1. Field of the Invention
This invention relates generally to waveguide grating-based switches, and more particularly, to a method and apparatus for thermally activating the switch.
2. Description of the Related Art
Due to the extremely wide transmission bandwidth provided by optical fiber, all-optical fiber networks are increasingly being used as backbones for global communication systems. To fully exploit the fiber bandwidth in such networks, wavelength-division multiplexing (WDM) and wavelength-division demultiplexing (WDD) technologies are employed so that an individual optical fiber can transmit several independent optical streams simultaneously, with the streams being distinguished by their center wavelengths. Since these optical streams are coupled and decoupled based on wavelength, wavelength selective devices are essential components in WDM communication networks.
In the past, wavelength selective devices performed the adding, dropping and cross-connecting of individual wavelengths by first converting the optical signal into the electrical domain. However, the development of all-optical WDM communication systems has necessitated the need for all-optical wavelength selective devices. It is desirable for such devices to exhibit the properties of low insertion loss, insensitivity to polarization, good spectral selectivity, and ease of manufacturing.
One technology for wavelength selection is a Bragg grating-based switch. As disclosed in our co-pending U.S. patent application Ser. No. 10/177,632, one type of Bragg grating-based switches are activated (and deactivated) using micro-electromechanical switch (MEMS) techniques. In other words, waveguides are physically displaced in order to effectuate coupling. However, the use of MEMS requires relatively complex manufacturing techniques.
The present invention can be better understood with reference to the following drawings. The components within the drawings are not necessarily to scale relative to each other, emphasis instead being placed upon clearly illustrating the principles of the present invention.
In the following description, numerous specific details are provided, such as the identification of various system components, to provide a thorough understanding of embodiments of the invention. One skilled in the art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In still other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the invention. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The remainder optical signal of the wavelengths λi, λ2, . . . , λi+1, λi+1, . . . , λN is not affected and continues to transmit over the waveguide 110. The Bragg gratings 125 have a specific pitch or periodicity for reflecting the optical signal of the selected wavelength λi onto the waveguide 120.
The heater 112 serves as the mechanism by which the Bragg wavelength can be selected for coupling into the waveguide 120. The heater 112 serves to shift the Bragg wavelength of the Bragg grating 125. The heater 112 when properly controlled can locally heat the coupling zone of the two waveguides 110 and 120 to change the modal indices of the first mode and the second mode in the direct coupler formed by the waveguides 110 and 120. It should be noted that while the heater 112 is shown adjacent to the Bragg grating 125, it is the entire coupling zone of the waveguides 110 and 120 that should be heated and in actual implementations, the heater 112 may substantially surround the waveguides 110 and 120 in the region of the Bragg grating 125. [Is this correct? Yes At first I thought that only the Bragg grating 125 needed to be heated and that changed the periodicity, but now I am thinking that it is the actual waveguide material that needs to be heated? Which is correct? The latter is correct.] Further, it should be noted that the present invention is implemented using a heater, but in an alternative embodiment, a cooling mechanism may be substituted. As will be seen in greater detail below, the operative action is the change in temperature relative to a nominal temperature. The change in temperature causes a shift in the Bragg wavelength. Thus, a cooling mechanism may also be used.
The following equation generally describes the relationship between the Bragg wavelength, modal indices, and grating period:
ΛBragg=(n1 +n2)*Λ
where n1 and n2 are the modal indices of the first mode and second mode of the direct coupler formed by the two waveguides 110 and 120, Λ is the grating period of the Bragg grating 125, and λBragg is the Bragg wavelength.
Further, it has been found that the general relationship between temperature change and modal index change is as follows:
Δn/ΔT≈1.2×10−5
where Δn is the modal index change and ΔT is the temperature change in degrees Celsius. Thus, it can be seen that by appropriately changing the temperature of the waveguides 110 and 120 in the coupling region, the Bragg wavelength can be controlled.
Returning to
However, when a temperature change induced by the heater 112 is performed, the Bragg wavelength λbg is shifted and no longer equals λi. Thus, wavelength λi is not selected for coupling. If the Bragg wavelength shift due to heating is large enough, none of the wavelengths of the input signal will be coupled into waveguide 120. This is referred to as the “OFF” state.
Furthermore, the “ON” and “OFF” states may be reversed in some embodiments. For example, when the heater 112 is off the Bragg grating may be designed to not couple. In this design, only when the heater 112 is on, will the Bragg grating select and couple the wavelength λi.
The Bragg gratings have a specific pitch for reflecting the optical signal of the selected wavelength λi onto the wavelength selective waveguide 220. The Bridge waveguide 220 further has a second Bragg grating as an off-ramp segment 225-2 coupled to second waveguide 230. The second Bragg grating has a same pitch as the first Bragg grating. The selected wavelength λi is guided through the off-ramp segment 225-2 to be reflected and coupled into the outbound waveguide 230. The waveguide 220 can be an optical fiber, waveguide or other optical transmission medium connected between the on-ramp segment 225-1 and the off-ramp segment 225-2.
Furthermore, in accordance with the present invention, a heater 227 is placed proximate to the on-ramp segment 225-1 and the off-ramp segment 225-2. The heater 227 is operative to heat coupling zones of the on-ramp segment 225-1 and off-ramp segment 225-2 (and associated portions of the input and output waveguides 210 and 230) such that the Bragg wavelength is shifted. This allows the selection of the particular propagating wavelength to be switched, if any. Thus, one or none of the wavelengths λ1, λ2, λ3, . . . , λn may be selectively switched.
The wavelength selective waveguide 220′ further has an off-ramp segment 225-2′ coupled to an outbound waveguide 230′ near a section 235 of the outbound waveguide 230. The section 235 on the outbound waveguide 230′ has a second Bragg grating having a same pitch as the first Bragg grating. The waveguide 220 can be an optical fiber, waveguide or other optical transmission medium connected between the on-ramp segment 225-1 and the off-ramp segment 225-2′.
Furthermore, in accordance with the present invention, a heater 227 is placed proximate to the on-ramp segment 225-1′ and the off-ramp segment 225-2′. The heater 227 is operative to heat coupling zones of the on-ramp segment 225-1′ and off-ramp segment 225-2′ (and associated portions of the input and output waveguides 210 and 230′ such that the Bragg wavelength is shifted. This allows the selection of the particular propagating wavelength to be switched, if any. Thus, one or none of the wavelengths λ1, λ2, λ3, . . . , λn may be selectively switched.
The wavelength selective waveguide 220″ further has an off-ramp segment 225-2″ coupled to an outbound waveguide 230″. The Bragg gratings 225-1 have a specific pitch for reflecting the optical signal of the selected wavelength λi into the wavelength selective waveguide 220″. The wavelength selective waveguide 220″ further has an off-ramp segment 225-2″ coupled to an outbound waveguide 230″ through a coupler 240. The waveguide 220 can be an optical fiber, waveguide or other optical transmission medium connected between the on-ramp segment 225-1 and the off-ramp segment 225-2″.
Furthermore, in accordance with the present invention, a heater 227 is placed proximate to the on-ramp segment 225-1. The heater 227 is operative to heat a coupling zone of the on-ramp segment 225-1′ (and associated portion of the input waveguide 210) such that the Bragg wavelength is shifted. This allows the selection of the particular propagating wavelength to be switched, if any. Thus, one or none of the wavelengths λ1, λ2, λ3, . . . , λn may be selectively switched.
The remainder optical signal of the wavelengths λ1, λ2, . . . , λi−1, λi+1, . . . , λN is not affected and continues to propagate over the waveguide 310. The Bragg gratings 325 have a specific pitch for reflecting the optical signal of the selected wavelength λi into the wavelength selective waveguide 320. The wavelength selective waveguide 320 further has a second Bragg grating as an off-ramp segment 325-2 coupled to an outbound waveguide 330. The waveguide 320 can be an optical fiber, waveguide or other optical transmission medium connected between the on-ramp segment and the off-ramp segment 325-2.
Furthermore, in accordance with the present invention, a heater 227 is placed proximate to the on-ramp segment 325-1. The heater 227 is operative to heat a coupling zone of the on-ramp segment 325-1 (and associated portion of the input waveguide 310) such that the Bragg wavelength is shifted. A heater 227 is also placed proximate to the off-ramp segment 325-2. The heater 227 is operative to heat a coupling zone of the off-ramp segment 325-2 (and associated portion of the intersecting waveguide 330) such that the Bragg wavelength is shifted. This allows the selection of the particular propagating wavelength to be switched, if any. Thus, one or none of the wavelengths λ1, λ2, λ3, . . . , λn may be selectively switched.
The heater 227 may be any device that can generate thermal energy. As noted above, the present invention may also be adapted to replace the heaters 227 with cooling elements. The operative aspect is that some element capable of changing the temperature of the coupling zone is present. Thus, a more generic element that can replace the heater 227 may be any device or method for changing the temperature of the coupling zone, i.e. a “temperature changing element”. With current technology, a heater may be more easily implemented than a cooling element. For example, a simple resistive style heater may be used whereby heat is generated by running current through a resistive (or other impedance) element.
Note that the Figures depict an input waveguide that carries a multitude of wavelengths: λ1, λ2, λ3, . . . , λn. In order to turn “off” coupling of the nominal wavelength λi, the heater 227 need only change the temperature by an amount necessary to implement a sufficient Bragg wavelength shift. However, because the input waveguide carries a multitude of wavelengths, the Bragg wavelength shift may simply cause the Bragg grating to couple a different wavelength, such as λi+1. Therefore, in a situation where multiple wavelengths are being carried, the temperature change, and thus the Bragg wavelength shift, should be sufficient to be outside of all of the multiple wavelengths. Of course, if only a single wavelength is being carried, the temperature shift may be much less and still turn “off” the coupling.
The present invention may take advantage of the thermally induced Bragg wavelength shift to “tune” a Bragg grating to couple a desired wavelength. Thus, by applying the appropriate amount of thermal energy, the wavelength to be coupled by the Bragg grating may be selected, much like a radio tuner.
Moreover, the embodiments shown in
Although the present invention has been described in terms of the presently preferred embodiment, it is to be understood that such disclosure is not to be interpreted as limiting. For example, although the present invention has been described in terms of a waveguide, as that term is used herein, waveguide is intended to include all types of optical fiber and optical propagation medium. Various alternations and modifications will no doubt become apparent to those skilled in the art after reading the above disclosure. Accordingly, it is intended that the appended claims be interpreted as covering all alternations and modifications as fall within the true spirit and scope of the invention.
This is a continuation-in-part of, and claims priority under 35 U.S.C. §120 to, U.S. patent application Ser. No. 10/177,632 filed Jun. 19, 2002, now U.S. Pat. No. 6,842,563 which claims priority to U.S. Provisional Patent Application Ser. No. 60/348,927 filed Oct. 22, 2001, now abandoned, each of which is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3918794 | Milton | Nov 1975 | A |
4013000 | Kogelnik | Mar 1977 | A |
4240693 | Johnson et al. | Dec 1980 | A |
5422611 | Kashima et al. | Jun 1995 | A |
5444802 | Shibata et al. | Aug 1995 | A |
5652817 | Brinkman et al. | Jul 1997 | A |
5664032 | Bischel et al. | Sep 1997 | A |
5703710 | Brinkman et al. | Dec 1997 | A |
5778119 | Farries | Jul 1998 | A |
5802222 | Rasch et al. | Sep 1998 | A |
5805751 | Kewitsch et al. | Sep 1998 | A |
5862276 | Karras | Jan 1999 | A |
5875272 | Kewitsch et al. | Feb 1999 | A |
5915051 | Damask et al. | Jun 1999 | A |
5943454 | Aksyuk et al. | Aug 1999 | A |
6057520 | Goodwin-Johansson | May 2000 | A |
6061484 | Jones et al. | May 2000 | A |
6212314 | Ford | Apr 2001 | B1 |
6289699 | Kewitsch et al. | Sep 2001 | B1 |
6298180 | Ho | Oct 2001 | B1 |
6356679 | Kapany | Mar 2002 | B1 |
6360038 | Grubsky | Mar 2002 | B1 |
6389189 | Edwards et al. | May 2002 | B1 |
6404943 | Wang | Jun 2002 | B1 |
6438277 | Eggleton et al. | Aug 2002 | B1 |
6501874 | Frolov et al. | Dec 2002 | B1 |
6522795 | Jordan et al. | Feb 2003 | B1 |
6567573 | Domash et al. | May 2003 | B1 |
6567574 | Ma et al. | May 2003 | B1 |
6611366 | Islam et al. | Aug 2003 | B2 |
6658176 | Amantea | Dec 2003 | B2 |
6842563 | Zhang et al. | Jan 2005 | B2 |
20010046352 | Ohta et al. | Nov 2001 | A1 |
20020024717 | Nakamura | Feb 2002 | A1 |
20020063944 | Kim et al. | May 2002 | A1 |
20020150330 | Kopp et al. | Oct 2002 | A1 |
20030194179 | Rumpf et al. | Oct 2003 | A1 |
20030219197 | Kawamoto | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
2151842 | Jun 1990 | JP |
2001324734 | Nov 2001 | JP |
2003195200 | Jul 2003 | JP |
WO 0223244 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040146240 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60348927 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10177632 | Jun 2002 | US |
Child | 10758661 | US |