The invention relates to optical waveguides in general and particularly to a taper optical waveguide.
Conventional integrated optics customarily uses tapers for various purposes. Examples are an adiabatic mode size convertor, an edge coupler taper, and a bi-layer mode convertor taper. Such tapers are conventionally fabricated as linear tapers. Another conventional approach is to use single mode waveguides for waveguide bending, to avoid multimode mixing.
There is a need for improved optical waveguide taper components.
According to one aspect, the invention features an optical waveguide component, comprising: a bent taper having an input port and an output port, the bent taper having a length, the bent taper having at least one bent waveguide segment, the bent taper having a varying waveguide width at at least two different locations along the length.
In one embodiment, the bent taper has a shape similar to the letter “S”, a center radius R0, and an offset dy measured as a lateral distance between the input and output ports, the bent taper configured to be represented as a plurality of segments of angular measure dθ.
In one embodiment, each of the plurality of segments of angular measure dθhas the same angular measure.
In another embodiment, at least two of the plurality of segments of angular measure d74 have different angular measure.
In a further embodiment, the bent taper has a shape similar to the letter “L”.
In yet another embodiment, the bent taper is configured as a mode converter.
In still another embodiment, the input port of the bent taper is in optical communication with an output port of a bi-layer taper, the bi-layer taper having an input port, a length, and a plurality of widths wj at different locations j along the length, where j is an ordinal number.
In a further embodiment, the bent taper is configured as a polarization rotator.
In an additional embodiment, the polarization rotator includes a TM0-TE1 mode conversion taper in combination with the bent taper, the bent taper configured to provide TE1-TE0 mode conversion.
In one more embodiment, the polarization rotator includes an input configured to receive a TM0 mode, a mode conversion element configured to convert the TM0 mode to an intermediate mode, and the bent taper is configured to convert the intermediate mode to a TE0 mode.
In yet a further embodiment, the optical waveguide component is configured to operate at a wavelength within the range of a selected one of an O-Band, an E-band, a C-band, an L-Band, an S-Band and a U-band.
According to another aspect, the invention relates to a method of making an optical waveguide component, comprising the step of: providing a bent taper having an input port and an output port, the bent taper having a length, the bent taper having at least one bent waveguide segment, the bent taper having a varying waveguide width at at least two different locations along the length.
In one embodiment, the bent taper has a shape similar to the letter “S”, a center radius R0, and an offset dy measured as a lateral distance between the input and output ports, the bent taper configured to be represented as a plurality of segments of angular measure dθ.
In a further embodiment, the bent taper has a shape similar to the letter “L”.
According to another aspect, the invention relates to a method of using an optical waveguide component, comprising the steps of: providing a bent taper having an input port and an output port, the bent taper having a length, the bent taper having at least one bent waveguide segment, the bent taper having a varying waveguide width at at least two different locations along the length; applying an optical signal to the input port of the bent optical taper; sensing a response optical signal at the output port of the bent optical taper; and performing at least one of recording the response optical signal, transmitting the response optical signal to a data handling system, or to displaying the response optical signal to a user.
In one embodiment, the bent taper has a shape similar to the letter “S”, a center radius R0, and an offset dy measured as a lateral distance between the input and output ports, the bent taper configured to be represented as a plurality of segments of angular measure dθ.
In a further embodiment, the bent taper has a shape similar to the letter “L”.
In one embodiment, the response optical signal is a mode converted optical signal of the input optical signal.
In another embodiment, the optical waveguide component is configured to operate at a wavelength within the range of a selected one of an O-Band, an E-band, a C-band, an L-Band, an S-Band and a U-band.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
A list of acronyms and their usual meanings in the present document (unless otherwise explicitly stated to denote a different thing) are presented below.
We describe a novel taper structure using a multimode bent taper.
The optical behavior of a multimode bend is defined by its geometry. By changing the bend width along with its angle, a bent taper can be formed.
In some embodiments, a bent taper is one that has one or more bent waveguide segments and that has a varying waveguide width at at least two different locations along a length of the waveguide. A bent taper can have a shape similar to the letter “S”, the letter “L”, or some other bent shape.
One can achieve more functions than a single mode bend by utilizing the multimode region if one can control the behavior of a multimode bend. One application of a bent taper constructed and operated according to the principles of the invention is use as a mode convertor that can be used in optical waveguides, which is an important category of structures in integrated optics to realize polarization diversified photonic integrated circuit (PIC). Another application of a bent taper constructed and operated according to the principles of the invention is use as a polarization rotator that can be used in optical waveguides. The bent tapers constructed and operated according to the principles of the invention can be used in applications such as mode division multiplexing (MDM), wavelength division multiplexing (WDM), polarization division multiplexing (PDM) or in combinations of multiplexing methods.
A highly efficient TE0-TE1 mode convertor is realized in one embodiment with a bent taper. In this design, we decompose the S-bend into 8 segments of equal angular measure, dθ, and perform interpolation between each segment to make the transitions from one segment to the next smooth. In other embodiments, the angular measure may differ for different ones of the plurality of segments. The waveguide width of an S-bend is taken relative to the center radius R0. The center radius R0 divides the S-bend into the “up” side and the “down” side. In the embodiment illustrated, we choose asymmetric widths to increase the optimization freedom. Therefore, we have two sets of independent width parameters: {U1, U2, U3, . . . , U9} on the “up” side and {D1, D2, D3, . . . , D9} on the “down” side, as shown in in
The TE0 mode is launched at the narrow end, or input port, e.g., the left side in
The TE0-TE1 convertor can be combined with a TM0-TE1 convertor to realize polarization rotation in a SOI platform. A TM0-TE1 convertor can be realized by using a linear bi-layer taper, as been published. See D. Dai and J. E. Bowers, Opt. Express 19, 10940 (2011); and W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, Opt. Express 22, 3777 (2014). However, the mode conversion of those tapers is not efficient. In order to achieve high conversion efficiency (>95%), the length of the linear adiabatic taper is usually around a hundred micrometers or even longer.
Finally, we can combine these two parts as a polarization rotator. The field transition is shown in
As clearly seen, when the bent taper polarization rotator receives an input signal with TM0 mode at left, the TM0 mode first transfers to TE1 mode at the bi-layer part and is then converted to TE0 mode at the narrow end of the bent taper. However, when the bent taper polarization rotator receives an input signal with TE0 mode, TE0 mode remains all the way across the bi-layer taper and gets scattered at the bent taper, as shown in the right half of
As clearly shown in
It is believed that apparatus constructed using principles of the invention and methods that operate according to principles of the invention can be used in the wavelength ranges described in Table I.
It is believed that in various embodiments, mode converters and polarization rotators can be fabricated that are able to operate at a wavelength within the range of a selected one of an O-Band, an E-band, a C-band, an L-Band, an S-Band and a U-band.
It is believed that apparatus constructed using principles of the invention and methods that operate according to principles of the invention can be fabricated using materials systems other than silicon or silicon on insulator. Examples of materials systems that can be used include materials such as compound semiconductors fabricated from elements in Groups III and V of the Periodic Table (e.g., compound semiconductors such as GaAs, AlAs, GaN, GaP, InP, and alloys and doped compositions thereof).
Methods of designing and fabricating devices having elements similar to those described herein are described in one or more of U.S. Pat. Nos. 7,200,308, 7,339,724, 7,424,192, 7,480,434, 7,643,714, 7,760,970, 7,894,696, 8,031,985, 8,067,724, 8,098,965, 8,203,115, 8,237,102, 8,258,476, 8,270,778, 8,280,211, 8,311,374, 8,340,486, 8,380,016, 8,390,922, 8,798,406, and 8,818,141, each of which documents is hereby incorporated by reference herein in its entirety.
As used herein, the term “optical communication channel” is intended to denote a single optical channel, such as light that can carry information using a specific carrier wavelength in a wavelength division multiplexed (WDM) system.
As used herein, the term “optical carrier” is intended to denote a medium or a structure through which any number of optical signals including WDM signals can propagate, which by way of example can include gases such as air, a void such as a vacuum or extraterrestrial space, and structures such as optical fibers and optical waveguides.
Although the theoretical description given herein is thought to be correct, the operation of the devices described and claimed herein does not depend upon the accuracy or validity of the theoretical description. That is, later theoretical developments that may explain the observed results on a basis different from the theory presented herein will not detract from the inventions described herein.
Any patent, patent application, patent application publication, journal article, book, published paper, or other publicly available material identified in the specification is hereby incorporated by reference herein in its entirety. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material explicitly set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the present disclosure material. In the event of a conflict, the conflict is to be resolved in favor of the present disclosure as the preferred disclosure.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by the claims.
This application is a continuation of U.S. patent application Ser. No. 16/260,296, filed Jan. 29, 2019, now allowed, which is a continuation of U.S. patent application Ser. No. 15/812,195, filed Nov. 14, 2017, now U.S. Pat. No. 10,228,514, which is a continuation of U.S. patent application Ser. No. 15/429,677, filed Feb. 10, 2017, now U.S. Pat. No. 9,841,561, which is a continuation of U.S. patent application Ser. No. 14/754,105, filed Jun. 29, 2015, now U.S. Pat. No. 9,606,293, all of which are hereby incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 16260296 | Jan 2019 | US |
Child | 16750392 | US | |
Parent | 15812195 | Nov 2017 | US |
Child | 16260296 | US | |
Parent | 15429677 | Feb 2017 | US |
Child | 15812195 | US | |
Parent | 14754105 | Jun 2015 | US |
Child | 15429677 | US |