The present disclosure relates to a super high frequency transmitting and receiving antenna, and more particularly, to a waveguide slot array antenna.
Super high frequency transmitting and receiving antennas include a parabolic-type antenna, a microstrip antenna, a waveguide slot array antenna, and so forth. Among these antennas, a microstrip array antenna or a waveguide slot array antenna is mainly used for miniaturization through thickness reduction.
The microstrip array antenna has a microstrip patch array structure using a dielectric substrate, in which a loss of a transmitted or received signal is large depending on a loss coefficient of a dielectric based on characteristics of the dielectric substrate, and an ohmic loss of a conductor occurs, and the loss increases especially for a higher frequency, such that the use of the microstrip array antenna is avoided in a super high frequency band.
The waveguide slot array antenna has a structure in which a hole in the form of a slot is formed in a general waveguide, without using the dielectric substrate. Generally, a waveguide is a hollow metal pipe and a sort of high pass filter in which a guided mode has a specific cutoff frequency and a dominant mode is determined by a size of the waveguide. The waveguide has lower attenuation than a parallel two-wire line, a coaxial cable, etc., and thus is mostly used for high power in a microwave transmission line. The waveguide may have various cross-sectional shapes, depending on which the waveguide is classified into a circular waveguide, a quadrangular waveguide, an oval waveguide, and so forth.
Techniques related to the waveguide slot array antenna are disclosed in, for example, a Korean Patent Application No. 2006-18147 (entitled “Stacked Slot Array Antenna”, filed by MOTONICS Co., Ltd. on Feb. 24, 2006 and invented by Taekwan Cho, et al.) or a Korean Patent Application No. 2007-7000182 (entitled “Planar Antenna Module, Triple Plate-Type Planar Array Antenna, and Triple Plate Line-Waveguide Converter”, filed by Hitachi Chemical Company, Ltd., on Jan. 4, 2007, and invented by Oota Masahiko et al.).
Once a signal is input from the feeding slot 112 of the feeding plate 11, the input signal is distributed, for example, in an equal ratio, through the distribution plate 12, and each distributed signal is delivered to each cavity formed in the main radiation plate 13 through the coupling slots 122. The signal delivered to the cavity of the main radiation plate 13 is distributed and radiated in an equal ratio through, for example, four excitation slots 132 formed for each cavity. The excitation slots 132 are arranged to have a preset interval and preset arrangement therebetween according to an operating frequency.
In the auxiliary radiation plate 14 installed on the main radiation plate 13, the polarization slots 142, each of which one-to-one corresponds to each excitation slot 132 of the main radiation plate 13, is formed, and the signal delivered to the polarization slot 142 is rotated at 45 degrees when compared to radiation from the excitation slot 132 and is radiated to the space. That is, a wave polarized at 45 degrees in a vertical/horizontal direction is generated by the auxiliary radiation plate 14. Referring to a slot shape of the excitation slot 132, the excitation slot 132 has, for example, an approximately rectangular shape, and is formed in an erect position or posture in the vertical/horizontal direction, and for a slot shape of the polarization slot 142, the polarization slot 142 has a rectangular shape similar to the approximately rectangular shape of the excitation slot 132, but when compared to the slot shape of the excitation slot 132, the rectangular shape of the polarization slot 142 is formed in a position or posture mechanically rotated at 45 degrees in the vertical/horizontal direction and thus may be globally similar to a diamond shape. Such a structure may be regarded as a structure that forms one radiation slot by a combination of the excitation slot 132 and the polarization slot 142.
As such, to operate the conventional waveguide slot array antenna for vertical/horizontal polarization, the auxiliary radiation plate 14 is used and the polarization slot 142 of the auxiliary radiation plate 14 may have a rectangular shape rotated at 45 degrees with respect to the excitation slot 132 to rotate a polarization plane of a signal radiated from the excitation slot 132 at 45 degrees. With this structure, a side lobe component is significantly suppressed by a total length of a vertical/horizontal plane.
However, as the rectangular polarization slot 142 formed in the auxiliary radiation plate 14 is rotated at 45 degrees in the vertical/horizontal direction to have a shape similar to the diamond shape, an arrangement interval between the polarization slots 142 on the vertical/horizontal plane may fail to satisfy a proper distance criterion required when a wavelength of an operating frequency is considered. That is, as indicated by a in
More specifically, in an array antenna, if a distance between arrays exceeds one wavelength, a specific radiation angle is produced at which signals radiated from respective radiation slots are in phase. A lobe produced in this case is called a grating lobe that is a sort of main lobe. The grating lobe is generated by a phase of an array element in the array antenna, and the phase is controlled by a distance between elements.
Due to the grating lobe, radiation pattern envelope (RPE) standards prescribed in corresponding countries may not be satisfied. Thus, a scheme for suppressing the grating lobe is required.
It may be possible to suppress the grating lobe by disposing multiple excitation slots on an identical antenna area where an arrangement interval between excitation slots is reduced, but in a conventional structure, the number of excitation slot arrays increases to a power of 2 depending on a distribution plate and a cavity structure that distributes a signal on a main radiation plate, showing some limitations in the design of arrangement of excitation slots.
The present disclosure is proposed to solve the foregoing problems, and provides a waveguide slot array antenna that generates a polarized wave while effectively suppressing a grating lobe.
The present disclosure also provides a waveguide slot array antenna that freely implements an overall antenna structure by improving the degree of freedom as to the design of a slot array.
To achieve the foregoing objects, according to an aspect of the present disclosure, there is provided a waveguide slot array antenna having an excitation slot array that radiates a signal corresponding to an operating frequency in a main radiation plate, the waveguide slot array antenna including a first auxiliary radiation plate installed on the main radiation plate and configured to rotate a polarization plane of the signal radiated by the excitation slot array of the main radiation plate and a second auxiliary radiation plate installed on the first auxiliary radiation plate and configured to distribute and radiate the signal having the polarization plane rotated by the first auxiliary radiation plate.
The first auxiliary radiation plate may include an array of a first polarization slot formed to have a structure corresponding to the excitation slot array of the main radiation plate, and the first polarization slot may be structured to rotate a polarization plane of a signal radiated by a corresponding excitation slot.
The second auxiliary radiation plate may include an array of a plurality of second polarization slots formed for each first polarization slot of the first auxiliary radiation plate, and a distribution structure for distributing a signal radiated for each first polarization slot of the first auxiliary radiation plate to the plurality of second polarization slots corresponding to the first polarization slot is formed in the second auxiliary radiation plate.
The waveguide slot array antenna may further include a feeding plate which forms at least a part of a waveguide to be provided with an input signal and a distribution plate which includes a distribution waveguide structure coupled to the feeding plate to distribute the input signal to multiple coupling slots, in which the main radiation plate is installed on the distribution plate and includes multiple cavity structures for distributing a signal input through each coupling slot of the distribution plate in an equal ratio and exciting the distributed signal through the excitation slot array.
According to another aspect of the present disclosure, there is provided a waveguide slot array antenna including a distribution plate which includes a distribution waveguide structure for distributing an input signal to multiple coupling slots, and a radiation plate which is installed on the distribution plate and includes multiple cavity structures, each being configured corresponding to the multiple coupling slots to distribute the signal input through the multiple coupling slots of the distribution plate in an equal ratio and to excite the distributed signal through multiple excitation slot arrays, in which each of the multiple cavity structures is designed to be divided into four regions for distributing the signal provided to a corresponding coupling slot of the distribution plate to four parts, and a plurality of excitation slots are formed in each of the four regions.
As described above, the waveguide slot array antenna according to some embodiments of the present disclosure generates a polarized wave while effectively suppressing a grating lobe, thereby reducing an influence upon an adjacent device in an adjacent-fixed communication device.
Moreover, the waveguide slot array antenna according to some embodiments of the present disclosure may improve the degree of freedom as to the design of slot arrangement, allowing free implementation of an overall antenna structure. Hence, the unnecessary increase of the antenna size may be prevented, and processing complexity may be reduced by maintaining a proper arrangement level, thereby reducing a loss of time cost.
The above and other aspects, features, and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed elements, etc., will be provided, but they are merely provided to help the overall understanding of the present disclosure and it would be obvious to those of ordinary skill in the art that modifications or changes may be made to the specific details within the scope of the present disclosure.
Like in the conventional waveguide slot array antenna, once a signal is input through the feeding slot 112 of the feeding plate 11, the input signal is distributed in an equal ratio through the distribution plate 12, and each distributed signal is delivered to each cavity formed in the main radiation plate 13 through the coupling slots 122. The signal delivered to the cavity of the main radiation plate 13 is distributed and radiated, for example, in an equal ratio through, for example, four excitation slots 132 formed for each cavity. The excitation slots 132 are arranged to have a preset interval and preset arrangement therebetween according to an operating frequency.
In the first auxiliary radiation plate 14 installed on the main radiation plate 13, like in the conventional waveguide slot array antenna, the first polarization slots 142 are formed to one-to-one correspond to the respective excitation slots 132 of the main radiation plate 13. The first polarization slot 142 is structured such that an approximately quadrangular (or rectangular) slot is formed in a posture mechanically rotated at 45 degrees with respect to the excitation slot 132. With this structure, for the signal delivered to the first polarization slot 142, a polarized wave signal is generated to have a polarization plane rotated at 45 degrees relative to the signal radiated from the excitation slot 132.
According to the first embodiment of the present disclosure, in the second auxiliary radiation plate 15 installed on the first auxiliary radiation plate 14, a plurality of (e.g., two) second polarization slots 152 are formed to correspond to each first polarization slot 142 of the first auxiliary radiation plate 14 and a distribution structure for distributing a signal to the plurality of corresponding second polarization slots 152 for each first polarization slot 142 is formed. Shapes (and postures) of the first polarization slot 142 and the plurality of second polarization slots 152 may be the same as one another. With this structure, the polarized wave generated in the first polarization slot 142 is distributed and radiated through the second polarization slots 152.
It can be seen that as a whole, the first auxiliary radiation plate 14 and the second auxiliary radiation plate 15 further include a structure for rotating a signal excited by the excitation slot 132 of the main radiation plate 13 such that the signal has a polarization plane inclined at 45 degrees and an extended slot array structure using an electric field plane or magnetic field plane signal distribution structure.
The signal delivered to the second auxiliary radiation plate 15 is distributed through the distribution structure formed under the second polarization slots 152, such that each distributed signal is provided to the plurality of second polarization slots 152. Such a distribution structure may have a structure branched vertically or horizontally with respect to an electric field plane. The signal distributed and provided to the second polarization slot 152 is radiated to the space and thus may be expressed in an overall antenna radiation pattern.
When viewed from a top side of the second auxiliary radiation plate 15, an arrangement interval between the second polarization slots 152 may be, for example, a half of an arrangement interval between the first polarization slots 142 of the first auxiliary radiation plate 14 according to a branched plane. That is, with this structure, an arrangement interval on a vertical/horizontal plane between the second polarization slots 152 formed in the second auxiliary radiation plate 15 may sufficiently satisfy a criterion of within one wavelength with respect to an operating frequency, thus sufficiently suppressing a grating lobe.
When the first auxiliary radiation plate 14 and the second auxiliary radiation plate 15 are coupled to each other, a shape of a waveguide path formed by the first polarization slot 142-1, the distribution structure, and the second polarization slot 152-1 to deliver an internal signal therethrough is substantially the same as a shape of a waveguide path formed by the structure shown in
First, a waveguide (not shown) for guiding a signal input through an input connector (not shown), etc., is formed in a proper shape on a side with respect to a bottom surface of the feeding plate 11. The bottom surface of the feeding plate 11 may be formed to be, for example, several millimeters to several tens of millimeters. The feeding slot 112 is formed at a terminal of the waveguide of the feeding plate 11, and the feeding slot 112 may be a multistage slot to achieve matching according to a size of a distribution waveguide formed on the corresponding distribution plate 12. The rear surface of the feeding plate 11 may be processed to have a hole or a tab corresponding to an engagement portion of a normalized waveguide flange.
The distribution plate 12 connected with the feeding plate 11 has a distribution waveguide structure for distributing a signal input through the feeding slot 112 of the feeding plate 11 to the multiple coupling slots 122. The number of branched final branches of the distribution waveguide structure corresponds to distribution into a power of 2, and the branches are top-bottom and left-right symmetric. Such a distribution waveguide structure may have an electric field or magnetic field distribution structure. The electric field or magnetic field distribution structure may further include an iris structure and a septum structure, taking matching characteristics into account. In the distribution waveguide structure, the coupling slot 122 is formed at a terminal of each branched final branch. The coupling slot 122 is located one-sidedly by being offset from the center of a waveguide structure at the terminal of each final branch of the distribution waveguide structure, causing strong coupling. The main radiation plate 13 connected with the distribution plate 12 distributes a signal input through each coupling slot 122 of the distribution plate 12 in an equal or unequal ratio, and has a cavity structure for exciting the distributed signal through each excitation slot 132. Each coupling slot 122 of the distribution plate 12 is designed to be located in the center of a corresponding cavity of the main radiation plate 13. Each cavity may be structured to have, for example, four excitation slots 132 formed therein, and to properly form a resonance condition of each of the four excitation slots 132, a septum having a predetermined length is formed on and perpendicular to each surface of the cavity.
As shown in
Referring to
In the waveguide slot array antenna, a height of a radiation slot at a final stage dominantly works as a determinant of cross polarization. As shown in
In the structure shown in
In the structure shown in
As shown in
As such, generally, in the waveguide slot array antenna, a signal distribution structure uses an H-junction structure, thereby implementing a symmetric and efficient feeding network structure. However, due to such a structure, there are a limitation in horizontal and vertical beam patterns, a difficulty in the flexible design of a gain, and an unnecessarily large volume. Moreover, according to circumstances, in case of an asymmetric structure array design, the H-junction structure is not easy to adopt and a separate additional layer may be needed for implementation of a desired structure array, increasing an overall thickness and thus limiting a low-profile design.
In the structure of the radiation plate shown in
To be more specific regarding the structure of the radiation plate 33, the cavity structure 330 of the radiation plate 33 is divided into four first through fourth regions a, b, c, and d for distributing the signal provided from the distribution plate 32, for example, equally, into four parts, and correspondingly, septums having a predetermined length are formed on and perpendicular to each surface of the cavity. In each of the four regions a, b, c, and d of the cavity structure 330, two excitation slots are formed unlike in the structure shown in
In the structure shown in
To be more specific regarding the structure of the radiation plate 43, the cavity structure 430 of the radiation plate 43 is divided into four first through fourth regions a, b, c, and d for distributing the signal provided from the distribution plate 42, for example, equally, into four parts, and correspondingly, septums having a predetermined length are formed on and perpendicular to each surface of the cavity. In each of the four regions a, b, c, and d of the cavity structure 430, three excitation slots are formed unlike in the structure shown in
As shown in
Referring to
To be more specific regarding the structure of the radiation plate 53, the radiation plate 53 according to the fourth embodiment of the present disclosure is structured by repeatedly using and properly arranging and connecting the radiation plates according to the other preceding embodiments. For example, as shown in
In this case, as shown in
In this case, the radiation plate 73 having the 10×8 array structure shown in
The structure and operations of the waveguide slot array antenna according to the embodiments of the present disclosure may be as described above, and while the detailed embodiments have been described in the description of the present disclosure, various modifications may be made without departing from the scope of the present disclosure.
For example, the detailed structures of the feeding plate 11, the distribution plate 12, and the main radiation plate 13 to which the auxiliary radiation plate(s) according to the first embodiment is applied have been described above, but the auxiliary radiation plate(s) according to the present disclosure may be applied to waveguide slot array antennas with various structures having radiation slot arrays as well as the described structures. That is, in the waveguide slot array antennas having various structures, like in the structure according to the first embodiment of the present disclosure, first and second auxiliary radiation plates in which first and second polarization slots are formed correspondingly to a radiation slot array may be installed to generate a polarized wave.
Although a plurality of minimum array unit structures according to the second and third embodiments are used for extended array structures according to the fourth through sixth embodiments as an example in the foregoing description, a plurality of minimum array unit structures according to the second and third embodiments may be used to properly implement other array structures.
In addition, in the structures according to the second through sixth embodiments, a feeding waveguide is formed on a distribution plate as an example, but like in the structure according to the first embodiment, a structure in which a feeding slot is formed in a feeding plate may also be adopted.
As such, various modifications may be made to the present disclosure, and thus the scope of the present disclosure should be defined by the appended claims and equivalents thereof, rather than by the described embodiments.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0156116 | Nov 2014 | KR | national |
10-2015-0077610 | Jun 2015 | KR | national |
This application is a divisional application of U.S. application Ser. No. 15/591,133, filed May 10, 2017 (now pending), which is a continuation of International Application No. PCT/KR2015/012036 filed on Nov. 10, 2015, which claims priorities to Korean Application No. 10-2014-0156116 filed on Nov. 11, 2014 and Korean Application No. 10-2015-0077610 filed on Jun. 1, 2015, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2573746 | Watson | Nov 1951 | A |
3599216 | Paine | Aug 1971 | A |
4429313 | Muhs, Jr. | Jan 1984 | A |
4716415 | Kelly | Dec 1987 | A |
4821044 | Kurtz | Apr 1989 | A |
5030965 | Park | Jul 1991 | A |
5210543 | Kurtz | May 1993 | A |
5502453 | Tsukamoto | Mar 1996 | A |
5650793 | Park | Jul 1997 | A |
6028562 | Guler et al. | Feb 2000 | A |
6034647 | Paul | Mar 2000 | A |
6127985 | Guler | Oct 2000 | A |
6285335 | Snygg | Sep 2001 | B1 |
8446313 | Miyagawa | May 2013 | B2 |
9190737 | Sano | Nov 2015 | B2 |
9490545 | Montgomery | Nov 2016 | B2 |
9899722 | Saraf | Feb 2018 | B2 |
10236587 | Kim | Mar 2019 | B2 |
10431902 | You | Oct 2019 | B2 |
20020101385 | Huor | Aug 2002 | A1 |
20040080463 | Jeong | Apr 2004 | A1 |
20060164315 | Munk | Jul 2006 | A1 |
20070139772 | Wang | Jun 2007 | A1 |
20100001916 | Yamaguchi | Jan 2010 | A1 |
20100109960 | Guler | May 2010 | A1 |
20130120205 | Thomson | May 2013 | A1 |
20130120206 | Biancotto | May 2013 | A1 |
20140254976 | Thomson | Sep 2014 | A1 |
20150015440 | Montgomery | Jan 2015 | A1 |
20150188236 | Oppenlaender | Jul 2015 | A1 |
20150349431 | Odes | Dec 2015 | A1 |
20160036131 | Kim | Feb 2016 | A1 |
20160211582 | Saraf | Jul 2016 | A1 |
20160301143 | Cao | Oct 2016 | A1 |
20170098892 | Kim | Apr 2017 | A1 |
20170244173 | Moon | Aug 2017 | A1 |
20170271776 | Biancotto | Sep 2017 | A1 |
20180358709 | You | Dec 2018 | A1 |
20190305436 | Legay | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
101919118 | Dec 2010 | CN |
103947044 | Jul 2014 | CN |
107910642 | Apr 2018 | CN |
2002-217639 | Aug 2002 | JP |
2008193403 | Aug 2008 | JP |
2011-15320 | Jan 2011 | JP |
2011-503996 | Jan 2011 | JP |
2011-044977 | Mar 2011 | JP |
2011-142514 | Jul 2011 | JP |
5-175720 | Apr 2013 | JP |
2014-132729 | Jul 2014 | JP |
2014-170989 | Sep 2014 | JP |
10-0710708 | Apr 2007 | KR |
10-0721871 | May 2007 | KR |
10-2007-0088443 | Aug 2007 | KR |
10-2009-0083458 | Aug 2009 | KR |
10-1092846 | Dec 2011 | KR |
10-2013-0099309 | Sep 2013 | KR |
2013-072781 | May 2013 | WO |
Entry |
---|
International Search Report for PCT/KR2015/012036, dated Feb. 24, 2016, and its English translation. |
Xiaoming Liu et al., “Polarization rotator of arbitrary angle based on simple slot-array”, AIP Advances 5, 127142, pp. 1-6, Dec. 31, 2015. |
Supplementary European Search Report for European Application No. 15858572.9 dated May 18, 2018. |
Office Action dated Mar. 18, 2019 for Chinese Application No. 2015/80061383.6. |
Notice of Allowance dated Jan. 15, 2020 for U.S. Appl. No. 15/591,133. |
Non-final office action dated Jun. 24, 2019 for U.S. Appl. No. 15/591,131. |
Number | Date | Country | |
---|---|---|---|
20200194902 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15591133 | May 2017 | US |
Child | 16799837 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2015/012036 | Nov 2015 | US |
Child | 15591133 | US |