The present disclosure relates to waveguides, e.g., in a dielectric wall accelerator, and to methods for producing them.
Novel types of waveguides, particularly in a dielectric wall accelerator, are typically no longer of planar design but instead have complex shaped surfaces formed out of a plane. Novel production methods and materials may be required for providing in particular a dielectric for waveguides of such kind. In particular, electronic modules, for example half-bridge circuits or multichip circuits, may be integrated in the waveguide structures, which are hollow conductors.
U.S. Pat. No. 5,821,705 discloses the structure of a conventional dielectric wall accelerator having a high-voltage, fast rise-time switch that has a pair of electrodes laminated between which are alternating layers of isolated conductors and insulators.
According to an embodiment, a method for producing a waveguide that has a dielectric or a vacuum between a first and second conductor structure and also has a multiplicity of electronic components on which there are a plurality of top and bottom contact surfaces requiring to be contacted is provided. The method may include securing the electronic components on a substrate, contacting bottom contact surfaces at electric conductors beneath them on the substrate, and producing electric through-contacts extending from the conductors and through the substrate; laminating a foil made of an electrically insulating plastic material onto surfaces of the substrate and of the components arranged thereupon under vacuum so that the foil will tightly cover the surfaces including each electronic component and each top contact surface and will adhere to said surfaces including each electronic component; exposing each top contact surface requiring to be contacted on the surfaces of the electronic components by opening respective windows in the foil; area contacting of each exposed top contact surface by means in each case of a first layer made of an electrically conducting material; securing the substrate having the electronic components on the first conductor structure and electrically contacting top contact surfaces by means of the first layer made of an electrically conducting material and the through-contacts and bottom contact surfaces by means of the through-contacts to the first conductor structure; applying a second layer made of an electrically insulating plastic material to surfaces of the foil, of the first layer made of an electrically conducting material, and of the first conductor structure, with openings being produced in the second layer; and securing the second conductor structure on the second layer, with the second layer embodying the dielectric completely between the first and second conductor structure or, if a vacuum has been produced between the first and second conductor structure, the second layer having been embodied only in the region of the electronic components between the first and second conductor structure and with the top and bottom contact surfaces being electrically contacted to the second conductor structure by means of further through-contacts through the openings in the second layer.
According to a further embodiment, the waveguide forms a constituent part of an accelerator cell of a dielectric wall accelerator and the conductor structures have areas bent out of a plane, with the dielectric or the vacuum having in each case been produced between a top and a central conductor structure and between that and a bottom conductor structure. According to a further embodiment, the bottom and top conductor structure are connected to ground. According to a further embodiment, a polymer film is used as the second layer made of an electrically insulating plastic material. According to a further embodiment, the second layer made of an electrically insulating plastic material is in regions next to the electronic components produced from a plurality of layers made of an electrically insulating plastic material. According to a further embodiment, the second layer made of an electrically insulating plastic material is produced as being bent out of a plane by means of vacuum laminating.
According to a further embodiment, at least one electric external contact link is produced through the openings through the second layer made of an electrically insulating plastic material and/or through a conductor structure, proceeding from the electronic components. According to a further embodiment, an external contact link is a contacting means to a conductor structure. According to a further embodiment, an external contact link is produced by means of a spring contact. According to a further embodiment, an external contact link is produced by means of laser-welded contacts.
According to a further embodiment, the substrate having the electronic components has been secured on the first conductor structure by means of an adhesive foil. According to a further embodiment, the electronic components are a power module. According to a further embodiment, a material of a dielectric and/or of the second layer is mechanically elastic. According to a further embodiment, a material of the conductor structures is steel having a metal coating of copper.
According to an embodiment, a device having a waveguide that has a dielectric or vacuum between a first and second conductor structure and also has a multiplicity of electronic components on which there are a plurality of top and bottom contact surfaces requiring to be contacted is provided, with the electronic components having been secured on a substrate and bottom contact surfaces at electric conductors beneath them having been electrically contacted on the, and electric through-contacts having been produced through the substrate by the conductors; a foil made of an electrically insulating plastic material having been laminated onto surfaces of the substrate and of the components arranged thereupon under a vacuum so that the foil will tightly cover the surfaces including each electronic component and each top contact surface and will adhere to said surfaces including each electronic component; each top contact surface requiring to be contacted on the surfaces of the electronic components having been exposed by opening respective windows in the foil; each exposed top contact surface having been area contacted by means in each case of a first layer of electrically conducting material; the substrate having the electronic components having been secured on the first conductor structure and top contact surfaces having been electrically contacted by means of the first layer made of an electrically conducting material and the through-contacts and bottom contact surfaces having been electrically contacted to the first conductor structure by means of the through-contacts; a second layer made of an electrically insulating plastic material having been applied to surfaces of the foil, of the first layer of electrically conducting material, and of the first conductor structure; the second conductor structure having been secured on the second layer, with the second layer embodying the dielectric completely between the first and second conductor structure or, if a vacuum has been produced between the first and second conductor structure, the second layer having been embodied only in the region of the electronic components between the first and second conductor structure and with the second layer having openings through which top and bottom contact surfaces have been electrically contacted to the second conductor structure by means of further through-contacts.
According to a further embodiment, the waveguide forms a constituent part of an accelerator cell of a dielectric wall accelerator and the conductor structures have areas bent out of a plane, with the dielectric or the vacuum having in each case been produced between a top and a central conductor structure and between that and a bottom conductor structure. According to a further embodiment, the bottom and top conductor structure are connected to ground. According to a further embodiment, the second layer made of an electrically insulating plastic material is a polymer film. According to a further embodiment, the second layer made of an electrically insulating plastic material is in regions next to the electronic components produced from a plurality of layers made of an electrically insulating plastic material. According to a further embodiment, the second layer made of an electrically insulating plastic material was produced as being bent out of a plane by means of vacuum laminating.
According to a further embodiment, at least one electric external contact link was produced through the openings through the second layer made of an electrically insulating plastic material and/or through a conductor structure, proceeding from the electronic components. According to a further embodiment, an external contact link is a contacting means to a conductor structure. According to a further embodiment, an external contact link is produced by means of a spring contact. According to a further embodiment, an external contact link is produced by means of laser-welded contacts. According to a further embodiment, the substrate having the electronic components has been secured on the first conductor structure by means of an adhesive foil. According to a further embodiment, the electronic components are a power module. According to a further embodiment, a material of a dielectric and/or of the second layer is mechanically elastic.
According to a further embodiment, a material of the conductor structures is steel having a metal coating of copper.
Example embodiments are described in more detail below with reference to the figures, in which:
Certain embodiments employ dielectric layers to improve or stabilize a dielectric strength and preclude insulation-reducing effects in waveguide structures, particularly in complex metallic waveguide structures formed out of a plane. Electric insulation up to 100 kV/mm with small dielectric constants may be provided. A multiplicity of electronic components may be integrated in the waveguide structures. In particular a multiplicity of electronic components for driving an accelerator cell of a dielectric wall accelerator may be integrated in the accelerator cell. In some embodiments, a compact, economical assembling and connecting system for electronic components is provided. Some embodiments may be able to minimize parasitic effects and provide for a multiplicity of electronic components to be effectively linked to the waveguide structures on a high-frequency basis.
According to some embodiments, a method is provided for producing a waveguide that has a dielectric or vacuum between a first and second conductor structure and also has a multiplicity of electronic components on which there are a plurality of top and bottom contact surfaces requiring to be contacted. The method may include the following steps: securing the electronic components on a substrate, contacting bottom contact surfaces at electric conductors beneath them on the substrate, and producing electric through-contacts extending from the conductors and through the substrate; laminating a foil made of an electrically insulating plastic material onto surfaces of the substrate and of the components arranged thereupon under a vacuum so that the foil will tightly cover the surfaces including each electronic component and each top contact surface and will adhere to said surfaces including each electronic component; exposing each top contact surface requiring to be contacted on the electronic components' surfaces by opening respective windows in the foil; area contacting of each exposed top contact surface by means in each case of a first layer made of an electrically conducting material; securing the substrate having the electronic components on the first conductor structure and electrically contacting top contact surfaces by means of the first layer made of an electrically conducting material and the through-contacts and bottom contact surfaces by means of the through-contacts to the first conductor structure; applying a second layer made of an electrically insulating plastic material to surfaces of the foil, of the first layer made of an electrically conducting material, and of the first conductor structure, with openings being produced in the second layer; securing the second conductor structure on the second layer, with the second layer embodying the dielectric completely between the first and second conductor structure or, if a vacuum has been produced between the first and second conductor structure, the second layer having been embodied only in the region of the electronic components between the first and second conductor structure and with the top and bottom contact surfaces being electrically contacted to the second conductor structure by means of further through-contacts through the openings in the second layer.
According to some embodiments, a device may have a waveguide that has a dielectric or vacuum between a first and second conductor structure and also has a multiplicity of electronic components on which there are a plurality of top and bottom contact surfaces requiring to be contacted, with the electronic components having been secured on a substrate and bottom contact surfaces at electric conductors beneath them having been electrically contacted on the substrate, and electric through-contacts having been produced through the substrate by the conductors; with a foil made of an electrically insulating plastic material having been laminated onto surfaces of the substrate and of the components located thereupon under a vacuum so that the foil will tightly cover the surfaces including each electronic component and each top contact surface and will adhere to said surfaces including each electronic component; with each top contact surface requiring to be contacted on the electronic components' surfaces having been exposed by opening respective windows in the foil; with each exposed top contact surface having been area contacted by means in each case of a first layer made of an electrically conducting material; with the substrate having the electronic components having been secured on the first conductor structure and top contact surfaces having been electrically contacted by means of the first layer made of an electrically conducting material and the through-contacts and bottom contact surfaces having been electrically contacted by means of the through-contacts to the first conductor structure; with a second layer made of an electrically insulating plastic material having been applied to surfaces of the foil, of the first layer made of an electrically conducting material, and of the first conductor structure; and with the second conductor structure having been secured on the second layer, with the second layer embodying the dielectric completely between the first and second conductor structure or, if a vacuum has been produced between the first and second conductor structure, the second layer having been embodied only in the region of the electronic components between the first and second conductor structure and with the second layer having openings through which top and bottom contact surfaces have been electrically contacted to the second conductor structure by means of further through-contacts.
In some embodiments, a method for producing a plurality of modules includes the following main steps: vacuum laminating, molding, use of inkjet processes for linking the dielectric-layer to the waveguide structures or, as the case may be, coating it with them, and integrating the electronic components, which here can be power modules contacted in planar fashion. What will be provided is a highly insulating covering for initially open end faces of waveguide structures. A compact, flat, lightweight construction may furthermore be made possible, specifically having short, precise line lengths and line widths. What may take place is system integrating of modules contacted in planar fashion in a waveguide. In some embodiments, minimum path lengths to the waveguide may be provided through integrating electronic components in the waveguides. That may result in minimal parasitic effects and effective high-frequency linking.
According to an example advantageous embodiment, the waveguide can form a constituent part of an accelerator cell of a dielectric wall accelerator and the conductor structures can have areas formed out of a plane. The dielectric or vacuum can in each case be arranged between a top and central conductor structure and between that and a bottom conductor structure. A waveguide that has been produced according to a method as claimed in the principal claim can hence be integrated in an accelerator cell of a dielectric wall accelerator. A stack of waveguides can hence be produced. There can be a multi-layer structure, with it being possible to use different dielectric or vacuum layers.
According to another example advantageous embodiment, the bottom and top conductor structure can be connected to ground.
According to another example advantageous embodiment, the second layer made of an electrically insulating plastic material can be a polymer film. The dielectric will be particularly advantageous if provided as a polymer film that is suitable for high-frequency operation, super-insulating, and suitable for high-temperature applications.
According to another example advantageous embodiment, the second layer made of an electrically insulating plastic material can in the region next to the electronic components have been produced from a plurality of layers made of an electrically insulating basic material. A suitable thickness can be produced by structuring the second layer in layers. That can be done by employing multiple layers. Insulation-reducing effects due to, for instance, missing parts of the dielectric can be precluded thereby. A multi-layer dielectric layer structure will produce redundancy in dielectric-strength terms.
According to another example advantageous embodiment, the second layer made of an electrically insulating plastic material can have been produced as being bent out of a plane by means of vacuum laminating. A vacuum-laminating process in an autoclave with suitable layers of dielectrics will make geometrically complex three-dimensional shaping of waveguide structures possible. Air inclusions will be particularly advantageously prevented for improving and stabilizing the dielectric strength. A vacuum-laminating method is suitable for complex shaping and hence for larger molded parts.
According to another example advantageous embodiment, at least one electric external contact link can have been produced through the openings through the second layer made of an electrically insulating material and/or through a conductor structure, proceeding from the electronic components. Electronic components can in that way have connection elements to the waveguide structures. The waveguide structures can be connected to the electronic components with very low inductance by a direct external link.
According to another example advantageous embodiment, an external contact link can be a contacting means to a conductor structure.
According to another example advantageous embodiment, an external contact link can have been produced by means of a spring contact.
According to another example advantageous embodiment, an external contact link can have been produced by means of laser-welded contacts. The waveguide structures can have been connected to the electronic components with very low inductance by a direct external link, in particular by laser-welded contacts. That can be done by means of, for example, a copper lead frame. External contacts can have been provided directly on the waveguide by means of, for example, laser-welded copper lead frames.
According to another example advantageous embodiment, the substrate having the electronic components can have been secured by its side facing away from the components to the first conductor structure by means of an adhesive foil.
According to another example advantageous embodiment, the electronic components can be a power module. Electronic modules, for example half-bridge circuits or multi-chip circuits, can be integrated in the waveguide in that way.
According to another example advantageous embodiment, a material of the dielectric or of the second layer made of an electrically insulating material can be mechanically elastic. A flexible material will be able to accommodate mechanical stresses which may have been caused by, for instance, thermal expansion of the waveguide or inductive or electrostatic deformation.
According to another example advantageous embodiment, the waveguide can have been given a functional metal coating with the aim specifically of improving electric properties. That can also be combined with a multi-layer structure. A material of the conductor structures can particularly advantageously be steel having a metal coating of copper.
Another exemplary embodiment is shown according to
Number | Date | Country | Kind |
---|---|---|---|
10 2009 036 418.8 | Aug 2009 | DE | national |
This application is a U.S. National Stage Application of International Application No. PCT/EP2010/060226 filed Jul. 15, 2010, which designates the United States of America, and claims priority to DE Patent Application No. 10 2009 036 418.8 filed Aug. 6, 2009. The contents of which are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/60226 | 7/15/2010 | WO | 00 | 2/6/2012 |