displays, (HDDs), autostereoscopic displays and other 3D displays. A number of the embodiments are applied in waveguide sensors such as, for example, eye trackers, fingerprint scanners, LIDAR systems, illuminators and backlights.


In some embodiments, a waveguide device incorporates an eye tracker. It should be understood that a number of eye trackers can be used and still fall within various embodiments of the invention, including eye trackers described in PCT/GB2014/000197 entitled HOLOGRAPHIC WAVEGUIDE EYE TRACKER, PCT/GB2015/000274 entitled HOLOGRAPHIC WAVEGUIDE OPTICALTRACKER, and PCT Application No.:GB2013/000210 entitled APPARATUS FOR EYE TRACKING.


It should be emphasized that the drawings are exemplary and that the dimensions have been exaggerated. For example, thicknesses of the SBG layers have been greatly exaggerated. Optical devices based on any of the above-described embodiments may be implemented using plastic substrates using the materials and processes disclosed in PCT Application No.: PCT/GB2012/000680, entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES. In some embodiments, the dual expansion waveguide display may be curved.


The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (for example, variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, positions of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.


DOCTRINE OF EQUIVALENTS

As can be inferred from the above discussion, the above-mentioned concepts can be implemented in a variety of arrangements in accordance with embodiments of the invention. Accordingly, although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at an input grating;at least one light extractor for extracting the light from the optical substrate; anda debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic provides an effective input aperture W such that when the optical substrate has a thickness D, the effective input aperture W is configured to provide a TIR angle U in the optical substrate, and wherein the TIR angle U, the effective input aperture W, and the thickness D are related by W=2D tan (U).
  • 2. The waveguide device of claim 1, wherein the extracted light has a spatial non-uniformity less than one of either 10% or 20%.
  • 3. The waveguide device of claim 1, wherein the debanding optic provides spatial variation of the light along the TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence.
  • 4. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at an input grating;at least one light extractor for extracting the light from the optical substrate; anda debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic is at least one grating selected from at least one input grating and at least one output grating, and wherein the selected at least one grating is configured as one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting the illuminated pupil to mitigate banding effects.
  • 5. The waveguide device of claim 1, further comprising at least one reflecting surface on at least a part of an edge of the optical substrate, and wherein the debanding optic comprises one or more index layers disposed adjacent to the at least one reflecting surface such that the one or more index layers are configured to perform a pupil shift to mitigate banding effects.
  • 6. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at an input grating;at least one light extractor for extracting the light from the optical substrate; and a debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic comprises one or more index layers disposed within the optical substrate such that the one or more index layers are configured to perform a pupil shift to mitigate banding effects.
  • 7. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating;at least one light extractor for extracting the light from the optical substrate; anda debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic comprises a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence to influence ray paths within the optical substrate as a function of at least one of ray angle or ray position within the optical substrate, resulting in a shift of pupil to mitigate banding effects.
  • 8. The waveguide device of claim 1, wherein the debanding optic comprises at least one selected from the group consisting of: at least one grating selected from at least one input grating and at least one output grating, and wherein the selected at least one grating is configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, mitigating banding effects;at least one grating selected from at least one input grating and at least one output grating, and wherein the selected at least one grating is configured to provide at least two separate waveguide paths which cancel non-uniformity of light of the extracted light for any incidence light angle, mitigating banding effects, wherein the selected grating has crossed slant gratings used in conjunction with at least one fold grating exit pupil expander;an optical component within a microdisplay that provides variable effective numerical apertures (NA) capable of being spatially varied along at least one direction to shift pupil shift to mitigate banding effects;a plurality of grating layers within at least one grating of either at least one input grating or at least one output grating such that the plurality of grating layers is configured to smear out any fixed pattern noise resulting in shift of pupil to mitigate banding effects; andan input grating configured as an array of selectively switchable elements such that configuring the input grating as a switching grating array provides pupil switching in vertical and horizontal directions to shift pupil to mitigate banding effects.
  • 9. The waveguide device of claim 1, wherein the debanding optic comprises at least one selected from the group consisting of: a microdisplay projecting spatially varied numerical apertures that shift pupil to mitigate banding effects;a tilted microdisplay configured to project a tilted, rectangular exit pupil such that the cross section of the exit pupil varies with a field angle, such that banding effects are mitigated;a tilted microdisplay configured to angle light rays to form various projected pupils at different positions along the optical substrate for each angle of incident light, such that banding effects are mitigated along one expansion axis;a light-absorbing film adjacent to the edges of the optical substrate such that portions of the incident light, that would otherwise give rise to banding, are removed, mitigating banding effects; andan input grating configured such that the light has a unique displacement relative to an edge of the input grating at any given incident light direction to shift pupil, eliminating or mitigating a banding effect.
  • 10. The waveguide device of claim 1, wherein the optical substrate has a thickness D, and wherein the debanding optic comprises at least one selected from the group consisting of: a prism coupled to the optical substrate, such that a linear relationship between the angles of an exit pupil from the light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U);a first light-absorbing film disposed adjacent to the edges an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U); anda first light-absorbing film disposed adjacent to the edges an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, which occurs when the TIR path angle is U as defined by 2D tan (U), wherein the thickness of the optical substrate is 3.4 mm, the thickness of the second is substrate 0.5 mm, and the input substrate contains two 0.5 mm thick glass substrates sandwiching the input grating.
  • 11. The waveguide device of claim 1, wherein the device is integrated into a display selected from the group of head mounted display (HMD) and a head up display (HUD).
  • 12. The waveguide device of claim 11, wherein at least one of the following: a human eye is positioned with an exit pupil of the display; and the device incorporates an eye tracker.
  • 13. The waveguide device of claim 1 further comprising an input image generator that further comprises the light source, a microdisplay panel, and optics for collimating the light.
  • 14. The waveguide device of claim 1, wherein the light source is selected from the group of: at least one laser, and at least one light emitting diode (LED).
  • 15. The waveguide device of claim 1, wherein the light coupler is selected from the group of an input grating; and a prism.
  • 16. The waveguide device of claim 1, wherein the light extractor is an output grating.
  • 17. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises an effective input aperture W such that the optical substrate has a thickness D, the effective input aperture W is configured to provide a TIR angle U in the optical substrate, and wherein the TIR angle U, the effective input aperture W, and the thickness D are related by W=2D tan (U).
  • 18. The method of claim 17, wherein the output illumination has a spatial non-uniformity less than one of either 10% or 20%.
  • 19. The method of claim 17, wherein the debanding optic provides spatial variation of the TIR light along the TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence.
  • 20. The method of claim 17, wherein the waveguide device further comprises at least one reflecting surface on at least a part of an edge of the optical substrate, and wherein the debanding optic further comprises one or more index layers disposed adjacent to the at least one reflecting surface such that the one or more index layers are configured to shift pupil to mitigate banding effects.
  • 21. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises one or more index layers disposed within the optical substrate such that the one or more index layers are configured to perform a pupil shift to mitigate banding effects.
  • 22. The method of claim 17, wherein the optical substrate has a configuration selected from the group consisting of: wherein the debanding optic further comprises a prism coupled to the optical substrate, such that a linear relationship between the angles of an exit pupil from the light source and the TIR angles in the optical substrate result in no gaps between successive light extractions along the TIR ray path;and wherein the debanding optic further comprises a first light-absorbing film disposed adjacent to the edges of an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path; andwherein the debanding optic further comprises a first light-absorbing film disposed adjacent to the edges of an input substrate containing an input grating and disposed adjacent to the optical substrate, and a second light-absorbing film disposed adjacent to the edges a second substrate, attached adjacent to the optical substrate opposite the input substrate, such that incident light results in no gaps between successive light extractions along the TIR ray path, and wherein the thickness of the optical substrate is 3.4 mm, the thickness of the second is substrate 0.5 mm, and the input substrate contains two 0.5 mm thick glass substrates sandwiching the input grating.
  • 23. The method of claim 17, wherein the method is performed by a display selected from the group of head mounted display (HMD) and a head up display (HUD).
  • 24. The method of claim 23, wherein at least one of: a human eye is positioned with an exit pupil of the display and the display incorporates an eye tracker.
  • 25. The method of claim 17, wherein the waveguide device further comprises an input image generator that further comprises the light source, a microdisplay panel, and optics for collimating the light.
  • 26. The method of claim 17, wherein the light source is selected from the group of: at least one laser; and at least one light emitting diode (LED).
  • 27. The method of claim 17, wherein the light coupler is selected from one of: an input grating; and a prism.
  • 28. The method of claim 17, wherein the light extractor is an output grating.
  • 29. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating;at least one light extractor for extracting the light from the optical substrate; anda debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic is at least one grating selected from at least one input grating and at least one output grating, and wherein the selected at least one grating is configured as one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, shifting pupil to mitigate banding effects, and wherein at least one index layer of the one or more index layers is a gradient index (GRIN) medium.
  • 30. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating;at least one light extractor for extracting the light from the optical substrate; anda debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic comprises a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence to influence ray paths within the optical substrate as a function of at least one of ray angle or ray position within the optical substrate, resulting in shift of pupil to mitigate banding effects, and wherein the plurality of refractive index layers incorporates adhesives of different indices.
  • 31. A waveguide device comprising: at least one optical substrate;at least one light source;at least one light coupler capable of coupling incident light from the light source with an angular bandwidth into a total internal reflection (TIR) within the at least one optical substrate such that a unique TIR angle is defined by each light incidence angle as determined at the input grating;at least one light extractor for extracting the light from the optical substrate; anda debanding optic capable of mitigating banding effects of an illuminated pupil, such that the extracted light is a substantially flat illumination profile having mitigated banding, wherein the debanding optic comprises a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence to influence ray paths within the optical substrate as a function of at least one of ray angle or ray position within the optical substrate, resulting in shift of pupil to mitigate banding effects, and wherein the plurality of refractive index layers incorporates layers selected from the group consisting of alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, and birefringent stretched polymer layers.
  • 32. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, resulting in a shift of pupil to mitigate banding effects.
  • 33. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises one or more index layers disposed within the optical substrate such that the one or more index layers influences the light ray paths within the optical substrate as a function of at least one of ray angle or ray position, resulting in a shift of pupil to mitigate banding effects, wherein at least one index layer of the one or more index layers is a gradient index (GRIN) medium.
  • 34. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence to influence ray paths within a waveguide substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects.
  • 35. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence to influence ray paths within the optical substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects, and wherein the plurality of refractive index layers incorporates adhesives of different indices.
  • 36. A method to mitigate banding in an output illumination of a waveguide device, comprising: producing incident light from a light source;passing the incident light through a light coupler to couple the incident light into an optical substrate such that the coupled light undergoes total internal reflection (TIR) within the optical substrate; andextracting the TIR light from the optical substrate via a light extractor to produce the output illumination;wherein the light passes through a debanding optic of the waveguide device such that the debanding optic mitigates a banding effect of the output illumination, wherein the debanding optic comprises a plurality of refractive index layers that provide spatial variation along each TIR path of at least one of diffraction efficiency, optical transmission, polarization, or birefringence to influence ray paths within the optical substrate as a function of at least one of ray angle or ray position within the substrate, resulting in shift of pupil to mitigate banding effects, wherein the plurality of refractive index layers incorporate layers selected from the group consisting of alignment layers, isotropic refractive layers, GRIN structures, antireflection layers, partially reflecting layer, and birefringent stretched polymer layers.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage of PCT Patent Application No. PCT/US2018/015553, entitled “Waveguide Device with Uniform Output Illumination” to Waldern et al., filed Jan. 26, 2018, which claims priority to U.S. Provisional Application No. 62/499,423, entitled “Waveguide Device with Uniform Output Illumination” to Waldern et al., filed Jan. 26, 2017, and claims priority to U.S. Provisional Application No. 62/497,781, entitled “Apparatus for Homogenizing the Output from a Waveguide Device” to Waldern et al., filed Dec. 2, 2016, the disclosures of which are incorporated by reference herein in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/015553 1/26/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/102834 6/7/2018 WO A
US Referenced Citations (1529)
Number Name Date Kind
1043938 Huttenlocher Nov 1912 A
2141884 Sonnefeld Dec 1938 A
3482498 Becker Dec 1969 A
3620601 Leonard et al. Nov 1971 A
3741716 Johne et al. Jun 1973 A
3843231 Borel et al. Oct 1974 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
3965029 Arora Jun 1976 A
3975711 McMahon Aug 1976 A
4035068 Rawson Jul 1977 A
4066334 Fray et al. Jan 1978 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4248093 Andersson et al. Feb 1981 A
4251137 Knop et al. Feb 1981 A
4309070 St. Leger Searle Jan 1982 A
4322163 Schiller Mar 1982 A
4386361 Simmonds May 1983 A
4389612 Simmonds et al. Jun 1983 A
4403189 Simmonds Sep 1983 A
4418993 Lipton Dec 1983 A
4472037 Lipton Sep 1984 A
4523226 Lipton et al. Jun 1985 A
4544267 Schiller Oct 1985 A
4562463 Lipton Dec 1985 A
4566758 Bos et al. Jan 1986 A
4583117 Lipton et al. Apr 1986 A
4643515 Upatnieks Feb 1987 A
4647967 Kirschner et al. Mar 1987 A
4688900 Doane et al. Aug 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4728547 Vaz et al. Mar 1988 A
4729640 Sakata et al. Mar 1988 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4765703 Suzuki et al. Aug 1988 A
4775218 Wood et al. Oct 1988 A
4791788 Simmonds et al. Dec 1988 A
4792850 Liptoh et al. Dec 1988 A
4799765 Ferrer Jan 1989 A
4811414 Fishbine et al. Mar 1989 A
4848093 Simmonds et al. Jul 1989 A
4854688 Hayford et al. Aug 1989 A
4860294 Winzer et al. Aug 1989 A
4884876 Lipton et al. Dec 1989 A
4890902 Doane et al. Jan 1990 A
4928301 Smoot May 1990 A
4933976 Fishbine et al. Jun 1990 A
4938568 Margerum et al. Jul 1990 A
4946245 Chamberlin et al. Aug 1990 A
4960311 Moss et al. Oct 1990 A
4964701 Dorschner et al. Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4970129 Ingwall et al. Nov 1990 A
4971719 Vaz et al. Nov 1990 A
4994204 Doane et al. Feb 1991 A
5004323 West Apr 1991 A
5007711 Wood et al. Apr 1991 A
5009483 Rockwell et al. Apr 1991 A
5016953 Moss et al. May 1991 A
5033814 Brown et al. Jul 1991 A
5035734 Honkanen et al. Jul 1991 A
5053834 Simmonds Oct 1991 A
5063441 Lipton et al. Nov 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5096282 Margerum et al. Mar 1992 A
5099343 Margerum et al. Mar 1992 A
5109465 Klopotek Apr 1992 A
5110034 Simmonds et al. May 1992 A
5117285 Nelson et al. May 1992 A
5117302 Lipton May 1992 A
5119454 McMahon et al. Jun 1992 A
5124821 Antier et al. Jun 1992 A
5139192 Simmonds et al. Aug 1992 A
5142357 Lipton et al. Aug 1992 A
5142644 Vansteenkiste et al. Aug 1992 A
5148302 Nagano et al. Sep 1992 A
5150234 Takahashi et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5181133 Lipton Jan 1993 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5198912 Ingwall et al. Mar 1993 A
5200861 Moskovich et al. Apr 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5239372 Lipton Aug 1993 A
5240636 Doane et al. Aug 1993 A
5241337 Betensky et al. Aug 1993 A
5242476 Bartel et al. Sep 1993 A
5243413 Gitlin et al. Sep 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5284499 Harvey et al. Feb 1994 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5296967 Moskovich et al. Mar 1994 A
5299289 Omae et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5306923 Kazmierski et al. Apr 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315324 Kubelik et al. May 1994 A
5315419 Saupe et al. May 1994 A
5315440 Betensky et al. May 1994 A
5317405 Kuriki et al. May 1994 A
5327269 Tilton et al. Jul 1994 A
5329363 Moskovich et al. Jul 1994 A
5341230 Smith Aug 1994 A
5343147 Sager et al. Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5368770 Saupe et al. Nov 1994 A
5369511 Amos Nov 1994 A
5371626 Betensky Dec 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissei et al. Apr 1995 A
5410370 Janssen Apr 1995 A
5416510 Lipton et al. May 1995 A
5416514 Janssen et al. May 1995 A
5418584 Larson May 1995 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5437811 Doane et al. Aug 1995 A
5438357 McNelley Aug 1995 A
5452385 Izumi et al. Sep 1995 A
5453863 West et al. Sep 1995 A
5455693 Wreede et al. Oct 1995 A
5455713 Kreitzer et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5476611 Nolan et al. Dec 1995 A
5481321 Lipton Jan 1996 A
5485313 Betensky Jan 1996 A
5493430 Lu et al. Feb 1996 A
5493448 Betensky et al. Feb 1996 A
5496621 Makita et al. Mar 1996 A
5499140 Betensky Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5500769 Betensky Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5516455 Jacobine et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5528720 Winston et al. Jun 1996 A
5530566 Kumar Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5532875 Betemsky Jul 1996 A
5537232 Biles Jul 1996 A
RE35310 Moskovich Aug 1996 E
5543950 Lavrentovich et al. Aug 1996 A
5559637 Moskovich et al. Sep 1996 A
5572248 Allen et al. Nov 1996 A
5572250 Lipton et al. Nov 1996 A
5576888 Betensky Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5585035 Nerad et al. Dec 1996 A
5593615 Nerad et al. Jan 1997 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5619586 Sibbald et al. Apr 1997 A
5621529 Gordon et al. Apr 1997 A
5621552 Coates et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668614 Chien et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5677797 Betensky et al. Oct 1997 A
5680231 Grinberg et al. Oct 1997 A
5680411 Ramdane et al. Oct 1997 A
5682255 Friesem et al. Oct 1997 A
5686931 Fuenfschilling et al. Nov 1997 A
5686975 Lipton Nov 1997 A
5691795 Doane et al. Nov 1997 A
5694230 Welch Dec 1997 A
5695682 Doane et al. Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5706136 Okuyama et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5710645 Phillips et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5724463 Deacon et al. Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5745266 Smith et al. Apr 1998 A
5745301 Betensky et al. Apr 1998 A
5748272 Tanaka et al. May 1998 A
5748277 Huang et al. May 1998 A
5751452 Tanaka et al. May 1998 A
5757546 Lipton et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5790314 Duck et al. Aug 1998 A
5798641 Spagna et al. Aug 1998 A
5808804 Moskovich Sep 1998 A
5812608 Valimaki et al. Sep 1998 A
5822089 Phillips et al. Oct 1998 A
5822127 Chen et al. Oct 1998 A
5825448 Bos et al. Oct 1998 A
5831700 Li et al. Nov 1998 A
5835661 Tai et al. Nov 1998 A
5841507 Barnes Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5847787 Fredley et al. Dec 1998 A
5856842 Tedesco Jan 1999 A
5857043 Cook et al. Jan 1999 A
5867238 Miller et al. Feb 1999 A
5867618 Ito et al. Feb 1999 A
5868951 Schuck, III et al. Feb 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5877826 Yang et al. Mar 1999 A
5886822 Spitzer Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5892599 Bahuguna Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5903395 Rallison et al. May 1999 A
5903396 Rallison May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5929960 West et al. Jul 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5949508 Kumar et al. Sep 1999 A
5956113 Crawford Sep 1999 A
5962147 Shalhub et al. Oct 1999 A
5963375 Kreitzer Oct 1999 A
5966223 Friesem et al. Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5974162 Metz et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5986746 Metz et al. Nov 1999 A
5991087 Rallison Nov 1999 A
5999089 Carlson et al. Dec 1999 A
5999282 Suzuki et al. Dec 1999 A
5999314 Asakura et al. Dec 1999 A
6014187 Taketomi et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6046585 Simmonds Apr 2000 A
6052540 Koyama Apr 2000 A
6061107 Yang May 2000 A
6061463 Metz et al. May 2000 A
6069728 Huignard et al. May 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6104448 Doane et al. Aug 2000 A
6107943 Schroeder Aug 2000 A
6115152 Popovich et al. Sep 2000 A
6118908 Bischel et al. Sep 2000 A
6121899 Theriault Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6128058 Walton et al. Oct 2000 A
6133971 Silverstein et al. Oct 2000 A
6133975 Li et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer et al. Oct 2000 A
6151142 Phillips et al. Nov 2000 A
6154190 Yang et al. Nov 2000 A
6156243 Kosuga et al. Dec 2000 A
6167169 Brinkman et al. Dec 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6185016 Popovich Feb 2001 B1
6188462 Lavrentovich et al. Feb 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195206 Yona et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6204835 Yang et al. Mar 2001 B1
6211976 Popovich et al. Apr 2001 B1
6215579 Bloom et al. Apr 2001 B1
6222297 Perdue Apr 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6268839 Yang et al. Jul 2001 B1
6269203 Davies et al. Jul 2001 B1
6275031 Simmonds et al. Aug 2001 B1
6278429 Ruth et al. Aug 2001 B1
6285813 Schultz et al. Sep 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6317228 Popovich et al. Nov 2001 B2
6317528 Gadkaree et al. Nov 2001 B1
6320563 Yang et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6323970 Popovich Nov 2001 B1
6323989 Jacobson et al. Nov 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6330109 Ishii et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6356674 Davis et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366281 Lipton et al. Apr 2002 B1
6366369 Ichikawa et al. Apr 2002 B2
6366378 Tervonen et al. Apr 2002 B1
6377238 McPheters Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6388797 Lipton et al. May 2002 B1
6392812 Howard May 2002 B1
6407724 Waldern et al. Jun 2002 B2
6409687 Foxlin Jun 2002 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6437563 Simmonds et al. Aug 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6473209 Popovich Oct 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6483303 Simmonds et al. Nov 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6518747 Sager et al. Feb 2003 B2
6519088 Lipton Feb 2003 B1
6522794 Bischel et al. Feb 2003 B1
6522795 Jordan et al. Feb 2003 B1
6524771 Maeda et al. Feb 2003 B2
6529336 Kreitzer et al. Mar 2003 B1
6534977 Duncan et al. Mar 2003 B1
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6552789 Modro Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6559813 DeLuca et al. May 2003 B1
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567014 Hansen et al. May 2003 B1
6567573 Domash et al. May 2003 B1
6577411 David et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6583838 Hoke et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6597176 Simmonds et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6598987 Parikka Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6618104 Date et al. Sep 2003 B1
6625381 Roddy et al. Sep 2003 B2
6646772 Popovich et al. Nov 2003 B1
6646810 Harter, Jr. et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6667134 Sutherland et al. Dec 2003 B1
6674578 Sugiyama et al. Jan 2004 B2
6677086 Sutehrland et al. Jan 2004 B1
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6690516 Aritake et al. Feb 2004 B2
6692666 Sutherland et al. Feb 2004 B2
6699407 Sutehrland et al. Mar 2004 B1
6706086 Emig et al. Mar 2004 B2
6706451 Sutherland et al. Mar 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6730442 Sutherland et al. May 2004 B1
6731434 Hua et al. May 2004 B1
6738105 Hannah et al. May 2004 B1
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6750996 Jagt et al. Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6804066 Ha et al. Oct 2004 B1
6805490 Levola Oct 2004 B2
6821457 Natarajan et al. Nov 2004 B1
6822713 Yaroshchuk et al. Nov 2004 B1
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6830789 Doane et al. Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853491 Ruhle et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6867888 Sutherland et al. Mar 2005 B2
6873443 Joubert et al. Mar 2005 B1
6878494 Sutehrland et al. Apr 2005 B2
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6919003 Ikeda et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6927570 Simmonds et al. Aug 2005 B2
6927694 Smith et al. Aug 2005 B1
6940361 Jokio et al. Sep 2005 B1
6943788 Tomono Sep 2005 B2
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6952435 Lai et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6958868 Pender Oct 2005 B1
6963454 Martins et al. Nov 2005 B1
6972788 Robertson et al. Dec 2005 B1
6975345 Lipton et al. Dec 2005 B1
6980365 Moskovich Dec 2005 B2
6985296 Lipton et al. Jan 2006 B2
6987908 Bond et al. Jan 2006 B2
6999239 Martins et al. Feb 2006 B1
7002618 Lipton et al. Feb 2006 B2
7002753 Moskovich et al. Feb 2006 B2
7003075 Miyake et al. Feb 2006 B2
7003187 Frick et al. Feb 2006 B2
7006732 Gunn, III et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7018563 Sutherland et al. Mar 2006 B1
7018686 Sutehrland et al. Mar 2006 B2
7018744 Otaki et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7046439 Kaminsky et al. May 2006 B2
7053735 Salmela et al. May 2006 B2
7053991 Sandusky May 2006 B2
7054045 McPheters et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7068898 Buretea et al. Jun 2006 B2
7072020 Sutherland et al. Jul 2006 B1
7075273 O'Gorman et al. Jul 2006 B2
7077984 Natarajan et al. Jul 2006 B1
7081215 Natarajan et al. Jul 2006 B2
7088457 Zou et al. Aug 2006 B1
7088515 Lipton Aug 2006 B2
7095562 Peng et al. Aug 2006 B1
7099080 Lipton et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7108383 Mitchell et al. Sep 2006 B1
7110184 Yona et al. Sep 2006 B1
7119965 Rolland et al. Oct 2006 B1
7123418 Weber et al. Oct 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7133084 Moskovich et al. Nov 2006 B2
7139109 Mukawa Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7167286 Anderson et al. Jan 2007 B2
7175780 Sutherland et al. Feb 2007 B1
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184002 Lipton et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7186567 Sutherland et al. Mar 2007 B1
7190849 Katase Mar 2007 B2
7198737 Natarajan et al. Apr 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7212175 Magee et al. May 2007 B1
7230767 Walck et al. Jun 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7256915 Sutherland et al. Aug 2007 B2
7259906 Islam Aug 2007 B1
7265882 Sutherland et al. Sep 2007 B2
7265903 Sutherland et al. Sep 2007 B2
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
RE39911 Moskovich Nov 2007 E
7299983 Piikivi Nov 2007 B2
7301601 Lin et al. Nov 2007 B2
7312906 Sutherland et al. Dec 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7333685 Stone et al. Feb 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7369911 Volant et al. May 2008 B1
7375870 Schorpp May 2008 B2
7375886 Lipton et al. May 2008 B2
7376068 Khoury May 2008 B1
7376307 Singh et al. May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7413678 Natarajan et al. Aug 2008 B1
7413679 Sutherland et al. Aug 2008 B1
7415173 Kassamakov et al. Aug 2008 B2
7416818 Sutherland et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7420733 Natarajan et al. Sep 2008 B1
7433116 Islam Oct 2008 B1
7436568 Kuykendall Oct 2008 B1
7447967 Onggosanusi et al. Nov 2008 B2
7453612 Mukawa Nov 2008 B2
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7477206 Cowan et al. Jan 2009 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7500104 Goland Mar 2009 B2
7511891 Messerschmidt Mar 2009 B2
7513668 Peng et al. Apr 2009 B1
7522344 Curatu et al. Apr 2009 B1
7525448 Wilson et al. Apr 2009 B1
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570322 Sutherland et al. Aug 2009 B1
7570405 Sutherland et al. Aug 2009 B1
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7583423 Sutherland et al. Sep 2009 B2
7587110 Singh et al. Sep 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7605719 Wenger et al. Oct 2009 B1
7605774 Brandt et al. Oct 2009 B1
7605882 Sutherland et al. Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7617022 Wood et al. Nov 2009 B1
7618750 Ueda et al. Nov 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7619825 Peng et al. Nov 2009 B1
7629086 Otaki et al. Dec 2009 B2
7639208 Ha et al. Dec 2009 B1
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7672549 Ghosh et al. Mar 2010 B2
7691248 Ikeda et al. Apr 2010 B2
7710622 Takabayashi et al. May 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733571 Li Jun 2010 B1
7733572 Brown et al. Jun 2010 B1
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7843642 Shaoulov et al. Nov 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7866869 Karakawa Jan 2011 B2
7872707 Sutherland et al. Jan 2011 B1
7872804 Moon et al. Jan 2011 B2
7884593 Simmonds et al. Feb 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7928862 Matthews Apr 2011 B1
7936519 Mukawa et al. May 2011 B2
7944428 Travis May 2011 B2
7944616 Mukawa May 2011 B2
7949214 DeJong et al. May 2011 B2
7961117 Zimmerman et al. Jun 2011 B1
7969644 Tilleman et al. Jun 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7984884 Iliev et al. Jul 2011 B1
7999982 Endo et al. Aug 2011 B2
8000020 Amitai et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8014050 McGrew Sep 2011 B2
8016475 Travis Sep 2011 B2
8018579 Krah Sep 2011 B1
8022942 Bathiche et al. Sep 2011 B2
8023783 Mukawa et al. Sep 2011 B2
RE42992 David Dec 2011 E
8073296 Mukawa et al. Dec 2011 B2
8077274 Sutherland et al. Dec 2011 B2
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8093451 Spangenberg et al. Jan 2012 B2
8098439 Amitai et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8120548 Barber Feb 2012 B1
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8134434 Diederichs et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8142016 Legerton et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8159752 Wertheim et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8167173 Simmonds et al. May 2012 B1
8186874 Sinbar et al. May 2012 B2
8188925 DeJean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8194325 Levola et al. Jun 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8264498 Vanderkamp et al. Sep 2012 B1
8294749 Cable Oct 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8310327 Willers et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8321810 Heintze Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8329773 Fäcke et al. Dec 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8384504 Diederichs et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8384730 Vanderkamp et al. Feb 2013 B1
8396339 Mukawa et al. Mar 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8447365 Imanuel May 2013 B1
8466953 Levola Jun 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8481130 Harding et al. Jul 2013 B2
8482858 Sprague Jul 2013 B2
8488246 Border et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493562 Kopp et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8494229 Jarvenpaa et al. Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8520309 Sprague Aug 2013 B2
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8634120 Popovich et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
D701206 Luckey et al. Mar 2014 S
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8698705 Burke Apr 2014 B2
8731350 Lin et al. May 2014 B1
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8742952 Bold Jun 2014 B1
8746008 Mauritsen et al. Jun 2014 B1
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8786923 Chuang et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8816578 Peng et al. Aug 2014 B1
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama Sep 2014 B2
8830143 Pitchford et al. Sep 2014 B1
8830584 Saarikko et al. Sep 2014 B2
8830588 Brown et al. Sep 2014 B1
8842368 Simmonds et al. Sep 2014 B2
8859412 Jain Oct 2014 B2
8872435 Kreitzer et al. Oct 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
8885112 Popovich et al. Nov 2014 B2
8885997 Nguyen et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8906088 Pugh et al. Dec 2014 B2
8913324 Schrader Dec 2014 B2
8913865 Bennett Dec 2014 B1
8917453 Bohn Dec 2014 B2
8933144 Enomoto et al. Jan 2015 B2
8937771 Robbins et al. Jan 2015 B2
8937772 Burns et al. Jan 2015 B1
8938141 Magnusson Jan 2015 B2
8950867 Macnamara Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
8965152 Simmonds Feb 2015 B2
8985803 Bohn Mar 2015 B2
8989535 Robbins Mar 2015 B2
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9035344 Jain May 2015 B2
9075184 Popovich et al. Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9097890 Miller et al. Aug 2015 B2
9128226 Fattal et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9164290 Robbins et al. Oct 2015 B2
9176324 Scherer et al. Nov 2015 B1
9201270 Fattal et al. Dec 2015 B2
9215293 Miller Dec 2015 B2
9244275 Li Jan 2016 B1
9244280 Tiana et al. Jan 2016 B1
9244281 Zimmerman et al. Jan 2016 B1
9269854 Jain Feb 2016 B2
9274338 Robbins et al. Mar 2016 B2
9274339 Brown et al. Mar 2016 B1
9310566 Valera et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9335604 Popovich et al. May 2016 B2
9341846 Popovich et al. May 2016 B2
9354366 Jain May 2016 B2
9366862 Haddick et al. Jun 2016 B2
9366864 Brown et al. Jun 2016 B1
9372347 Levola et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9377852 Shapiro et al. Jun 2016 B1
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Kostamo et al. Aug 2016 B1
9429692 Saarikko et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9456744 Popovich et al. Oct 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9464779 Popovich et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9465227 Popovich et al. Oct 2016 B2
9494799 Robbins et al. Nov 2016 B2
9507150 Stratton et al. Nov 2016 B1
9513480 Saarikko et al. Dec 2016 B2
9519089 Brown et al. Dec 2016 B1
9519115 Yashiki et al. Dec 2016 B2
9523852 Brown et al. Dec 2016 B1
9535253 Levola et al. Jan 2017 B2
9541383 Abovitz et al. Jan 2017 B2
9541763 Heberlein et al. Jan 2017 B1
9547174 Gao et al. Jan 2017 B2
9551874 Amitai Jan 2017 B2
9551880 Amitai Jan 2017 B2
9599813 Stratton et al. Mar 2017 B1
9612403 Abovitz et al. Apr 2017 B2
9632226 Waldern et al. Apr 2017 B2
9635352 Henry et al. Apr 2017 B1
9648313 Henry et al. May 2017 B1
9651368 Abovitz et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9671612 Kress et al. Jun 2017 B2
9674413 Tiana et al. Jun 2017 B1
9678345 Melzer et al. Jun 2017 B1
9679367 Wald Jun 2017 B1
9715067 Brown et al. Jul 2017 B1
9715110 Brown et al. Jul 2017 B1
9726540 Popovich et al. Aug 2017 B2
9727772 Popovich et al. Aug 2017 B2
9733475 Brown et al. Aug 2017 B1
9746688 Popovich et al. Aug 2017 B2
9754507 Wenger et al. Sep 2017 B1
9762895 Henry et al. Sep 2017 B1
9766465 Tiana et al. Sep 2017 B1
9785231 Zimmerman Oct 2017 B1
9791694 Haverkamp et al. Oct 2017 B1
9804316 Drolet et al. Oct 2017 B2
9804389 Popovich et al. Oct 2017 B2
9823423 Waldern et al. Nov 2017 B2
9874931 Koenck et al. Jan 2018 B1
9933684 Brown et al. Apr 2018 B2
9977247 Brown et al. May 2018 B1
10088686 Robbins et al. Oct 2018 B2
10089516 Popovich et al. Oct 2018 B2
10156681 Waldern et al. Dec 2018 B2
10185154 Popovich et al. Jan 2019 B2
10209517 Popovich et al. Feb 2019 B2
10216061 Popovich et al. Feb 2019 B2
10234696 Popovich et al. Mar 2019 B2
10241330 Popovich et al. Mar 2019 B2
10330777 Popovich et al. Jun 2019 B2
10359736 Popovich et al. Jul 2019 B2
10409144 Popovich et al. Sep 2019 B2
10423813 Popovich et al. Sep 2019 B2
10459311 Popovich et al. Oct 2019 B2
10527797 Waldern et al. Jan 2020 B2
10545346 Waldern et al. Jan 2020 B2
10569449 Curts et al. Feb 2020 B1
10578876 Lam et al. Mar 2020 B1
10598938 Huang et al. Mar 2020 B1
10613268 Colburn et al. Apr 2020 B1
10649119 Mohanty et al. May 2020 B2
10678053 Waldern et al. Jun 2020 B2
10690831 Calafiore Jun 2020 B2
10690916 Popovich et al. Jun 2020 B2
10705281 Fattal et al. Jul 2020 B2
10732351 Colburn et al. Aug 2020 B2
10823887 Calafiore et al. Nov 2020 B1
10859768 Popovich et al. Dec 2020 B2
10890707 Waldern et al. Jan 2021 B2
10983257 Colburn et al. Apr 2021 B1
11103892 Liao et al. Aug 2021 B1
11107972 Diest et al. Aug 2021 B2
11137603 Zhang Oct 2021 B2
11175512 Waldern et al. Nov 2021 B2
11194098 Waldern et al. Dec 2021 B2
11194162 Waldern et al. Dec 2021 B2
11243333 Ouderkirk et al. Feb 2022 B1
11306193 Lane et al. Apr 2022 B1
11307357 Mohanty Apr 2022 B2
11340386 Ouderkirk et al. May 2022 B1
11391950 Calafiore Jul 2022 B2
11448937 Brown et al. Sep 2022 B2
20010024177 Popovich Sep 2001 A1
20010043163 Waldern et al. Nov 2001 A1
20010046142 Van Santen et al. Nov 2001 A1
20010050756 Lipton et al. Dec 2001 A1
20020003509 Lipton et al. Jan 2002 A1
20020009299 Lipton Jan 2002 A1
20020011969 Lipton et al. Jan 2002 A1
20020012064 Yamaguchi Jan 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020036825 Lipton et al. Mar 2002 A1
20020047837 Suyama et al. Apr 2002 A1
20020075240 Lieberman et al. Jun 2002 A1
20020093701 Zhang et al. Jul 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20020126332 Popovich Sep 2002 A1
20020127497 Brown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20020196332 Lipton et al. Dec 2002 A1
20030007070 Lipton et al. Jan 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030063884 Smith et al. Apr 2003 A1
20030067685 Niv Apr 2003 A1
20030086670 Moridaira et al. May 2003 A1
20030107809 Chen et al. Jun 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030175004 Garito et al. Sep 2003 A1
20030197154 Manabe et al. Oct 2003 A1
20030197157 Sutherland et al. Oct 2003 A1
20030202247 Niv et al. Oct 2003 A1
20030206329 Ikeda et al. Nov 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040004767 Song Jan 2004 A1
20040012833 Newswanger et al. Jan 2004 A1
20040047938 Kosuga et al. Mar 2004 A1
20040057138 Tanijiri et al. Mar 2004 A1
20040075830 Miyake et al. Apr 2004 A1
20040089842 Sutehrland et al. May 2004 A1
20040109234 Levola Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040130797 Leigh Jul 2004 A1
20040141217 Endo et al. Jul 2004 A1
20040156008 Reznikov et al. Aug 2004 A1
20040174348 David Sep 2004 A1
20040175627 Sutherland et al. Sep 2004 A1
20040179764 Melikechi et al. Sep 2004 A1
20040184156 Gunn, III et al. Sep 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20040225025 Sullivan et al. Nov 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20040263971 Lipton et al. Dec 2004 A1
20050018304 Lipton et al. Jan 2005 A1
20050079663 Masutani et al. Apr 2005 A1
20050105909 Stone May 2005 A1
20050122395 Lipton et al. Jun 2005 A1
20050134404 Kajiya et al. Jun 2005 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050141066 Ouchi Jun 2005 A1
20050174321 Ikeda et al. Aug 2005 A1
20050180687 Amitai Aug 2005 A1
20050195276 Lipton et al. Sep 2005 A1
20050218377 Lawandy Oct 2005 A1
20050231774 Hayashi et al. Oct 2005 A1
20050232530 Kekas Oct 2005 A1
20050259217 Lin et al. Nov 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050259944 Anderson et al. Nov 2005 A1
20050265585 Rowe Dec 2005 A1
20050269481 David et al. Dec 2005 A1
20050271258 Rowe Dec 2005 A1
20050286133 Lipton Dec 2005 A1
20060002274 Kihara et al. Jan 2006 A1
20060012878 Lipton et al. Jan 2006 A1
20060013977 Duke et al. Jan 2006 A1
20060043938 O'Gorman et al. Mar 2006 A1
20060055993 Kobayashi et al. Mar 2006 A1
20060093012 Singh et al. May 2006 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119837 Raguin et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060126179 Levola Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060142455 Agarwal et al. Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060159864 Natarajan et al. Jul 2006 A1
20060164593 Peyghambarian et al. Jul 2006 A1
20060171647 Ye et al. Aug 2006 A1
20060177180 Tazawa et al. Aug 2006 A1
20060181683 Bhowmik et al. Aug 2006 A1
20060191293 Kuczma Aug 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060215976 Singh et al. Sep 2006 A1
20060221063 Ishihara Oct 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060268104 Cowan et al. Nov 2006 A1
20060268412 Downing et al. Nov 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285205 Lipton et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20060291052 Lipton et al. Dec 2006 A1
20070012777 Tsikos et al. Jan 2007 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070070476 Yamada et al. Mar 2007 A1
20070070504 Akutsu et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070097502 Lipton et al. May 2007 A1
20070109401 Lipton et al. May 2007 A1
20070116409 Bryan et al. May 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070154153 Fomitchov et al. Jul 2007 A1
20070160325 Son et al. Jul 2007 A1
20070177007 Lipton et al. Aug 2007 A1
20070182915 Osawa et al. Aug 2007 A1
20070183650 Lipton et al. Aug 2007 A1
20070188602 Cowan et al. Aug 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070206155 Lipton Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070236560 Lipton et al. Oct 2007 A1
20070237456 Blauvelt et al. Oct 2007 A1
20070247687 Handschy et al. Oct 2007 A1
20070258138 Cowan et al. Nov 2007 A1
20070263169 Lipton Nov 2007 A1
20080001909 Lim Jan 2008 A1
20080018851 Lipton et al. Jan 2008 A1
20080024598 Perlin et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080049100 Lipton et al. Feb 2008 A1
20080062259 Lipton et al. Mar 2008 A1
20080089073 Hikmet Apr 2008 A1
20080106775 Amitai et al. May 2008 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080136916 Wolff Jun 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080138013 Parriaux Jun 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080143965 Cowan et al. Jun 2008 A1
20080149517 Lipton et al. Jun 2008 A1
20080151370 Cook et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186573 Lipton Aug 2008 A1
20080186574 Robinson et al. Aug 2008 A1
20080186604 Amitai Aug 2008 A1
20080193085 Singh et al. Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080226281 Lipton Sep 2008 A1
20080239067 Lipton Oct 2008 A1
20080239068 Lipton Oct 2008 A1
20080273081 Lipton Nov 2008 A1
20080278812 Amitai Nov 2008 A1
20080285137 Simmonds et al. Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080297807 Feldman et al. Dec 2008 A1
20080298649 Ennis et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080303896 Lipton et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20080309586 Vitale Dec 2008 A1
20080316303 Chiu et al. Dec 2008 A1
20080316375 Lipton et al. Dec 2008 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052017 Sasaki Feb 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128495 Kong et al. May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090136246 Murakami May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090153437 Aharoni Jun 2009 A1
20090169152 Oestergard Jul 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090242021 Petkie et al. Oct 2009 A1
20090296218 Ryytty Dec 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100014312 Travis et al. Jan 2010 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100065726 Zhong et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100135615 Ho et al. Jun 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100165660 Weber et al. Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100202725 Popovich et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100220293 Mizushima et al. Sep 2010 A1
20100225876 Escuti et al. Sep 2010 A1
20100231532 Nho et al. Sep 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100299814 Celona et al. Dec 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20100322555 Vermeulen et al. Dec 2010 A1
20110001895 Dahl Jan 2011 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110032602 Rothenberg et al. Feb 2011 A1
20110032618 Handerek et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110102711 Sutherland et al. May 2011 A1
20110109880 Nummela May 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110187293 Travis et al. Aug 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110221656 Haddick et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110236803 Weiser et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20110274435 Fini et al. Nov 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120027347 Mathal et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120092632 McLeod et al. Apr 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120162549 Gao et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176665 Song et al. Jul 2012 A1
20120183888 Oliveira et al. Jul 2012 A1
20120194420 Osterhout et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large Aug 2012 A1
20120214089 Hönel et al. Aug 2012 A1
20120214090 Weiser et al. Aug 2012 A1
20120218481 Popovich et al. Aug 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235886 Border et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120281943 Popovich et al. Nov 2012 A1
20120290973 Robertson et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130016324 Travis Jan 2013 A1
20130016362 Gong et al. Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130039619 Laughlin Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130051730 Travers et al. Feb 2013 A1
20130059233 Askham Mar 2013 A1
20130069850 Mukawa et al. Mar 2013 A1
20130077049 Bohn Mar 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130117377 Miller May 2013 A1
20130125027 Abovitz et al. May 2013 A1
20130128230 Macnamara May 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130143336 Jain Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130176704 Lanman et al. Jul 2013 A1
20130184904 Gadzinski Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130207887 Raffle et al. Aug 2013 A1
20130224634 Berneth et al. Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins et al. Oct 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130277890 Bowman et al. Oct 2013 A1
20130301014 DeJong et al. Nov 2013 A1
20130305437 Weller et al. Nov 2013 A1
20130312811 Aspnes et al. Nov 2013 A1
20130314789 Saarikko et al. Nov 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20130342525 Benko et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140009809 Pyun et al. Jan 2014 A1
20140024159 Jain Jan 2014 A1
20140027006 Foley et al. Jan 2014 A1
20140037242 Popovich et al. Feb 2014 A1
20140043689 Mason Feb 2014 A1
20140055845 Jain Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140064655 Nguyen et al. Mar 2014 A1
20140071538 Muller Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140118647 Momonoi et al. May 2014 A1
20140130132 Cahill et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140160576 Robbins et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140168783 Luebke et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140198128 Hong et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218468 Gao et al. Aug 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason Aug 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140255662 Enomoto et al. Sep 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140268353 Fujimura et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300960 Santori et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140327970 Bohn et al. Nov 2014 A1
20140330159 Costa et al. Nov 2014 A1
20140367719 Jain Dec 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150001677 Palumbo et al. Jan 2015 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150015946 Muller Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150035744 Robbins et al. Feb 2015 A1
20150036068 Fattal et al. Feb 2015 A1
20150058791 Robertson et al. Feb 2015 A1
20150062675 Ayres et al. Mar 2015 A1
20150062707 Simmonds et al. Mar 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150086907 Mizuta et al. Mar 2015 A1
20150107671 Bodan et al. Apr 2015 A1
20150109763 Shinkai et al. Apr 2015 A1
20150125109 Robbins et al. May 2015 A1
20150148728 Sallum et al. May 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150167868 Boncha Jun 2015 A1
20150177686 Lee et al. Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150219834 Nichol et al. Aug 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150235448 Schowengerdt et al. Aug 2015 A1
20150243068 Solomon Aug 2015 A1
20150247975 Abovitz et al. Sep 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150268399 Futterer Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20150285682 Popovich et al. Oct 2015 A1
20150288129 Jain Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150309264 Abovitz et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20150346490 Tekolste et al. Dec 2015 A1
20150346495 Welch et al. Dec 2015 A1
20150355394 Leighton et al. Dec 2015 A1
20160003847 Ryan et al. Jan 2016 A1
20160004090 Popovich et al. Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160033705 Fattal Feb 2016 A1
20160033706 Fattal et al. Feb 2016 A1
20160038992 Arthur et al. Feb 2016 A1
20160041387 Valera Feb 2016 A1
20160077338 Robbins et al. Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160097959 Bruizeman et al. Apr 2016 A1
20160116739 TeKolste et al. Apr 2016 A1
20160124223 Shinbo et al. May 2016 A1
20160132025 Taff et al. May 2016 A1
20160178901 Ishikawa Jun 2016 A1
20160195664 Fattal et al. Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160231570 Levola et al. Aug 2016 A1
20160238772 Waldern Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160274362 Tinch et al. Sep 2016 A1
20160283773 Popovich et al. Sep 2016 A1
20160291328 Popovich et al. Oct 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Simmonds et al. Nov 2016 A1
20160327705 Simmonds et al. Nov 2016 A1
20160336033 Tanaka Nov 2016 A1
20160341964 Amitai Nov 2016 A1
20170003505 Vallius et al. Jan 2017 A1
20170010466 Klug et al. Jan 2017 A1
20170010488 Klug et al. Jan 2017 A1
20170030550 Popovich et al. Feb 2017 A1
20170031160 Popovich et al. Feb 2017 A1
20170031171 Vallius et al. Feb 2017 A1
20170032166 Raguin et al. Feb 2017 A1
20170034435 Vallius Feb 2017 A1
20170038579 Yeoh et al. Feb 2017 A1
20170052374 Waldern et al. Feb 2017 A1
20170052376 Amitai et al. Feb 2017 A1
20170059759 Ayres et al. Mar 2017 A1
20170059775 Coles et al. Mar 2017 A1
20170102543 Vallius Apr 2017 A1
20170115487 Travis et al. Apr 2017 A1
20170123208 Vallius May 2017 A1
20170131460 Lin May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Robbins et al. May 2017 A1
20170160546 Bull et al. Jun 2017 A1
20170180404 Bersch et al. Jun 2017 A1
20170180408 Yu et al. Jun 2017 A1
20170199333 Waldern et al. Jul 2017 A1
20170212295 Vasylyev Jul 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170255257 Tiana et al. Sep 2017 A1
20170276940 Popovich et al. Sep 2017 A1
20170299860 Wall et al. Oct 2017 A1
20170356801 Popovich et al. Dec 2017 A1
20170357841 Popovich et al. Dec 2017 A1
20180011324 Popovich et al. Jan 2018 A1
20180059305 Popovich et al. Mar 2018 A1
20180074265 Waldern et al. Mar 2018 A1
20180074352 Popovich et al. Mar 2018 A1
20180081190 Lee et al. Mar 2018 A1
20180107011 Lu et al. Apr 2018 A1
20180113303 Popovich et al. Apr 2018 A1
20180120669 Popovich et al. May 2018 A1
20180143449 Popovich et al. May 2018 A1
20180188542 Waldern et al. Jul 2018 A1
20180210198 Brown et al. Jul 2018 A1
20180210396 Popovich et al. Jul 2018 A1
20180232048 Popovich et al. Aug 2018 A1
20180246354 Popovich et al. Aug 2018 A1
20180275402 Popovich et al. Sep 2018 A1
20180284440 Popovich et al. Oct 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190042827 Popovich et al. Feb 2019 A1
20190064735 Waldern et al. Feb 2019 A1
20190072723 Waldern et al. Mar 2019 A1
20190094548 Nicholson et al. Mar 2019 A1
20190113751 Waldern et al. Apr 2019 A9
20190113829 Waldern et al. Apr 2019 A1
20190121027 Popovich et al. Apr 2019 A1
20190129085 Waldern et al. May 2019 A1
20190187538 Popovich et al. Jun 2019 A1
20190212195 Popovich et al. Jul 2019 A9
20190212588 Waldern et al. Jul 2019 A1
20190212589 Waldern et al. Jul 2019 A1
20190212596 Waldern et al. Jul 2019 A1
20190212597 Waldern et al. Jul 2019 A1
20190212698 Waldern et al. Jul 2019 A1
20190212699 Waldern et al. Jul 2019 A1
20190219822 Popovich et al. Jul 2019 A1
20190319426 Lu et al. Oct 2019 A1
20200081317 Popovich et al. Mar 2020 A1
20200142131 Waldern et al. May 2020 A1
20200159026 Waldern et al. May 2020 A1
20200201051 Popovich et al. Jun 2020 A1
20200247016 Calafiore Aug 2020 A1
20200249484 Waldern et al. Aug 2020 A1
20200249568 Rao et al. Aug 2020 A1
20200292745 Waldern et al. Sep 2020 A1
20200341194 Waldern et al. Oct 2020 A1
20200348519 Waldern et al. Nov 2020 A1
20210109285 Jiang et al. Apr 2021 A1
20210191122 Yaroshchuk et al. Jun 2021 A1
20210199873 Shi et al. Jul 2021 A1
20210199971 Lee et al. Jul 2021 A1
20210216040 Waldern et al. Jul 2021 A1
20210231874 Popovich et al. Jul 2021 A1
20210231955 Waldern et al. Jul 2021 A1
20210238374 Ye et al. Aug 2021 A1
20210239984 Popovich et al. Aug 2021 A1
20210247560 Waldern et al. Aug 2021 A1
20210247719 Waldern et al. Aug 2021 A1
20210278739 Brown et al. Sep 2021 A1
20210405365 Popovich et al. Dec 2021 A1
20220019015 Calafiore et al. Jan 2022 A1
20220082739 Franke et al. Mar 2022 A1
20220091323 Yaroshchuk et al. Mar 2022 A1
20220204790 Zhang et al. Jun 2022 A1
20220206232 Zhang et al. Jun 2022 A1
20220260838 Popovich et al. Aug 2022 A1
Foreign Referenced Citations (321)
Number Date Country
PI 0720469 Jan 2014 BR
2889727 Jun 2014 CA
200944140 Sep 2007 CN
101103297 Jan 2008 CN
101151562 Mar 2008 CN
101263412 Sep 2008 CN
100492099 May 2009 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101793555 Aug 2010 CN
101881936 Nov 2010 CN
101945612 Jan 2011 CN
102314092 Jan 2012 CN
102498425 Jun 2012 CN
102782563 Nov 2012 CN
102928981 Feb 2013 CN
103562802 Feb 2014 CN
103777282 May 2014 CN
103823267 May 2014 CN
104040308 Sep 2014 CN
104040410 Sep 2014 CN
104204901 Dec 2014 CN
104956252 Sep 2015 CN
105074537 Nov 2015 CN
105074539 Nov 2015 CN
105190407 Dec 2015 CN
105229514 Jan 2016 CN
105393159 Mar 2016 CN
105408801 Mar 2016 CN
105408802 Mar 2016 CN
105408803 Mar 2016 CN
105531716 Apr 2016 CN
105705981 Jun 2016 CN
107466372 Dec 2017 CN
108474945 Aug 2018 CN
108780224 Nov 2018 CN
109154717 Jan 2019 CN
103823267 May 2019 CN
110383117 Oct 2019 CN
107466372 Jan 2020 CN
111684362 Sep 2020 CN
108780224 Aug 2021 CN
113728258 Nov 2021 CN
113759555 Dec 2021 CN
114721242 Jul 2022 CN
19751190 May 1999 DE
102006003785 Jul 2007 DE
102012108424 Mar 2014 DE
102013209436 Nov 2014 DE
0795775 Sep 1997 EP
0822441 Feb 1998 EP
1347641 Sep 2003 EP
1413972 Apr 2004 EP
1526709 Apr 2005 EP
1748305 Jan 2007 EP
1938152 Jul 2008 EP
1413972 Oct 2008 EP
2110701 Oct 2009 EP
2225592 Sep 2010 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
2381290 Oct 2011 EP
1828832 May 2013 EP
2733517 May 2014 EP
1573369 Jul 2014 EP
2748670 Jul 2014 EP
2929378 Oct 2015 EP
2748670 Nov 2015 EP
2995986 Mar 2016 EP
1402298 Sep 2016 EP
2995986 Apr 2017 EP
3256888 Dec 2017 EP
3359999 Aug 2018 EP
2494388 Nov 2018 EP
3433658 Jan 2019 EP
3433659 Jan 2019 EP
3548939 Oct 2019 EP
3710894 Sep 2020 EP
3938821 Jan 2022 EP
2677463 Dec 1992 FR
2115178 Sep 1983 GB
2140935 Dec 1984 GB
2508661 Jun 2014 GB
2509536 Jul 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1204684 Nov 2015 HK
1205563 Dec 2015 HK
1205793 Dec 2015 HK
1206101 Dec 2015 HK
57089722 Jun 1982 JP
02186319 Jul 1990 JP
03239384 Oct 1991 JP
06294952 Oct 1994 JP
07098439 Apr 1995 JP
0990312 Apr 1997 JP
10096903 Apr 1998 JP
11109320 Apr 1999 JP
11142806 May 1999 JP
2953444 Sep 1999 JP
2000056259 Feb 2000 JP
2000511306 Aug 2000 JP
2000261706 Sep 2000 JP
2000267042 Sep 2000 JP
2001027739 Jan 2001 JP
2001296503 Oct 2001 JP
2002090858 Mar 2002 JP
2002122906 Apr 2002 JP
2002162598 Jun 2002 JP
2002523802 Jul 2002 JP
2002529790 Sep 2002 JP
2002311379 Oct 2002 JP
2003066428 Mar 2003 JP
2003270419 Sep 2003 JP
2004157245 Jun 2004 JP
2006350129 Dec 2006 JP
2007011057 Jan 2007 JP
2007094175 Apr 2007 JP
2007219106 Aug 2007 JP
2008112187 May 2008 JP
2009036955 Feb 2009 JP
2009515225 Apr 2009 JP
2009132221 Jun 2009 JP
2009133999 Jun 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
2010044326 Feb 2010 JP
2012137616 Jul 2012 JP
2012533089 Dec 2012 JP
2013061480 Apr 2013 JP
5303928 Oct 2013 JP
2013235256 Nov 2013 JP
2014132328 Jul 2014 JP
2015053163 Mar 2015 JP
2015523586 Aug 2015 JP
2015172713 Oct 2015 JP
2016030503 Mar 2016 JP
2018508037 Mar 2018 JP
2018533069 Nov 2018 JP
2019512745 May 2019 JP
2019520595 Jul 2019 JP
6598269 Oct 2019 JP
6680793 Mar 2020 JP
2020514783 May 2020 JP
6734933 Jul 2020 JP
2021509736 Apr 2021 JP
6895451 Jun 2021 JP
2022091982 Jun 2022 JP
20060132474 Dec 2006 KR
20100092059 Aug 2010 KR
20140140063 Dec 2014 KR
20140142337 Dec 2014 KR
1020200106932 Sep 2020 KR
20210134763 Nov 2021 KR
200535633 Nov 2005 TW
200801583 Jan 2008 TW
201314263 Apr 2013 TW
201600943 Jan 2016 TW
201604601 Feb 2016 TW
1997001133 Jan 1997 WO
1997027519 Jul 1997 WO
1998004650 Feb 1998 WO
1999009440 Feb 1999 WO
1999052002 Oct 1999 WO
2000016136 Mar 2000 WO
2000023830 Apr 2000 WO
2000023832 Apr 2000 WO
2000023847 Apr 2000 WO
2000028369 May 2000 WO
2000028369 Oct 2000 WO
2001050200 Jul 2001 WO
2001090822 Nov 2001 WO
2002082168 Oct 2002 WO
2003081320 Oct 2003 WO
2004102226 Nov 2004 WO
2004109349 Dec 2004 WO
2005001753 Jan 2005 WO
2005006065 Jan 2005 WO
2005006065 Feb 2005 WO
2005073798 Aug 2005 WO
2006002870 Jan 2006 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006132614 Dec 2006 WO
2006102073 Jan 2007 WO
2007015141 Feb 2007 WO
2007029032 Mar 2007 WO
2007085682 Aug 2007 WO
2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
2008011066 Jan 2008 WO
2008011066 May 2008 WO
2008081070 Jul 2008 WO
2008100545 Aug 2008 WO
2008011066 Dec 2008 WO
2009013597 Jan 2009 WO
2009013597 Jan 2009 WO
2009077802 Jun 2009 WO
2009077803 Jun 2009 WO
2009101238 Aug 2009 WO
2007130130 Sep 2009 WO
2009155437 Dec 2009 WO
2009155437 Mar 2010 WO
2010023444 Mar 2010 WO
2010057219 May 2010 WO
2010067114 Jun 2010 WO
2010067117 Jun 2010 WO
2010078856 Jul 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
2010125337 Nov 2010 WO
2010125337 Nov 2010 WO
2011012825 Feb 2011 WO
2011032005 Mar 2011 WO
2011042711 Apr 2011 WO
2011042711 Apr 2011 WO
2011051660 May 2011 WO
2011055109 May 2011 WO
2011073673 Jun 2011 WO
2011107831 Sep 2011 WO
2011110821 Sep 2011 WO
2011131978 Oct 2011 WO
2012052352 Apr 2012 WO
2012062658 May 2012 WO
2012158950 Nov 2012 WO
2012172295 Dec 2012 WO
2013027004 Feb 2013 WO
2013027006 Feb 2013 WO
2013033274 Mar 2013 WO
2013034879 Mar 2013 WO
2013049012 Apr 2013 WO
2013102759 Jul 2013 WO
2013163347 Oct 2013 WO
2013167864 Nov 2013 WO
2013190257 Dec 2013 WO
2014064427 May 2014 WO
2014080155 May 2014 WO
2014085734 Jun 2014 WO
2014090379 Jun 2014 WO
2014091200 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
2014130383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014164901 Oct 2014 WO
2014176695 Nov 2014 WO
2014179632 Nov 2014 WO
2014188149 Nov 2014 WO
2014209733 Dec 2014 WO
2014209819 Dec 2014 WO
2014209820 Dec 2014 WO
2014209821 Dec 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015015138 Feb 2015 WO
2015017291 Feb 2015 WO
2015069553 May 2015 WO
2015081313 Jun 2015 WO
2015117039 Aug 2015 WO
2015145119 Oct 2015 WO
2016010289 Jan 2016 WO
2016020643 Feb 2016 WO
2016025350 Feb 2016 WO
2016042283 Mar 2016 WO
2016044193 Mar 2016 WO
2016046514 Mar 2016 WO
2016048729 Mar 2016 WO
2016103263 Jun 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113534 Jul 2016 WO
2016116733 Jul 2016 WO
2016118107 Jul 2016 WO
2016122679 Aug 2016 WO
2016130509 Aug 2016 WO
2016135434 Sep 2016 WO
2016156776 Oct 2016 WO
2016181108 Nov 2016 WO
2016046514 Apr 2017 WO
2017060665 Apr 2017 WO
2017094129 Jun 2017 WO
2017162999 Sep 2017 WO
2017162999 Sep 2017 WO
2017178781 Oct 2017 WO
2017180403 Oct 2017 WO
2017182771 Oct 2017 WO
2017203200 Nov 2017 WO
2017203201 Nov 2017 WO
2017207987 Dec 2017 WO
2018102834 Jun 2018 WO
2018102834 Jun 2018 WO
2018096359 Jul 2018 WO
2018129398 Jul 2018 WO
2018150163 Aug 2018 WO
2019046649 Mar 2019 WO
2019077307 Apr 2019 WO
2019079350 Apr 2019 WO
2019046649 May 2019 WO
2019122806 Jun 2019 WO
2019135784 Jul 2019 WO
2019135796 Jul 2019 WO
2019135837 Jul 2019 WO
2019136470 Jul 2019 WO
2019136471 Jul 2019 WO
2019136473 Jul 2019 WO
2019171038 Sep 2019 WO
2020186113 Sep 2020 WO
2020212682 Oct 2020 WO
2020227236 Nov 2020 WO
2021032982 Feb 2021 WO
2021032983 Feb 2021 WO
2021044121 Mar 2021 WO
108474945 Oct 2021 WO
Non-Patent Literature Citations (390)
Entry
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the SID 17/12, Dec. 2009, pp. 1043-1049.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII, Iam-Choon Khoo, Editor, Dec. 2003, pp. 123-129.
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135.
Bunning et al., “Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1”, Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 83-115.
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833.
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21, pp. 3659-3662.
Butler et al., “Diffractive Properties of Highly Birefringent Volume Gratings Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189.
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Mater. Horiz., 2015, vol. 2, pp. 37-53.
Cameron, “Optical Waveguide Technology & Its Application In Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11.
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc. of SPIE, 2009, 11 pages, vol. 7326.
Caputo et al., “POLICRYPS Composite Materials: Features and Applications”, Advances in Composite Materials—Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118.
Caputo et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51.
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs.
Chen et al, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558.
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs.
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etching of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408.
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?journalCode=tlcy20, 15 pgs.
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753.
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090.
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 DIGEST, May 2000, pp. 770-773.
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, pp. 54-59, Apr. 2003.
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' N Revista Mexicana De Fl'SICA, Feb. 2011, vol. 57, No. 1, pp. 6-16.
Dabrowski, “High Birefringence Liquid Crystals”, Crystals, Sep. 3, 2013, vol. 3, No. 3, pp. 443-482.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Date, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, pp. 289-284.
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877.
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystal (HPDLC)”, Journal of the SID, 1999, vol. 7, No. 1, pp. 17-22.
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418.
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs.
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1999, vol. 24, No. 7, pp. 487-489.
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6.
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, pp. 2499-2505.
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, pp. 177/[529]-185/[537].
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579.
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103.
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, pp. 348-351.
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776.
Forman et al., “Materials development for PhotoINhibited SuperResolution (PINSR) lithography”, Proc. of SPIE, 2012, vol. 8249, 824904, doi: 10.1117/12.908512, pp. 824904-1-824904-9.
Forman et al., “Radical diffusion limits to photoinhibited superresolution Tithography”, Phys.Chem. Chem. Phys., May 31, 2013, vol. 15, pp. 14862-14867.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Fujii et al., “Nanoparticle-polymer-composite volume gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2008, No. P-044, 5 pgs.
Gabor, “Laser Speckle and its Elimination”, BM Research and Development, Eliminating Speckle Noise, Sep. 1970, vol. 14, No. 5, pp. 509-514.
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs.
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, pp. 121-122.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Guldin et al., “Self-Cleaning Antireflective Optical Coatings”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335.
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012, Article ID 803439, Academic Editor: Sergi Gallego, 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communications, 2014, 4 pgs.
Harbers et al., “I-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs.
Harbers et al., “Performance of High-Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan. vol. 10, pp. 1585-1588, 2003.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Patterned Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378.
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231-233.
Harris, “Photonic Devices”, EE 216 Principals and Models of Semiconductor Devices, Autumn 2002, 20 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe: an update”, Sharp Laboratories of Europe, Ltd., 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409.
Hasan et al., “Tunable-focus lens for adaptive eyeglasses”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs.
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, vol. 16, pp. 1-25, 1997.
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optical Materials Express, Jun. 1, 2011, vol. 1, No. 2, pp. 207-222.
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, pp. 673-684.
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160.
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequencies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, doi: 10.1117/12.580978, pp. 842-848.
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942.
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, pp. 072601-1-072601-4.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs.
Holmes et al., “Controlling the anisotropy of holographic polymer-dispersed Tiquid-crystal gratings”, Physical Review E, Jun. 11, 2002, vol. 65, 066603-1-066603-4.
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc., 2003 Conference, 6 pgs.
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs.
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899.
Huang et al., “Theory and characteristics of holographic polymer dispersed Tiquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020.
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430.
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs.
Jo et al., “Control of Liquid Crystal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606.
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010.
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10, pp. 5953-5961.
Jurbergs et al., “New recording materials for the holographic industry”, Proc. of SPIE, 2009 vol. 7233, pp. 72330K-1-72330L-10, doi: 10.1117/12.809579.
Kahn et al., “Private Line Reporton Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, Oct. 1997, vol. 36, No. 10, pp. 6388-6392.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, CCC code: 0277-786X/09, doi: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE,1998, vol. 3297, pp. 52-57.
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs.
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 DIGEST, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 DIGEST, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Kim et al., “Effect of Polymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335.
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym. Int., Jun. 16, 2010, vol. 59, pp. 1289-1295.
Kim et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Crystals Science, 2001, vol. 368, pp. 3845-3853.
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., vol. 368, pp. 3855-3864, 2001.
Klein, “Optical Efficiency for Different Liquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs.
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, pp. 2909-2945, Nov. 1969.
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs.
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482.
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs.
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 26, 2015, 5 pgs.
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475.
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862.
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, doi: 10.1117/12.479585, 12 pgs.
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE El 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, vol. 1, pp. 238-242.
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book Holograms—Recording Materials and Applications, Nov. 9, 2011, 21 pgs.
Liu et al., “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications”, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs.
Extended European Search Report for European Application No. 18727645.6, Search completed Oct. 14, 2020, dated Oct. 23, 2020, 13 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012758, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 4 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2019/012759, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2019/012764, Report dated Jul. 14, 2020, dated Jul. 23, 2020, 5 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/022482, Search completed May 12, 2020, dated Jun. 9, 2020, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2020/031363, completed May 28, 2020, dated Jun. 10, 2020, 8 Pgs.
Supplementary Partial European Search Report for European Application No. 18727645.6, Search completed Jul. 2, 2020, dated Jul. 13, 2020, 13 Pgs.
Fuh et al., “Thermally and Electrically Switchable Gratings Based Upon the Polymer-Balls Type Polymer-Dispersed Liquid Crystal Films”, Appl. Phys. vol. 41, No. 22, Aug. 1, 2002, pp. 4585-4589.
Jeong et al., “Memory Effect of Polymer Dispersed Liquid Crystal by Hybridization with Nanoclay”, express Polymer Letters, vol. 4, No. 1, 2010, pp. 39-46.
International Search Report and Written Opinion for International Application No. PCT/US2019/031163, completed Jul. 9, 2019, dated Jul. 29, 2019, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, dated Nov. 8, 2010, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, dated Apr. 6, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2015/000228, completed May 4, 2011, dated Jul. 15, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, dated Jul. 13, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000065, completed Jul. 14, 2016, dated Jul. 27, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, completed Jul. 19, 2017, dated Jul. 26, 2017, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, dated Aug. 14, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, dated May 8, 2014, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, dated Mar. 28, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, dated Sep. 19, 2018, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/037410, Search completed Aug. 16, 2018, dated Aug. 30, 2018, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048636, completed Nov. 1, 2018, dated Nov. 15, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/056150, completed Dec. 4, 2018, dated Dec. 26, 2018, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/062835, Search completed Jan. 14, 2019, dated Jan. 31, 2019, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012758, completed Mar. 12, 2019, dated Mar. 27, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012764, completed Mar. 1, 2019, dated Mar. 18, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048960, Search completed Dec. 14, 2018, dated Jan. 8, 2019, 14 pgs.
International Search Report and Written Opinion for International Application PCT/GB2009/051676, completed May 10, 2010, dated May 18, 2010, 7 pgs.
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, dated Feb. 27, 2017, 21 pgs.
International Search Report and Written Opinion for International Application PCT/US2016/017091, completed by the European Patent Office on Apr. 20, 2016, 7 pgs.
International Search Report and Written Opinion for International Application PCT/US2019/012759, completed Mar. 14, dated Apr. 15, 2019, 12 pgs.
International Search Report for International Application No. PCT/GB2014/000295, completed Nov. 18, 2014, dated Jan. 5, 2015, 4 pgs.
International Search Report for International Application PCT/GB2017/000040, dated Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs.
International Search Report for PCT/GB2010/001982, completed by the European Patent Office on Feb. 24, 2011, 4 pgs.
International Search Report for PCT/GB2011/000349, completed by the European Patent Office on Aug. 17, 2011, 4 pgs.
International Search Report for PCT/GB2012/000331, completed by the European Patent Office on Aug. 29, 2012, 4 pgs.
International Search Report for PCT/GB2012/000677, completed by the European Patent Office on Dec. 10, 2012, 4 pgs.
International Search Report for PCT/GB2013/000005, completed by the European Patent Office on Jul. 16, 2013, 3 pgs.
International Search Report for PCT/GB2013/000273, completed by the European Patent Office on Aug. 30, 2013, 4 pgs.
International Search Report for PCT/GB2015/000203, completed by the European Patent Office on Oct. 9, 2015, 4 pgs.
International Search Report for PCT/GB2015/000225, completed by the European Patent Office on Nov. 10, 2015, dated Dec. 2, 2016, 5 pgs.
International Search Report for PCT/GB2015/000274, completed by the European Patent Office on Jan. 7, 2016, 4 pgs.
International Search Report for PCT/GB2016/000014, completed by the European Patent Office dated Jun. 27, 2016, 4 pgs.
International Search Report for PCT/GB2016/000051, Completed Aug. 11, 2016, 3 Pgs.
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, dated Mar. 8, 2011, 6 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, dated Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, dated Sep. 6, 2012, 7 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, dated Dec. 17, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, dated Jul. 24, 2013, 11 pgs.
Written Opinion for International Application No. PCT/GB2013/000273, completed Aug. 30, 2013, dated Sep. 9, 2013, 7 pgs.
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, dated Jan. 5, 2015, 3 pgs.
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, dated Nov. 16, 2015, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, dated Feb. 4, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, dated Jan. 19, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, dated Jul. 7, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016 , dated Aug. 22, 2016, 6 Pgs.
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, dated Jul. 18, 2017, 6 pgs.
Written Opinion for International Application PCT/GB2016/000003, completed May 31, 2016, dated Aug. 12, 2016, 10 pgs.
“Agilent ADNS-2051 Optical Mouse Sensor: Data Sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs.
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs.
“Application Note AN16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs.
“Application Note: Variable Attenuator for Lasers”, Technology and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs.
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg.
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs.
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com.
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLD-DS18 Rev 17, 2013, 17 pgs.
“Desmodur N 3900”, Bayer Materialscience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs.
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815.
Lu et al., “The Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys., Nov. 27, 2012, 14 pgs.
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liquid Crystal Communications, Feb. 5, 2004, 10 pgs.
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280.
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002, vol. 53, No. 3-4, pp. 86-90.
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs.
Matic, “Blazed phase liquid crystal beam steering”, Proc. of the SPIE, 1994, vol. 2120, pp. 194-205.
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169.
McManamon et al., “A Review of Phased Array Steering for Narrow-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096.
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs.
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs.
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf). May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007.
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742.
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989.
Natarajan et al., “Electro Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optical Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668.
Natarajan et al., “Electro-Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, J. of Nonlinear Optical Physics Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98.
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer, vol. 47, May 8, 2006, pp. 4411-4420.
Naydenova et al., “Low-scattering Volume Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs.
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 16, pp. 1876-1886.
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs.
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposure”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs.
Nordin G et al., “Diffraction Properties of Stratified Volume Holographic Optical Elements”, Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217.
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289.
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890.
Ondax, Inc., “Volume Holographic Gratings (VHG)”, 2005, 7 pgs.
Orcutt, “Coming Soon: Smart Glasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 4 pgs.
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105.
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3, ISSN0352-9045, 5 pgs.
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technology Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Using an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762.
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252.
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45.
Potenza, “These smart glasses automatically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs.
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101-6.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, DOI:http://dx.doi.org/10.6100/IR634422, 117 pgs.
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs.
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489.
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs.
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. vol. 4294, Jan. 24, 2001, pp. 75-83.
Saleh et al., “Fourier Optics : 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143.
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs.
Schechter et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs.
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791.
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421.
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852.
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pgs.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pages.
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, dated Jan. 28, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, dated Nov. 1, 2011, dated Nov. 10, 2011, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, dated Apr. 11, 2012, dated Apr. 19, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report dated May 1, 2012, dated May 10, 2012, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2013/000273, dated Dec. 23, 2014, dated Dec. 31, 2014, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, dated Mar. 21, 2017, dated Mar. 30, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, dated Aug. 29, 2017, dated Sep. 8, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000051, Report dated Sep. 19, 2017, dated Sep. 28, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000065, dated Oct. 3, 2017, dated Oct. 12, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/015553, dated Jun. 4, 2019, dated Jun. 13, 2019, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, dated Jun. 14, 2011, dated Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, dated Sep. 18, 2012, dated Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000331, dated Oct. 8, 2013, dated Oct. 17, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, dated Feb. 25, 2014, dated Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, dated Jul. 8, 2014, dated Jul. 17, 2014, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, dated Feb. 2, 2016, dated Feb. 11, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, dated Feb. 14, 2017, dated Feb. 23, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000228, dated Feb. 14, 2017, dated Feb. 23, 2017, 11 pgs.
International Preliminary Report on Patentability for International application PCT/GB2015/000274, dated Mar. 28, 2017, dated Apr. 6, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, dated Jul. 25, 2017, dated Aug. 3, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, dated Oct. 16, 2018, dated Oct. 25, 2018, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, dated Jul. 21, 2015, dated Jul. 30, 2015, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2016/017091, dated Aug. 15, 2017, dated Aug. 24, 2017, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/012691, Report dated Jul. 9, 2019, dated Jul. 18, 2019, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report dated Sep. 25, 2018, dated Oct. 4, 2018, 7 pgs.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs.
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6, 2017, 31 pgs.
“Exotic Optical Components”, Building Electro-Optical Systems, Making It All Work, Chapter 7, John Wiley & Sons, Inc., pp. 233-261.
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs.
“FLP Lens Series for LUXEONTM Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensrl.com, Aug. 7, 2015, 8 pgs.
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs.
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“LED325W UVTOP UV LED with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs.
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs.
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs.
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs.
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs.
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 20130221, www.philipslumileds.com, 2013, 33 pgs.
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs.
“Molecular Imprints Imprio 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-Imprint.asp, Dec. 28, 2015, 2 pgs.
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2.
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs.
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs.
“Plastic has replaced glass in photochromic lens”, 2003, 1 page.
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs.
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs.
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs.
“Solid-State Optical Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniqueICs, Jul. 15, 2004, 11 pgs.
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs.
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs.
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs.
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs.
“USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, Press Release, SBG Labs DigiLens, Apr. 2014, 2 pgs.
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb, Apr. 8, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs.
“Webster's Third New International Dictionary 433”, (1986), 3 pages.
“X-Cubes—Revisited for LCOS”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs.
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs.
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc. of SPIE, 2009, vol. 7176 717606-1, 12 pgs.
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs.
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55, No. 2, pp. 1646-1654.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103.
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-Induced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp. 240-243.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664.
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108.
Beckel et al., “Electro-optic properties of thiol-ene polymer stabilized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631.
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs.
Bleha et al., “D-ILA Technology For High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi: 10.1117/12.497532, 11 pgs.
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707.
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs.
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11.
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, published online Sep. 30, 2013, vol. 52, pp. 1718-1738.
International Preliminary Report on Patentability for International Application No. PCT/US2018/012227, Report dated Jul. 30, 2019, dated Aug. 8, 2019, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/048960, Report dated Mar. 3, 2020, dated Mar. 12, 2020, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012227, Search completed Feb. 28, 2018, dated Mar. 14, 2018, 8 pgs.
Yang et al., “Robust and Accurate Surface Measurement Using Structured Light”, IEEE, Apr. 30, 2008, vol. 57, Issue 6, pp. 1275-1280.
Smith et al., “RM-PLUS—Overview”, Licrivue, Novembers, 2013, 16 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear ‘SmartEyeglass Developer Edition’”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs.
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149.
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97.
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs.
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat.1708, 8 pgs.
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, doi: 10.1117/12.679416, pp. 6289DH-1-6289DH-10.
Sun et al., “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes”, Chem. Mater., 1993, vol. 5, pp. 1533-1538.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1074-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA, 1996, SPIE, vol. 2689, pp. 158-169.
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391.
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs.
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, p. 18623-18629.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9.
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meeting, 2 pgs.
Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 10.1117/2.1200612.0475, 3 pgs.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Tzeng et al., “Axially symmetric polarization converters based on photo-aligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775.
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287.
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2000, vol. 10, No. 5, pp. 1143-1149.
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs.
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80.
Vecchi, “Studi ESR DI Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 2004-2006, 110 pgs.
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Letters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico II, Nov. 2005, 103 pgs.
Vuzix, “M3000 Smart Glasses, Advanced Waveguide Optics”, brochure, Jan. 1, 2017, 2 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429, pp. 763-769.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Weber et al., “Giant Birefringent Optics in Multilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456.
Wei An, “Industrial Applications of Speckle Techniques”, Doctoral Thesis, Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg.
Wight et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs.
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969.
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, p. 12874-12883.
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc, of SPIE, 2009, 10 pages, vol. 7327.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, pp. 021902-1-021902-3.
Ye, “Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs.
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, pp. 073115-1-073115-4.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Yoshida et al., “Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping”, Adv. Mater., 2010, vol. 22, pp. 622-626.
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerization of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063.
Zhang et al., “Switchable Liquid Crystalline Photopolymer Media for Holography”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507.
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73.
Zlębacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs.
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526.
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystals-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs.
Extended European Search Report for European Application No. 19736108.2, Search completed Sep. 15, 2021, dated Sep. 27, 2021, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/022482, dated Aug. 25, 2021, dated Sep. 23, 2021, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2020/031363, dated Nov. 2, 2021, dated Nov. 18, 2021, 7 Pgs.
Related Publications (1)
Number Date Country
20200026074 A1 Jan 2020 US
Provisional Applications (2)
Number Date Country
62499423 Jan 2017 US
62497781 Dec 2016 US