This invention relates generally to a waveguide, and a method of manufacturing a waveguide, for use in, for example, communication or radar applications.
Waveguides are generally used for connecting together transmitting and receiving equipment in, for example, communication or radar systems. A waveguide typically comprises a transmission line formed from a hollow conducting tube providing a conduit through which electromagnetic waves are propagated, and may be of any cross-sectional shape, such as, square, rectangular, circular or elliptical, as well as containing single or pairs of opposing ridges.
Regardless of the application in which waveguides are to be used, they are commonly provided with some means of connecting adjacent waveguide sections. The successful connection of waveguides for good Radio Frequency (RF) performance requires that the signals being carried by the waveguides are not significantly reflected, absorbed or distorted by the junction, i.e. the junction offers no appreciable discontinuity to the flow of microwave power. This requires that the internal cross-sections on each side of the junction are well aligned, there is low electrical resistance across the interface and that the point of good contact (i.e. low electrical resistance) occurs at the inside wall of the waveguide, where the electrical currents are generated by the passing signals within.
To this end, various mechanical joints are available, but traditionally, waveguide sections are each provided with flanged ends and connections to components and other discrete waveguide sections are made by using threaded bolts to pull together the flanged ends of the waveguides to form a contacting joint. Flange designs tend to be standardised and, in combination with the above-mentioned fixing bolts, provide the required alignment between waveguides with sufficient mechanical integrity to resist the applied physical forces occurring in service: in a space application, for example, such loads may arise in vibration during launch and differential thermal expansion when in orbit.
In communication systems, where a single waveguide may be carrying high level signals to be transmitted using two or more carrier frequencies, as well as low level received signals, another issue can occur, known as passive intermodulation. Passive intermodulation (PIM) is the generation of interfering signals caused by nonlinearities in the mechanical components of a system, and occurs when two signals mix together (amplitude modulation) to produce sum and difference signals and products within the same band, causing distortion. These effects can occur at waveguide interfaces and a common approach to minimising the effect is to ensure that there is a high contact pressure at the inside wall, usually achieved by providing a raised contact lip around the inside wall so the contact force applied by the fixing bolts is concentrated at this point.
In view of the proven electrical performance of bolted flanges, and similar mechanical joints, together with the reversibility and resultant flexibility thereof, they have long provided the most widely accepted method of joining waveguide sections to each other and/or other interfaces.
However, in modern communication satellites, for example, there can be hundreds or even thousands of waveguide junctions and the resultant mass of flanges and associated fixings can cause significant issues. For instance, the flanges require additional space to be provided at each joint as well as sufficient access to enable the fixing bolts to be tightened. Furthermore, more complex antennas may have many waveguides feeding into them, and in some cases there may be insufficient room for traditional flanged connections.
UK Patent No GB971481 describes a method of joining two waveguide sections together, wherein each waveguide section has, at its connecting end, a respective sleeve section affixed around the waveguide section by means of an adhesive injected into an orifice or ‘pocket’ formed by complementary recesses in the outer wall of the waveguide section and the inner wall of the sleeve section. Subsequently, the two waveguide sections are joined together at their sleeve section ends by providing a further sleeve member over the butted interface between the sleeve sections, and affixed thereto by means of an adhesive injected into orifices or ‘pockets’ formed by complementary recesses in the outer wall of each sleeve section and the inner wall of the sleeve member.
There are a number of issues associated with the above-described method. Firstly, the method described necessitates the use of two sleeve layers, which significantly increases the overall diameter of the resultant waveguide. In many applications, this is simply not acceptable in view of space constraints. Thus, the above-described method is not suitable for many applications. Furthermore, whilst the configuration of the sleeve sections is intended to mitigate the ingress of adhesive into the waveguide joint, this can only be effectively achieved by very careful control of the quantity of adhesive injected into the ‘pockets’ and/or the use of an adhesive of relatively high viscosity. In the event that even a slight excess of adhesive is injected into the pockets, that excess adhesive will inevitably ooze into the area of the waveguide joint, adversely affecting its RF performance. The alternative or additional requirement that a relatively highly viscous adhesive is used to try and mitigate this possibility, means that there is a severe limitation placed on how thin this layer of adhesive can be made. In applications where RF performance is as critical as minimising the dimensions of the resultant waveguide (due to space restrictions, for example), these issues further restrict the applications in which the described method can be effectively used.
It is an object of aspects of the present invention to address at least some of these issues and, in accordance with a first aspect of the present invention, there is provided a waveguide comprising first and second waveguide sections, each waveguide section comprising a main body portion and a connecting portion at its distal end, said first and second waveguide sections being longitudinally aligned to define a conduit therethrough with a butted interface therebetween, the connecting portion of each waveguide section having: (i) a first circumferential ridge on its outer surface located adjacent its distal end, (ii) a second circumferential ridge on its outer surface spaced apart from the first circumferential ridge, and (iii) a third circumferential ridge on its outer surface located between said first and second circumferential ridges, such that a first respective recess is defined between said second and third circumferential ridges and a second respective recess is defined between said first and third circumferential ridges; the waveguide further comprising a sleeve member over said butted interface, such that a respective first cavity is defined between an inner surface of said sleeve member and each said first recess and a respective second cavity is defined between the inner surface of said sleeve member and each said second recess, each said first cavity having a chemical adhesive therein operative to join said first and second waveguide sections together by means of said sleeve member.
The provision of the first circumferential ridges or ‘dams’, i.e. the second cavity, provides an ‘overflow’ region for receiving any excess adhesive from the first cavity and preventing ingress thereof into the waveguide joint, thereby providing an improved method of joining the waveguide sections without adversely affecting the RF performance of the resultant waveguide, and without the need for additional sleeve members or the use of highly viscous adhesive.
In an exemplary embodiment, the outer edges of each first recess may be joined to, or formed integrally with, the second and third circumferential ridges by respective convex (fillet) corners or ‘rounds’, which have the effect of reducing stress within the waveguide wall, but also of helping to retain the adhesive in the first cavity. An outer edge of each second recess may be joined to, or formed integrally with, the third circumferential ridge by a substantially right-angled corner, thereby providing a substantially vertical side wall, which has the effect of ensuring that any adhesive that escapes from the first cavity is captured into the second cavity. The opposing outer edge of each second recess may also be joined to, or integrally formed with, the first circumferential ridge by a substantially right-angled corner, thereby providing a substantially vertical side wall, which has the effect of preventing any adhesive that has escaped from the first cavity into the second cavity from reaching the butted interface between the first and second waveguide sections.
It will be appreciated that, in a preferred embodiment, the circumferential ridges may define an external diameter of said respective connecting end that substantially matches the inner diameter of said sleeve member. A maximum distance between said ridges and an inner wall of said sleeve member may, in one exemplary embodiment of the invention, be 0.025 mm or less.
The connecting ends of said first and second waveguide sections may be substantially identical, said butted interface may be substantially flat and substantially perpendicular to a waveguide axis defined by said conduit, and said sleeve member may comprise a tubular member configured to surround said butted interface.
The connecting end of said first waveguide section may comprise a male end piece and the connecting end of said second waveguide section may comprise a female end portion including a sleeve portion for receiving said male end portion and aligning said waveguide sections with a choked interface therebetween. The use of a choke design herein may desensitise the electrical performance of the waveguide to the contact conditions and improve PIM performance.
The male end piece may include a recess extending from its distal end of length one quarter of the waveguide wavelength, and the recess, together with a gap between said male and female end pieces of length one quarter of said waveguide wavelength, may thus define said choked interface.
In accordance with another aspect of the present invention, there is provided a method of manufacturing a waveguide comprising the steps of:
In an exemplary embodiment, the sleeve member may have at least one hole therein, and the method may include the step of injecting said chemical adhesive into said first cavity through said at least one hole.
The method may include the step of applying a preload to said butted interface prior to introducing said chemical adhesive into said first cavity.
The method may include the steps of determining, in respect of a bond-line provided by said chemical adhesive within said first cavity, a maximum strength under shear load, identifying a thickness of said bond-line associated with said determined maximum strength, and providing a first and/or second waveguide section having a connecting end with a recess having a depth substantially matching said thickness.
In accordance with another aspect of the present invention there is provided a waveguide section for use in a method substantially as described above, comprising a main body portion and a connecting portion at its distal end, the connecting portion having: (i) a first circumferential ridge on its outer surface located adjacent its distal end, (ii) a second circumferential ridge on its outer surface spaced apart from the first circumferential ridge, and (iii) a third circumferential ridge on its outer surface located between said first and second circumferential ridges, such that a first respective recess is defined between said second and third circumferential ridges and a second respective recess is defined between said first and third circumferential ridges.
In accordance with yet another aspect of the present invention, there is provided a connecting end for a waveguide section substantially as described above, comprising a generally tubular member having: (i) a first circumferential ridge on its outer surface located adjacent its distal end, (ii) a second circumferential ridge on its outer surface spaced apart from the first circumferential ridge, and (iii) a third circumferential ridge on its outer surface located between said first and second circumferential ridges, such that a first respective recess is defined between said second and third circumferential ridges and a second respective recess is defined between said first and third circumferential ridges, said connecting end being configured to be affixed to an end of a waveguide section.
In accordance with a further aspect of the invention, there is provided a connecting end for a second waveguide section for use in a method substantially as described above with a first waveguide section substantially as described above, wherein said connecting end comprises a sleeve member configured to receive the connecting end of said first waveguide section, said connecting member being configured to be affixed to an end of said second waveguide section.
These and other aspects of the invention will be apparent from the following specific description, in which embodiments of the present invention are described, by way of examples only, and with reference to the accompanying drawings, in which:
Referring to
Three concentric circumferential ridges (or ‘dams’) 16, 18, 20 are provided on the outer wall of the connecting end 14. A first dam 16 is located at the distal end of the connecting end 14, i.e. furthest from the main body 12. A second dam 18 is located adjacent the stepped portion 15 between the main body 12 and the connecting end 14. A third dam 20 is provided close to, but spaced apart from, the first dam 16 to define a circumferential groove 17 therebetween. The elongate section of the connecting end 14 between the second and third dams 18, 20 defines a second, wider circumferential groove 19. The ends of the section defining the groove 19 are joined or formed integrally with the second and third dams 18, 20 by respective convex (fillet) corners or so-called rounds 21 which have the effect of reducing stress within the waveguide wall.
In a method, according to an exemplary embodiment of the invention, of manufacturing a waveguide by joining two such waveguide sections together, and referring additionally to
The sleeve 22 is provided with holes 24, 26 in the upper and lower walls. More specifically, in this exemplary embodiment, two pairs of holes 24 are provided in the ‘upper’ wall of the sleeve 22 (in the orientation illustrated) and located such that, two abutted waveguide section connecting ends 14 are positioned within the sleeve channel, each pair of holes 24 is adjacent a respective wide circumferential groove 19 defined between second and third dams 18, 20 of the respective connecting end 14. Indeed, it can be seen that, with the sleeve in situ over a pair of abutted connecting ends, pockets 19a are defined between the grooves 19 and the adjacent inner wall of the sleeve 22. In this exemplary embodiment, a pair of single holes 26 is provided in the ‘lower’ wall of the sleeve 22, each hole 26 once again being located such that, when two abutted connecting ends 14 are positioned within the sleeve channel, each hole 26 is adjacent a respective ‘pocket’ 19a defined between a circumferential groove 19 and the adjacent inner wall of the sleeve 22.
Thus, in use, a connecting end 14 of a first waveguide section is inserted into the sleeve channel from one end until that end is adjacent to (but not contacting) the stepped portion 15 of the first connecting end 14. A connecting end 14 of a second waveguide section is inserted into the sleeve channel from the opposite end until that end is adjacent to (but not contacting) the stepped portion 15 of the second connecting end, and the distal ends of the first and second connecting ends are essentially abutted, to create a butted (contact) interface 28.
The holes 24,26 allow adhesive to be injected into the pockets 19a formed between the connecting ends and the adjacent inner wall of the sleeve 22 (as discussed above). The continuous ‘pockets’ 19a allow the adhesive to flow completely around the waveguide/sleeve interface, and the pocket dimensions (i.e. length and height) can be selected (or adjusted) to optimise the adhesive bond-line thickness and, therefore, overall strength requirement determined/required by the application, as will be discussed in more detail hereinafter. It will be appreciated that the circumferential grooves 19 defining the pockets 19a can, for example, be formed in the respective connecting ends 14 of the waveguide sections by machining the external surface thereof. However, other methods of forming such grooves will be apparent to a person skilled in the art and the present invention is not necessarily intended to limited in this regard. In an alternative exemplary embodiment, the grooves may additionally or alternatively be formed in the in the inner wall of the sleeve, and the present invention is, once again, not necessarily intended to be limited in this regard. Furthermore, it will be understood that greater bond strength is likely to be achieved, at least in most cases, if the adhesive is in direct contact with the base materials. Many high performance waveguides are silver plated to minimise loss and, in this case, it is desirable to ensure that the waveguide surfaces forming the pockets 19a are masked, during manufacture, to prevent such plating. There is not thought to be any requirement for the sleeve 22 to be plated, but it may be desirable for the outer surfaces thereof to be coated or otherwise treated, depending on the environment in which it is to be used.
It is essential for good electrical and RF performance of the resultant waveguide that adhesive is prevented from penetrating into the waveguide or significantly across the butted interface 28 between first and second connecting ends. This may be achieved by a) ensuring that the butted waveguide faces are accurately machined to be flat and perpendicular to the waveguide axis; b) ensuring that the clearance between the inner wall of the sleeve 22 and the outer faces of the dams 16, 18, 20 is small, typically, say, 0.025 mm or less; and/or c) applying a preload across the butted interface 28.
With particular reference to b) above, the third dam 20 in this exemplary embodiment is intended to prevent adhesive ingress into the waveguide, and the second dam 18 is intended to prevent excess adhesive from escaping through the end of the sleeve 22 and also to assist in improving the alignment of the sleeve on the waveguide. The ends of the section defining the first groove 17 are joined to, or formed integrally with, the first and third dams 16,20 by respective right-angled corners, The ends of the section defining the second groove 19 are joined to, or formed integrally with, the second and third dams 18, 20 by respective convex (fillet) corners or so-called ‘rounds’ 21 which not only have the effect of reducing stress within the waveguide wall, but also of ‘discouraging’ any adhesive therein from escaping at the side edges. Whilst the first groove 17 is narrower (or shorter) than the second groove 19, its substantially vertical side walls have the effect of a) ensuring that any adhesive that escapes from the second groove 19 is captured into the first groove 17, and b) ensuring that any excess adhesive captured in the first groove 17 does not escape into the butted interface region 28.
However, it will be appreciated that the number and precise location on the connecting end 14 of such dams may vary from that depicted and described above, and the present invention is not necessarily intended to be limited in this regard. The acceptable clearance over the dams 16, 18, 20 may, at least to a certain extent, be a function of adhesive viscosity, as will be understood by a person skilled in the art (i.e. the higher the viscosity, the greater can be the acceptable clearance). However, adhesives that have a relatively low viscosity during curing may require the use of additional sealing means, such as ‘O’ rings or the like, to seal the waveguide off from the adhesive.
It will be appreciated from the above that a simple sleeve arrangement of the type described above enables a strong bond-line to be created in a space-saving manner (compared with, for example, flange connections),so as to connect waveguide sections together in a manner that satisfies the above-described requirement for good mechanical, electrical and RF performance. It will be appreciated that, in order to achieve the required high quality adhesive joints, the surfaces to be adhered should be prepared as specified by the manufacturer of the adhesive being used. Furthermore, and with reference to c) above, for a simple butted junction, it is important to ensure good contact pressure at the interface 28. Thus, a preload may be applied at the interface 28, prior to bonding. Referring to
In alternative exemplary embodiments, the ‘sleeve’ can be incorporated into one of the waveguide sections so that a male-female geometry is formed. Thus, referring first to
Referring additionally to
Referring now to
As shown in
Cavities or ‘pockets’ 41a are thus created between the wider grooves 41 in the male end piece and the inner surface of the outer wall of the female end piece sleeve. As before, such pockets 41a can be formed by machining a groove in the outer surface of the male end piece (as shown) or on the inner surface of the female end piece sleeve, or both, and the present invention is not necessarily intended to be limited in this regard. The holes 62, 64 in the outer wall of the female end piece sleeve allow adhesive to be injected into the pockets 41a. The continuous pockets 41a allow the adhesive to flow completely around the interface between the male and female end pieces and, once again, the pocket dimensions can be designed/adjusted to optimise the adhesive bond-line thickness and overall strength requirement determined by the application. As before, the pockets 41a will typically be shallow and designed to maximise the adhesive bond-line strength depending on the adhesive used, and the length of the bond-line can be adjusted to the requirements of the application. Once again, and whilst not clearly shown in
It is anticipated that the male and female end pieces can be attached to a standard waveguide using the same or similar methods to those used in the art for connecting flanges thereto. Thus, for example, in the case of a typical aluminium waveguide, the end pieces could be torch brazed onto the waveguide in a manner that will be known to a person skilled in the art.
Once again, and as illustrated schematically in
It will be appreciated that many different types of adhesive may be considered suitable for use in embodiments of the present invention. In some exemplary embodiments, an epoxy paste adhesive (i.e. relatively high viscosity) may be employed. For example, Hysol® 9395 may be used which is a two-component adhesive system which is non-metallic and cures at ambient temperatures, but has excellent strength properties at temperatures of 350° F./177° C. and higher. In this case, a BR127 primer can be used to prepare the surfaces to be adhered. However, the adhesive used will be dependent on many factors, including the specific configuration of the end pieces, the material of which the waveguide is made and the application in which the resultant waveguide is to be used. For example, in some exemplary embodiments, such as those using the simple sleeve configuration described above in relation to
In all cases, manufacturers of commercially available adhesives usually provide data indicative of the specific bond-line thickness required to give maximum strength under shear load. Thus, the height of the pocket (19a, 41a) can be set to achieve this figure.
It will be appreciated by a person skilled in the art, from the foregoing description, that modifications and variations can be made to the described embodiments without departing from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
16275023.6 | Feb 2016 | EP | regional |
1602372.3 | Feb 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2017/050308 | 2/8/2017 | WO | 00 |