This is the first application filed for the present invention.
The present invention relates to the field of power combiners/splitters for microwave waveguide circuits.
A waveguide feed and radiator element combination may be used in a radiating mode to enable an antenna to receive energy from a single waveguide and convey the energy to a large area. The antenna may also be used in reverse, i.e. in a receive mode, to collect energy from the large area and convey the collected energy to the single input/output waveguide. The feed may be created using a series of splits that fan-out a signal to the respective radiator elements of the antenna. For this purpose, a power splitter may be used to split input signals received thereat and route the split signal components to various parts of the waveguide circuit. In particular, series of cascaded power splitters, e.g. 1×2 splitters, may be used. When used in reverse, power splitters may function as combiners for combining a plurality of input signals into a single output signal component.
Conventional waveguide power splitters or combiners may use input or output ports, which as positioned at ninety degree bends to a main axis of an apparatus. However, such power splitters require extensive tuning at each port to minimize loss, resulting in increased manufacturing costs. In addition, although it is well known that narrowband power splitters, e.g. achieving 5-10% bandwidth, may be realized using relatively simple means, it becomes difficult to achieve a broadband response, e.g. 25-50% bandwidth, without additional complexity.
There is therefore a need for an improved waveguide power combiner/splitter.
In accordance with a first broad aspect, there is provided a power splitter comprising an input waveguide for receiving an input signal thereat, at least a first waveguide matching section coupled to the input waveguide and a second waveguide matching section coupled to the first waveguide matching section, at least one of a first length of the first waveguide matching section, a first width of the first waveguide matching section, a second length of the second waveguide matching section, and a second width of the second waveguide matching section selected for providing impedance matching over at least one frequency band of interest, and a plurality of output waveguides each coupled to the second waveguide matching section, the input signal adapted to propagate from the input waveguide towards the second waveguide matching section and to be separated thereat into a plurality of output signals for output by corresponding ones of the plurality of output waveguides.
In accordance with a second broad aspect, there is provided a multi-stage power splitter having a plurality of single-stage power splitters arranged in a tree hierarchy, each one of the plurality of single-stage power splitters comprising an input waveguide for receiving an input signal thereat, at least a first waveguide matching section coupled to the input waveguide and a second waveguide matching section coupled to the first waveguide matching section, at least one of a first length of the first waveguide matching section, a first width of the first waveguide matching section, a second length of the second waveguide matching section, and a second width of the second waveguide matching section selected for providing impedance matching over at least one frequency band of interest, and a plurality of output waveguides each coupled to the second waveguide matching section, the input signal adapted to propagate from the input waveguide towards the second waveguide matching section and to be separated thereat into a plurality of output signals for output by corresponding ones of the plurality of output waveguides.
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
a is a schematic diagram of a 1×4 corporate feed structure comprising a plurality of the 1×2 waveguide combiner/splitter of
b is a detailed schematic diagram of the 1×4 corporate feed structure of
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
Referring now to
The waveguide combiner/splitter 100 may be used in a microwave waveguide circuit (not shown) to combine or separate feeds received at the waveguide combiner/splitter 100 for subsequent routing to remaining parts of the circuit. For example, the waveguide combiner/splitter 100 may be used to combine signals from a plurality of lower power devices (not shown) to form a high power signal for transmission through a single antenna (not shown). Alternatively, the waveguide combiner/splitter 100 may be used to divide a signal from a single input into a plurality of signals for multiple corresponding radiator elements (not shown).
In one embodiment and as will be discussed further below, the waveguide combiner/splitter 100 splits the power of a single input feed received from a source into a first feed and a second feed, which may in turn be supplied to a first and a second radiator element of the antenna array the waveguide combiner/splitter 100 is coupled to. For this purpose, the waveguide combiner/splitter 100 illustratively comprises an input waveguide 102, a first waveguide matching section 104, a second waveguide matching section 106, and two (2) output waveguides 1081 and 1082. While the waveguide combiner/splitter 100 is described herein as a 1×2 power divider, it should be understood that the waveguide combiner/splitter 100 may be used in reverse as a 2×1 power combiner for combining two (2) separate input feeds. For this purpose, the output waveguides 1081 and 1082 may be provided as two (2) inputs to the waveguide combiner/splitter 100 and the input waveguide 102 as a single output.
The input waveguide 102, the waveguide matching sections 104 and 106, and the output waveguides 1081 and 1082 are illustratively metal-walled and have a rectangular cross-section. It should be understood that the input waveguide 102, the waveguide matching sections 104 and 106, and the output waveguides 1081 and 1082 may each be provided with radiused rather than sharp corners (not shown). In this manner, manufacturing by injection moulding, machining, or the like may be eased. It should also be understood that other configurations may apply. The input waveguide 102, the waveguide matching sections 104 and 106, and the output waveguides 1081 and 1082 may each comprise a waveguide (not shown) configured to guide a signal therein and a conductive, e.g. metallic, boundary (not shown) surrounding the waveguide. The waveguide may have an air-filled or other appropriate structure, such as a dielectric-filled or partially-dielectric filled waveguide structure.
The input waveguide 102 may be coupled to the first waveguide matching section 104 through a first end 110 thereof. The first waveguide matching section 104 may further comprise a second end (not shown), which is opposite to the first end 110 and coupled to a first end 1121 of the second waveguide matching section 106. The second waveguide matching section 106 may further comprise a second end 1122, which is opposite to the first end 1121 and from which the output waveguides 1081 and 1082 extend outwardly. The output waveguides 1081 and 1082 are thus coupled to the second waveguide matching section 106. The input waveguide 102 and the waveguide matching sections 104 and 106 illustratively have a common center line A. The output waveguides 1081 and 1082 are illustratively symmetrical to each other with respect to the center line A and extend along a direction substantially parallel thereto. Still, it should be understood that the output waveguides 1081 and 1082 may be asymmetric with respect to the center line A. As will be discussed further below, an electromagnetic signal received at the input waveguide 102 may then travel through the first waveguide matching section 104, the second waveguide matching section 106, and towards each one of the output waveguides 1081 and 1082.
The input waveguide 102 and the output waveguides 1081 and 1082 illustratively have a same width W0, with the width W0 being smaller than the width W2 of the second waveguide matching section 106. In particular, in order to couple the output waveguides 1081 and 1082 to the second waveguide matching section 106, the sum of the widths W0 of the output waveguides 1081 and 1082 is illustratively smaller than the width W2. In addition, the width W0 is illustratively smaller than the width W1 of the first waveguide matching section 104, which may in turn be smaller than the width W2 of the second waveguide matching section 106. As a result, the width of the input waveguide 102 is physically diverged from the first dimension W0 to the second dimension W1. As known to those skilled in the art, this width spreading illustratively accomplishes impedance matching. Impedance matching may be further achieved by the gradual change in dimension between the width W1 of the first waveguide matching section 104 and the width W2 of the second waveguide matching section 106. In this manner, maximum power transfer between the input waveguide 102 and the first and second waveguide matching sections 104, 106 can be achieved. It should be understood that the widths W0, W1, and W2 may be chosen according to impedance matching requirements. As such, various configurations may apply. In addition, in some embodiments, more than two (2) waveguide matching sections 104, 106 may be used.
Still referring to
The waveguide combiner/splitter 100 illustratively uses a first and a second waveguide matching section 104 and 106, which are designed so as to achieve a broadband response with two well-spaced frequency bands. In particular, although the heights (not shown) thereof are illustratively provided so as to be uniform and predetermined, the lengths L1 and L2 and the widths W1 and W2 of the waveguide matching sections 104, 106 may be varied rather than being set to a fixed predetermined value, e.g. quarter wavelength. In this manner, impedance matching over a frequency band of interest may be achieved. As such, the impedances of the matching waveguide sections 104, 106, and thus the waveguide combiner/splitter 100, may be tailored to a variety of applications. In particular, a compact waveguide combiner/splitter 100 ensuring low loss splitting of the output signal can be obtained. The size and weight of the overall antenna end product may in turn be minimized.
For example, and as illustrated in
a shows an example of the incorporation of the 1×2 waveguide combiner/splitter (reference 100 in
Referring to
A first output line or junction 3121 may further couple the first output waveguide 310A1 of the first waveguide splitter 300A to an input waveguide 304B of the second waveguide splitter 300B. Similarly, a second output line 3122 may couple the second output waveguide 310A2 of the first waveguide splitter 300A to an input waveguide 3040 of the third waveguide splitter 3000. In this manner, the first signal component 3022 output by the first waveguide splitter 300A may be fed to the second waveguide splitter 300B while the second component 3023 output by the first waveguide splitter 300A may be fed to the third waveguide splitter 3000.
The input signal 3022 received at the input waveguide 304B may then propagate through the first waveguide matching section 306B and the second waveguide matching section 308B of the second waveguide splitter 300B. The signal may then be split into a first component 3024 and a second component 3025, which may respectively be output by a first output waveguide 310B1 and a second output waveguide 310B2. The components 3024 and 3025 may then be fed to corresponding radiator elements 301. Similarly, the input signal 3023 received at the input waveguide 3040 may propagate through the first waveguide matching section 3060 and the second waveguide matching section 3080 of the third waveguide splitter 3000. The signal may then be split into a first component 3026 and a second component 3027, which may be respectively output by a first output waveguide 310C1 and a second output waveguide 310C2. The components 3026 and 3027 may then be fed to corresponding radiator elements 301.
In this manner, the corporate feed structure 300 enables separation of the input signal 3021 into four (4) distinct components 3024, 3025, 3026, and 3027. It should be understood that, by increasing the number of waveguide combiner/splitters as in 300B and 300C and the number of junctions, as in 3121 and 3122, a multi-stage power splitter having an arbitrary number of output signals as in 3024, 3025, 3026, and 3027, and accordingly an arbitrary number of output ports, may be obtained.
Referring back to
The embodiments of the invention described above are intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.