I. Field of the Invention
The present invention relates generally to waveguide to microstrip transitions of high frequency electromagnetic radiation.
II. Description of Related Art
The use of high frequency radio devices has become increasingly popular. For example, automotive radar has been allotted a frequency band at approximately 77 gigahertz.
The propagation of electromagnetic radiation at such high frequencies, however, has always presented special problems to microwave engineers. Conventional electronic circuitry cannot normally be used to propagate such high frequency signals due to the inherent capacitance and inductance present in such conventional electronic circuitry. Such capacitance and inductance usually results in unacceptable attenuation of the microwave signal.
Consequently, waveguides and microstrips are conventionally used to propagate high frequency radio signals in electronic circuits. In a waveguide, an elongated channel is formed by an electrically conductive material so that the high frequency signal travels through the interior of the conductor. Such waveguides are highly efficient for conducting high frequency signals along relatively long distances. Waveguides, however, cannot generally be used to directly drive a microwave antenna.
Microstrips are also utilized to propagate microwave energy. Such microstrips include a conductive strip on one side of a dielectric substrate and a ground plane on the opposite side of the dielectric substrate. The microwave energy is conveyed along the microstrip in between the microstrip and the ground plane Such microstrips may be directly connected to a microwave antenna to drive the antenna.
Consequently, in many applications, such as automotive radar, vehicle to satellite radio links, vehicle to base station radio links, etc., it is necessary to transition microwave energy from a waveguide to a microstrip. Such devices are known as waveguide to microstrip transitions.
There have been previously known waveguide to microstrip transitions which propagate the microwave energy from the waveguide to the microstrips. These previously known transitions typically include a dielectric substrate having a ground plane on one side and a microstrip on its opposite side. The dielectric substrate is positioned across an open end of the microwave guide so that an opening in the ground plane registers with the open end of the waveguide.
A back short is then positioned on the side of the dielectric substrate opposite from the ground plane so that the back short forms a cavity which registers with the open end of the waveguide as well as the opening formed through the ground plane. An end of the microstrip is then positioned through an opening in the back short so that the free end of the microstrip is positioned within the cavity formed by the back short.
In operation, the microwave energy from the waveguide propagates through the dielectric substrate and into the back short cavity. That electromagnetic energy then propagates out through the microstrip to another portion of the circuitry, typically a microwave antenna. These previously known waveguide to microstrip transitions, however, have all suffered from certain disadvantages.
One disadvantage of the previously known waveguide to microstrip transitions is that the microstrip must be precisely positioned within the back short cavity for proper impedance matching. Otherwise, an impedance mismatch results which in turn results in a loss of power in the waveguide to microstrip transition. However, in many manufacturing situations, such precision is difficult to obtain with consistency.
A still further disadvantage of these previously known waveguide to microstrip transitions is that they have limited bandwidth and increased return loss. Such limited bandwidth and increased return loss resulted from the resonant nature of the single microstrip probe and its location within the back short cavity.
The present invention provides a waveguide to microstrip transition which overcomes the above-mentioned disadvantages of the previously known devices.
In brief, the waveguide to microstrip transition of the present invention comprises a waveguide having an opening at one end. In the conventional fashion, microwave energy at high frequency, e.g. 77 gigahertz and above, propagates through the interior of the waveguide in the conventional fashion.
A dielectric substrate includes a first and a second side. A ground plane is formed on the first side of the substrate and this ground plane also has an opening.
The dielectric substrate overlies the waveguide opening so that the ground plane faces the waveguide and so that the opening in the ground plane registers with the waveguide opening. Consequently, microwave radiation propagating through the waveguide passes through the dielectric substrate and to the second side of the dielectric substrate.
A back short has a housing which is positioned on the second side of the dielectric substrate. This back short housing forms a cavity which registers with at least a portion of the ground plane opening. This back short also includes at least one opening to the cavity along the second side of the dielectric substrate.
A pair of spaced apart microstrips are then provided on the second side of the dielectric substrate, i.e. the side opposite from the waveguide. Each microstrip has a free end positioned in the cavity formed by the back short so that the free ends of the microstrips are spaced apart from each other. Each microstrip also extends through the opening formed in the back short.
Both microstrips may extend outwardly from the back short cavity along the same side of the opening. In this case, the signals conveyed by the microstrips will be in phase with each other.
Conversely, the microstrips may extend outwardly from the back short cavity in opposite directions. In this case, the phase of the signal on the two microstrips will be inverted 180 degrees. Connection of the microstrips to a microwave antenna results in a circularly polarized signal radiated from the antenna.
A better understanding of the present invention will be had upon reference to the following description when read in conjunction with the drawing wherein like reference characters refer to like parts throughout the several views, and in which:
With reference first to
As best shown in
A ground plane 22 made of an electrically conductive material covers the first side 18 of the dielectric substrate 16. This ground plane 22, furthermore, includes an opening 24. The dielectric substrate 18 is positioned across the waveguide opening 14 so that the ground plane 22 faces the waveguide 12 and so that the opening 24 formed in the ground plane registers with at least a portion of the waveguide opening 14. Consequently, electromagnetic energy propagated through the waveguide 12 will pass through the ground plane opening 24 and dielectric substrate 18 to the second side 20 of the dielectric substrate 16.
With reference now particularly to
The back short housing 32 is positioned on the second side 20 of the dielectric substrate 16 so that the cavity 34 registers with at least a portion of the open end 14 of the waveguide 12. The back short housing 32, furthermore, is electrically grounded to the ground plane 22 by a plurality of vias 38 extending through the dielectric substrate 16 between the back short housing 32 and the ground plane 22.
Still referring to
A first metal portion 50, which may be either part of the ground plane 22 or of the back short housing 32 as shown at 50′ in
A characteristic impedance of the waveguide 12 is approximately 350 ohms at the center of the waveguide opening 14. The impedance of the signal through the waveguide 12, however, diminishes from the center of the waveguide opening 14 and toward the sides of the waveguide 12.
Consequently, the microstrips 40 and 41 are preferably dimensioned for an impedance of approximately 100 ohms and are positioned away from the centerline of the waveguide 12 to a position of approximately 100 ohms for the waveguide 12. The two microstrips 40 are then connected together in parallel into the single microstrip 44. In doing so, the overall impedance is reduced by half to approximately 50 ohms which is the desired impedance for many microwave antennas.
In practice, it has been found that, due to the relatively low impedance of 100 ohms for the microstrips 40 and 41 as opposed to 350 ohms for the previously known transitions using a single microstrip in the back short 30, misalignment of the microstrips 40 and 41 has a lesser adverse impact on the impedance matching of the waveguide to microstrip transition than a similar misalignment of a single microstrip in the previously known waveguide to microstrip transitions.
With reference now to
With reference now to
Since the microstrips 64 and 66 extend outwardly from opposite sides of the back short housing 32, the phase of the signal on the microstrips 64 and 66 are 180 degrees apart from each other. Consequently, by connecting the microstrips 64 and 66 to the middle of adjacent sides of a rectangular antenna 68 (
From the foregoing, it can be seen that the present invention obtains not only a greater bandwidth, but also simpler impedance matching and impedance matching that is less adversely affected due to small misalignments than the previously known waveguide to microstrip transitions. Having described my invention, however, many modifications thereto will become apparent to those skilled in the art to which it pertains without deviation from the spirit of the invention as defined by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5276410 | Fukuzawa et al. | Jan 1994 | A |
5528074 | Goto et al. | Jun 1996 | A |
6580335 | Iizuka et al. | Jun 2003 | B1 |
6794950 | du Toit et al. | Sep 2004 | B2 |
6967543 | Ammar | Nov 2005 | B2 |
7446710 | Wu et al. | Nov 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20100225410 A1 | Sep 2010 | US |