Field of the Invention
The invention relates in general to a wavelength-converting material and an application thereof, and particularly relates to a wavelength-converting material comprising an all-inorganic perovskite quantum dot and an application thereof.
Description of the Related Art
Currently, a common light emitting material often uses a phosphor powder and a quantum dot. However, market for the phosphor powder is almost close to a saturation condition. A full width at half maximum (FWHM) of an emission spectrum of the phosphor powder is wide mostly, and is difficult to improve dramatically. This results in technical limits in an application for a device. Therefore, the research trend is towards the quantum dot field.
Nano materials have a particle size of 1 nm to 100 nm, and can be further classified according to the size. Semiconductor nano crystals (NCs) are referred to as quantum dots (QDs), and a particle size of which is classified into a nano material of zero dimension. The nano material is widely used for an application of a light emitting diode, a solar cell, a biomarker, etc. Unique properties of its optical, electrical and magnetic characteristics make the nano material being an object researched for newly developed industry.
The quantum dot has an emission property having a narrow FWHM. Therefore, the quantum dot can be applied in a light emitting diode device to solve a problem of an insufficient wide color gamut of a conventional phosphor powder, attracting attention extraordinarily.
The present disclosure relates to a wavelength-converting material and an application thereof.
According to a concept of the present disclosure, a light emitting device is provided. The light emitting device comprises a light emitting diode chip and a wavelength-converting material. The wavelength-converting material is capable of being excited by a first light emitted from the light emitting diode chip to emit a second light having a wavelength different from a wavelength of the first light. The wavelength-converting material comprises an all-inorganic perovskite quantum dot having a chemical formula of CsPb(ClaBr1-a-bIb)3, wherein 0≦a≦1, 0≦b≦1.
According to another concept of the present disclosure, a wavelength-converting material is provided. The wavelength-converting material comprises at least two kinds of all-inorganic perovskite quantum dots having different characteristics and having a chemical formula of CsPb(ClaBr1-a-bIb)3, wherein 0≦a≦1, 0≦b≦1.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiment (s). The following description is made with reference to the accompanying drawings.
Embodiment of the present disclosure relate to a wavelength-converting material and its applications. The wavelength-converting material comprises an all-inorganic perovskite quantum dot having a chemical formula of CsPb(ClaBr1-a-bIb)3. A wavelength of an emitted light from the all-inorganic perovskite quantum dot can be adjusted according to a composition and/or a size of the all-inorganic perovskite quantum dot, and thus the all-inorganic perovskite quantum dot is suitable for a wide application. In addition, the all-inorganic perovskite quantum dot can exhibit an emission spectrum having a narrow full width at half maximum (FWHM) and a good pure quality of color. Therefore, the all-inorganic perovskite quantum dot can be applied in use of a light emitting device such as a lighting source or for a display device, etc. to improve an emitting effect such as a color rendering, an accuracy of color, a color gamut, etc.
The illustrations may not be necessarily drawn to scale, and there may be other embodiments of the present disclosure which are not specifically illustrated. Thus, the specification and the drawings are to be regard as an illustrative sense rather than a restrictive sense. Moreover, the descriptions disclosed in the embodiments of the disclosure such as detailed construction, manufacturing steps and material selections are for illustration only, not for limiting the scope of protection of the disclosure. The steps and elements in details of the embodiments could be modified or changed according to the actual needs of the practical applications. The disclosure is not limited to the descriptions of the embodiments. The illustration uses the same/similar symbols to indicate the same/similar elements.
In embodiments, the light emitting device comprises a light emitting diode chip and the wavelength-converting material. The wavelength-converting material is capable of being excited by a first light emitted from the light emitting diode chip to emit a second light having a wavelength different from a wavelength of the first light.
In embodiments, the wavelength-converting material comprises the all-inorganic perovskite quantum dot having the chemical formula of CsPb(ClaBr1-a-bIb)3, wherein 0≦a≦1, 0≦b≦1. In embodiments, the all-inorganic perovskite quantum dot has good quantum efficiency, exhibiting an emission spectrum having a narrow full width at half maximum (FWHM) and good pure quality of color, and can improve a light emitting effect as being applied in the light emitting device.
The all-inorganic perovskite quantum dot may be adjusted in a composition and/or a size to modify a band gap to change a color of an emission light (a wavelength of the second light), such as blue, green, red color gamuts, flexible in application.
The all-inorganic perovskite quantum dot has a nanometer size. For example, the all-inorganic perovskite quantum dot has a particle diameter in a range of about 1 nm to 100 nm, such as about 1 nm to 20 nm.
For example, the all-inorganic perovskite quantum dot has a chemical formula of CsPb(ClaBr1-a)3, 0≦a≦1. Alternatively, the all-inorganic perovskite quantum dot has a chemical formula of CsPb(Br1-bIb)3, 0≦b≦1.
In embodiments, the all-inorganic perovskite quantum dot may be a blue quantum dot (blue all-inorganic perovskite quantum dot). For example, in an example of the all-inorganic perovskite quantum dot having the chemical formula of CsPb(ClaBr1-a)3, the all-inorganic perovskite quantum dot is the blue quantum dot when complying with 0<a≦1, and/or having a particle diameter in a range of about 7 nm to 10 nm. In an embodiment, the (second) light emitted from the excited blue quantum dot has a wave peak at a position of about 400 nm to 500 nm, or/and a full width at half maximum (FWHM) of about 10 nm to 30 nm.
In embodiments, the all-inorganic perovskite quantum dot may be a red quantum dot (red all-inorganic perovskite quantum dot). For example, in an example of the all-inorganic perovskite quantum dot having the chemical formula of CsPb(Br1-bIb)3, the all-inorganic perovskite quantum dot is the red quantum dot when complying with 0.5≦b≦1, and/or having a particle diameter in a range of about 10 nm to 14 nm. In an embodiment, the (second) light emitted from the excited red quantum dot has a wave peak at a position of about 570 nm to 700 nm, or/and a FWHM of about 20 nm to 60 nm.
In embodiments, the all-inorganic perovskite quantum dot may be a green quantum dot (green all-inorganic perovskite quantum dot). For example, in an example of the all-inorganic perovskite quantum dot having the chemical formula of CsPb(Br1-bIb)3, the all-inorganic perovskite quantum dot is the green quantum dot when complying with 0≦b<0.5, and/or having a particle diameter in a range of about 8 nm to 12 nm. In an embodiment, the second light emitted from the excited green all-inorganic perovskite quantum dot has a wave peak at a position of about 500 nm to 570 nm, or/and a FWHM of about 15 nm to 40 nm.
In embodiments, the wavelength-converting material (or a wavelength converting layer) used in the light emitting device is not limited to one kind of the all-inorganic perovskite quantum dot. In other words, the all-inorganic perovskite quantum dots of more than one kind (i.e. two kinds, three kinds, four kinds, or more kinds) having different characteristics may be used. The characteristics of the all-inorganic perovskite quantum dot can be adjusted by a chemical formula and/or a size.
For example, the all-inorganic perovskite quantum dot may comprise a first all-inorganic perovskite quantum dot and a second all-inorganic perovskite quantum dot having different characteristics from each other and mixed together. In other embodiments, the all-inorganic perovskite quantum dot may further comprise a third all-inorganic perovskite quantum dot, a fourth all-inorganic perovskite quantum dot, etc., each having a characteristic different from the characteristics of the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot, and mixed together.
For example, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may have different particle diameters. In other embodiments, the all-inorganic perovskite quantum dot may further comprise the third all-inorganic perovskite quantum dot, the fourth all-inorganic perovskite quantum dot, etc., having a particle diameter different from the article diameters of the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot.
In some embodiments, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot both have the chemical formula of CsPb(ClaBr1-a-bIb)3, 0≦a≦1, 0≦b≦1. The first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot have different a, and/or have different b. This concept may be also applied for examples using the all-inorganic perovskite quantum dots of three kinds, four kinds, or more kinds.
For example, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may be selected from the group consisting of the red (all-inorganic perovskite) quantum dot having the chemical formula of CsPb(Br1-bIb)3 with 0.5≦b≦1, the green (all-inorganic perovskite) quantum dot having the chemical formula of CsPb(Br1-bIb)3 with 0≦b<0.5, and the blue (all-inorganic perovskite) quantum dot having the chemical formula of CsPb(ClaBr1-a)3 with 0<a≦1. Optionally, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may be selected from the group consisting of the red all-inorganic perovskite quantum dot having the particle diameter in a range of about 10 nm to 14 nm, the green all-inorganic perovskite quantum dot having the particle diameter in a range of about 8 nm to 12 nm, and the blue all-inorganic perovskite quantum dot having the particle diameter in a range of about 7 nm to 10 nm.
The all-inorganic perovskite quantum dot may be used in various applications of light emitting devices, such as a lighting lamp or a light emitting module (front light module, back light module) of a display for a display screen of a smart phone, a television screen, etc., a pixel or a sub pixel for a display panel. In addition, when more kinds of the all-inorganic perovskite quantum dots with different compositions (i.e. more different emission wavelengths) are used, the light emitting device can achieve a wider emission spectrum, even achieve a full spectrum for demands. Therefore, using the all-inorganic perovskite quantum dot according to the present disclosure in the display device can improve a color gamut, a color purity, a color trueness, NTSC, etc.
For example, in some embodiments, the light emitting device may comprise at least two kinds of the all-inorganic perovskite quantum dots having the chemical formula of CsPb(Br1-bIb)3 of different characteristics, so as to have a NTSC equal to or higher than 90%. In some embodiments, the light emitting device may comprise at least four kinds of the all-inorganic perovskite quantum dots having the chemical formula of CsPb(Br1-bIb)3 of different characteristics, so as to exhibit a general color rendering index (Ra) of at least 75.
For example, the light emitting device may be applied in a light emitting diode package structure. In an example for a white light emitting diode package structure, the wavelength-converting material may comprise the green all-inorganic perovskite quantum dot and the red all-inorganic perovskite quantum dot, which are excited by a blue light emitting diode; or the wavelength-converting material may comprise the red all-inorganic perovskite quantum dot and a yellow phosphor powder, which are excited by the blue light emitting diode; or the wavelength-converting material may comprise the green all-inorganic perovskite quantum dot and a red phosphor powder, which are excited by the blue light emitting diode; or the wavelength-converting material comprise the red all-inorganic perovskite quantum dot, the green all-inorganic perovskite quantum dot and the blue all-inorganic perovskite quantum dot, which are excited by a UV light emitting diode.
The wavelength-converting material (or the wavelength converting layer) may further comprise other kinds of phosphor material, comprising an inorganic phosphor material and/or an organic phosphor material used together with the all-inorganic perovskite quantum dot. Herein, the inorganic phosphor material/the organic phosphor material may comprise a phosphor material of a quantum dot structure and/or non-quantum dot structure distinct from the all-inorganic perovskite quantum dot of CsPb(ClaBr1-a-bIb)3.
For example, the inorganic phosphor material may comprise an aluminate phosphor powder (such as LuYAG, GaYAG, YAG, etc.), a silicate phosphor powder, a sulfide phosphor powder, a nitride phosphor powder, a fluoride phosphor powder, etc. The organic phosphor material may comprise a single molecule structure, a polymolecule structure, an oligomer, or a polymer. A compound of the organic phosphor material may comprise a group of perylene, a group of benzimidazole, a group of naphthalene, a group of anthracene, a group of phenanthrene, a group of fluorene, a group of 9-fluorenone, a group of carbazole, a group of glutarimide, a group of 1, 3-diphenylbenzene, a group of benzopyrene, a group of pyrene, a group of pyridine, a group of thiophene, a group of 2, 3-dihydro-1H-benzo[de]isoquinoline-1, 3-dione, a group of benzimidazole, or a combination thereof. For example, a yellow phosphor material such as YAG:Ce, and/or an inorganic yellow phosphor powder comprising a component of a oxynitride, a silicate or a nitride, and/or an organic yellow phosphor powder. For example, the red phosphor powder may comprise the fluoride comprising A2[MF6]:Mn4+, wherein A is selected from the group consisting of Li, Na, K, Rb, Cs, NH4, and a combination thereof, M is selected from the group consisting of Ge, Si, Sn, Ti, Zr and a combination thereof. Optionally, the red phosphor powder may comprise (Sr, Ca)S:Eu, (Ca, Sr)2Si5N8:Eu, CaAlSiN3:Eu, (Sr, Ba)3SiO5:Eu.
In an embodiment, the P-type semiconductor layer may be a P-type GaN material, and the N-type semiconductor layer may be an N-type GaN material. In an embodiment, the P-type semiconductor layer may be a P-type AlGaN material, and the N-type semiconductor layer may be an N-type AlGaN material. The active layer 110 has a multiple quantum well structure.
In an embodiment, the first light emitted from the light emitting diode chip 102, 202 has a wavelength of about 220 nm to 480 nm. In an embodiment, the light emitting diode chip 102, 202 may be the UV light emitting diode chip capable of emitting the first light having a wavelength of about 200 nm to 400 nm. In an embodiment, the light emitting diode chip 102, 202 may be the blue light emitting diode chip capable of emitting the first light having a wavelength of about 430 nm to 480 nm.
In embodiments, the wavelength-converting material of the light emitting device may be contained by the wavelength converting layer, and/or doped in a transparent material. In some embodiments, the wavelength-converting material may be coated on a light emitting side of the light emitting diode chip. Examples of the light emitting devices using the wavelength-converting material are disclosed as below.
In embodiments, the wavelength converting layer 324 comprises one kind of the wavelength-converting material or more kinds of the wavelength-converting materials. Therefore, an emission property of the light emitting diode package structure 318 may be adjusted through the wavelength converting layer 324. In some embodiments, the wavelength converting layer 324 may comprise the transparent material with the wavelength-converting material doped therein. For example, the wavelength converting layer 324 comprise at least one kind of the all-inorganic perovskite quantum dot CsPb(ClaBr1-a-bIb)3 doped in the transparent material. In embodiments, the transparent material comprises a transparent gel. The transparent gel may comprise a material comprising polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), polyamide (PA), polycarbonate (PC), polyimide (PI), polydimethylsiloxane (PDMS), epoxy, silicone, or a combination thereof, etc. In embodiments, the transparent material may comprise a glass material or a ceramic material. A glass thin film of quantum dot may be formed by a method comprising mixing the all-inorganic perovskite quantum dot and the glass material. Alternatively, a ceramic thin film of quantum dot may be formed by a method comprising mixing the all-inorganic perovskite quantum dot and the ceramic material.
In some embodiments, the wavelength converting layer 324 and the light emitting diode chip 302 are separated from each other (by the receiving space 323 in this example), preventing the wavelength converting layer 324 from being close to the light emitting diode chip 302. Therefore, the wavelength converting layer 324 can have desired heat stability and chemical stability that would be affected by the light emitting diode chip 302. In addition, lifespan of the wavelength converting layer 324 can be prolonged. Product reliability of a light emitting diode package structure can be increased. The similar concept will not be repeated hereafter.
In other transformable embodiments, the air gap of the receiving space 323 defined by the wall 322 may be filled with a transparent encapsulating compound (not shown). The transparent encapsulating compound may comprise polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), polyamide (PA), polycarbonate (PC), polyimide (PI), polydimethylsiloxane (PDMS), an epoxy, silicone, etc., or a combination thereof, or other suitable materials. In some embodiments, the transparent encapsulating compound may be doped with one or more kinds of the wavelength-converting materials. In other transformable embodiments, one or more kinds of the wavelength-converting materials may be coated on a light emitting surface of the light emitting diode chip 302. Therefore, in addition to the wavelength converting layer 324, an emission characteristic of a light emitting diode package structure may also be adjusted by the (transparent) encapsulating compound with the wavelength-converting material doped in the (transparent) encapsulating compound and/or be adjusted by a coating layer comprising the wavelength-converting material on the light emitting surface of the light emitting diode chip 302. Kinds of the wavelength-converting materials of the wavelength converting layer 324, and/or the encapsulating compound and/or the coating layer may be adjusted properly according actual demands for products. The similar concept can be applied to other embodiments and will not be repeated hereafter.
In an embodiment, the spaced vacancy 1134 may be an empty space not filled with a substance of liquid or solid state. The spaced vacancy 1134 may be formed by a transparent material or a light transmissive material, to avoid blocking light emitting from the wavelength converting layer 324. For example, the spaced vacancy 1134 may comprise a quartz, a glass, a polymer plastic material, or other suitable materials.
In embodiments, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 is for emitting a white light. In an example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength converting layer 324/the wavelength converting layer 724 may comprise the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the yellow phosphor powder YAG:Ce. The red all-inorganic perovskite quantum dot complies with 0.5≦b≦1; and/or has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 is for emitting a white light. In an example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength converting layer 324/the wavelength converting layer 724 may comprise the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 is for emitting a white light. In an example, the light emitting diode chip 302 may be a UV light emitting diode chip. The wavelength converting layer 324/the wavelength converting layer 724 may comprise the blue all-inorganic perovskite quantum dot CsPb(ClaBr1-a)3, the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3, the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the blue all-inorganic perovskite quantum dot complies with 0<a≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the blue all-inorganic perovskite quantum dot has the particle diameter in a range of about 7 nm to 10 nm. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 1518 or 1618 is for emitting a white light. In this example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength converting layer 724 may comprise the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the yellow phosphor powder YAG:Ce. The red all-inorganic perovskite quantum dot complies with 0.5≦b≦1; and/or has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 1518 or 1618 is for emitting a white light. In this example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength converting layer 724 may comprise the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 1518 or 1618 is for emitting a white light. In this example, the light emitting diode chip 302 may be a UV light emitting diode chip. The wavelength converting layer 724 may comprise the blue all-inorganic perovskite quantum dot CsPb(ClaBr1-a)3, the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3, the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the blue all-inorganic perovskite quantum dot complies with 0<a≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the blue all-inorganic perovskite quantum dot has the particle diameter in a range of about 7 nm to 10 nm. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In some embodiments, the base 320 and the wall 322 of the light emitting diode package structure 2018 shown in
Referring to
Referring to
Referring to
In embodiments, for example, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218, 1318, 1418, 1518, 1618, 1718 as illustrated with
In embodiments, the light emitting diode package structure 2318/plug-in light emitting unit 2456 is for emitting a white light. In this example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength-converting material may comprise the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the yellow phosphor powder YAG:Ce. The red all-inorganic perovskite quantum dot complies with 0.5≦b≦1; and/or has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 2318/plug-in light emitting unit 2456 is for emitting a white light. In this example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength-converting material may comprise the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 2318/plug-in light emitting unit 2456 is for emitting a white light. In this example, the light emitting diode chip 302 may be a UV light emitting diode chip. The wavelength-converting material may comprise the blue all-inorganic perovskite quantum dot CsPb(ClaBr1-a)3, the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3, the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the blue all-inorganic perovskite quantum dot complies with 0<a≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the blue all-inorganic perovskite quantum dot has the particle diameter in a range of about 7 nm to 10 nm. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the plug-in light emitting unit 2856 or 2956 may comprise the wavelength-converting material doped in the transparent gel 2837, or may comprise the wavelength converting layer comprising the wavelength-converting material and disposed on the surface of the light emitting diode chip 302. In embodiments, the transparent gel 2837 may comprise any suitable transparent polymer material, such as, PMMA, PET, PEN, PS, PP, PA, PC, PI, PDMS, epoxy, silicone or other suitable materials, or a combination thereof. The transparent gel 2837 may be doped with other substances to vary an emitting light property according to actual demands. For example, the diffusion particles may be doped into the transparent gel 2837 to change a path of an emitting light. The diffusion particles may comprise TiO2, SiO2, Al2O3, BN, ZnO, etc., and/or have the same particle diameter or different particle diameters.
The transparent gel illustrated in the present disclosure may comprise any suitable transparent polymer material, such as, PMMA, PET, PEN, PS, PP, PA, PC, PI, PDMS, epoxy, silicone or other suitable materials, or a combination thereof.
The transparent gel may be doped with other substances to vary an emitting light property according to actual demands. For example, the diffusion particles may be doped into the transparent gel to change a path of an emitting light. The diffusion particles may comprise TiO2, SiO2, Al2O3, BN, ZnO, etc., and/or have the same particle diameter or different particle diameters.
The light emitting device in the present disclosure is not limited to the foregoing embodiments, and may comprise other kinds of the light emitting diode package structures, may be applied for a light emitting module of the display device such as a back light module or a front light module, or a lighting device such as a tube lamp, a bulb lamp, or may have other types of structures.
The light emitting diode package structure of a single unit is not limited to only the light emitting diode chip of a single, and may use the light emitting diode chips of two or more units for emitting lights of the same color/wavelength or different colors/wavelengths.
In embodiments, the light emitting diode package structure 2018, 2218 and the plug-in light emitting unit 2856, 2956 are for emitting a white light. In this example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength-converting material may comprise the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the yellow phosphor powder YAG:Ce. The red all-inorganic perovskite quantum dot complies with 0.5≦b≦1; and/or has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 2018, 2218 and the plug-in light emitting unit 2856, 2956 are for emitting a white light. In this example, the light emitting diode chip 302 may be a blue light emitting diode chip. The wavelength-converting material may comprise the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 and the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the light emitting diode package structure 2018, 2218 and the plug-in light emitting unit 2856, 2956 are for emitting a white light. In this example, the light emitting diode chip 302 may be a UV light emitting diode chip. The wavelength-converting material may comprise the blue all-inorganic perovskite quantum dot CsPb(ClaBr1-a)3, the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3, the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3. Additionally/optionally, the blue all-inorganic perovskite quantum dot complies with 0<a≦1. Additionally/optionally, the green all-inorganic perovskite quantum dot complies with 0≦b<0.5. Additionally/optionally, the red all-inorganic perovskite quantum dot complies with 0.5≦b≦1. Additionally/optionally, the blue all-inorganic perovskite quantum dot has the particle diameter in a range of about 7 nm to 10 nm. Additionally/optionally, the green all-inorganic perovskite quantum dot has the particle diameter in a range of about 8 nm to 12 nm. Additionally/optionally, the red all-inorganic perovskite quantum dot has the particle diameter in a range of about 10 nm to 14 nm.
In embodiments, the wavelength-converting material comprising the all-inorganic perovskite quantum dot may be applied to a light emitting device of a micro-size, such as a micro-light emitting diode (Micro LED) smaller than a conventional light emitting diode in size.
For example,
In an embodiment, the light emitting diode chip 3102 may be a vertical light emitting diode chip, comprising a first electrode 3214 and a second electrode 3216 on the surface 3102S1 and the surface 3102S2, respectively. The light emitting side of the light emitting diode chip 3102 and the first electrode 3214 are on the same side of the light emitting device 3184.
In an embodiment, the wavelength converting layers 3124 comprise at least a wavelength converting layer 3124R, a wavelength converting layer 3124G, a wavelength converting layer 3124B. The wavelength converting layer 3124R can be excited by the light emitting diode chip 3102 to emit a red light. The wavelength converting layer 3124G can be excited by the light emitting diode chip 3102 to emit a green light. The wavelength converting layer 3124B can be excited by the light emitting diode chip 3102 to emit a blue light. This configuration may be used as a pixel for application in a display, with the distinct wavelength converting layers 3124 as distinct sub pixels. In other words, the wavelength converting layer 3124R corresponds to a red sub pixel. The wavelength converting layer 3124G corresponds to a green sub pixel. In addition, the wavelength converting layer 3124B corresponds to a blue sub pixel.
In embodiments, the wavelength converting layers 3124 may further comprise a wavelength converting layer 3124W corresponding to a white sub pixel. The wavelength converting layer 3124W may be separated from the wavelength converting layers 3124R, 3124G, 3124B by the spacing layers S and disposed on the surface 3102S1 of the light emitting diode chip 3102.
The pixel comprises at least the red sub pixel, the green sub pixel and the blue sub pixel. The pixel may further comprise the white sub pixel according to designs. A plurality of the pixels or the sub pixels may be arranged in an array design.
In embodiments, spacing layers S may comprise a material comprising a light absorbing material or/and a reflective material, avoiding affection between lights of the sub pixels of different colors to improve display effect of a display. For example, the light absorbing material may comprise a black gel, etc., or a combination thereof. For example, the reflective material may comprise a white gel, etc., or a combination thereof.
Moreover, the first electrode 3214 may comprise a first electrode 3214R, a first electrode 3214G, a first electrode 3214B, and a first electrode 3214W, corresponding to the red sub pixel, the green sub pixel, the blue sub pixel and the white sub pixel, respectively. The second electrode 3216 may be a common electrode of the red sub pixel, the green sub pixel, the blue sub pixel and the white sub pixel. In other embodiments, electrodes separated from each other corresponding to the sub pixels of different colors, similar with the first electrodes 3214, may be used. The sub pixels of different colors may be independently controlled by the distinct corresponding electrodes to be addressed or derived to emit a light.
In embodiments, for example, the light emitting diode chip 3102 may be a UV light emitting diode chip for emitting the first light having a wavelength of about 200 nm to 400 nm. Otherwise, the light emitting diode chip 3102 may be a blue light emitting diode chip for emitting the first light having a wavelength of about 430 nm to 480 nm.
In embodiments, the wavelength-converting material of the wavelength converting layer 3124R corresponding to the red sub pixel may comprise the red all-inorganic perovskite quantum dot CsPb(Br1-bIb)3, complying with 0.5≦b≦1, and/or having the particle diameter in a range of about 10 nm to 14 nm. The wavelength-converting material of the wavelength converting layer 3124G corresponding to the green sub pixel may comprise the green all-inorganic perovskite quantum dot CsPb(Br1-bIb)3, complying with 0≦b<0.5, and/or having the particle diameter in a range of about 8 nm to 12 nm. The wavelength-converting material of the wavelength converting layer 3124B corresponding to the blue sub pixel may comprise the blue all-inorganic perovskite quantum dot CsPb(ClaBr1-a)3, complying with 0<a≦1, and/or having the particle diameter in a range of about 7 nm to 10 nm; and/or a blue phosphor powder. The wavelength-converting material may be doped in the transparent material.
In an example of the light emitting diode chip 3102 being the blue light emitting diode chip, the wavelength converting layer 3124B corresponding to the blue sub pixel may be a transparent material, so that a blue light emitted from the blue sub pixel is directly provided by the light emitting diode chip 3102. The wavelength converting layer 3124W corresponding to the white sub pixel may comprise the yellow phosphor powder, such as YAG:Ce, capable of emitting a yellow light by being excited by a portion of the first light (blue light having a wavelength of about 430 nm to 480 nm) emitted from the light emitting diode chip 3102, and the yellow light is mixed with the remained blue light to form an emitting white light.
In embodiments, the micro light emitting diode as shown in
The present disclosure may be better understood by reference to the following embodiments.
[Manufacturing all-Inorganic Perovskite Quantum]
Cs2CO3 of 0.814 g, octadecene (ODE) of 40 mL and oleic acid (OA) of 2.5 mL were put in a three-necked bottle of 100 mL, and a dewatering step was performed thereto in a condition of vacuum and 120° C. for one hour. Then, the three-necked bottle was heated to 150° C. in a nitrogen gas system until the Cs2CO3 and the oleic acid reacted completely so as to obtain a Cs precursor (Cs-Oleate precursor).
Next, ODE of 5 mL and PbX2 of 0.188 mmol (with X=Cl, Br or I, or a combination thereof, decided according to a halogen element contained in the all-inorganic perovskite quantum dot) were put in a three-necked bottle of 25 mL, and a dewatering step was performed thereto in a condition of vacuum and 120° C. for one hour. Then oleylamine of 0.5 mL and OA of 0.5 mL were injected into the three-necked bottle. After the solution became limpid, a heating temperature was increased to 140-200° C. (decided to adjust a particle size of the all-inorganic perovskite quantum dot). Then the Cs-Oleate precursor of 0.4 mL was rapidly injected into the three-necked bottle. After waiting 5 seconds, the reaction system was cooled by in a chilled-water bath. Then a centrifugal purification is performed so as to get the all-inorganic perovskite quantum dot CsPb(ClaBr1-a-bIb)3.
[Red/Green all-Inorganic Perovskite Quantum Dot CsPb(Br1-bIb)3]
From the results of
The all-inorganic perovskite quantum dots CsPb(Br1-bIb)3 complying with b=0.5-1 are red quantum dots. The red all-inorganic perovskite quantum dot CsPb(Br0.4I0.6)3 has the strongest emission position at 625 nm, complying with the red emission wavelength range in the common market condition. The red all-inorganic perovskite quantum dot CsPb(Br0.4I0.6)3 has the FWHM of 35 nm, narrower than a common commercial red phosphor powder, indicating having a better pure quality of color. Therefore, as the all-inorganic perovskite quantum dot is applied to a light emitting device, an emission efficiency of a product can be increased. Otherwise, when the all-inorganic perovskite quantum dot together with a phosphor material of another kind is applied to a light emitting device, a color rendering of a product can be increased.
Among the all-inorganic perovskite quantum dots CsPb(Br1-bIb)3, the all-inorganic perovskite quantum dot complying with b=0.4 (CsPb(Br0.6I0.4)3) is a green quantum dot. The green all-inorganic perovskite quantum dot CsPb(Br0.6I0.4)3 has the strongest emission position at 557 nm, complying with the green emission wavelength range in the common market condition. The green all-inorganic perovskite quantum dot CsPb(Br0.6I0.4)3 has the FWHM of 27 nm, narrower than a common commercial green phosphor powder, indicating having a better pure quality of color. Therefore, as the all-inorganic perovskite quantum dot is applied to a light emitting device, an emission efficiency of a product can be increased. Otherwise, when the all-inorganic perovskite quantum dot together with a phosphor material of another kind is applied to a light emitting device, a color rendering of a product can be increased.
[All-Inorganic Perovskite Quantum Dot CsPb(ClaBr1-a)3]
From the results of
[Use of Various Kinds of all-Inorganic Perovskite Quantum Dots]
Table 4 lists conditions and emitting results of Embodiment 1 to Embodiment 5. In each of the embodiments, a light emitting diode chip is used excite a combination of the all-inorganic perovskite quantum dots CsPb(Br1-bIb)3 of various kinds. As shown in Table 4, Embodiment 1 uses the all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 of two kinds, respectively being b=0.3-0.4 and b=0.7-0.8, and exhibits a spectrum having a general color rendering index (Ra) of 40. Embodiment 2 uses the all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 of three kinds, respectively being b=0.1-0.2, b=0.5-0.6 and b=0.6-0.7, and exhibits a spectrum having a Ra of 60. Embodiment 3 uses the all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 of four kinds, respectively being b=0-0.1, b=0.2-0.3, b=0.4-0.5 and b=0.6-0.7, and exhibits a spectrum having a Ra of 75. Embodiment 4 uses the all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 of five kinds, respectively being b=0-0.1, b=0.3-0.4, b=0.5-0.6, b=0.7-0.8 and b=0.8-0.9, and exhibits a spectrum having a Ra of 90. Embodiment 5 uses the all-inorganic perovskite quantum dot CsPb(Br1-bIb)3 of six kinds, respectively being b=0-0.1, b=0.2-0.3, b=0.5-0.6, b=0.6-0.7, b=0.7-0.8 and b=0.9-1, and exhibits a spectrum having a Ra of 95.
In other embodiments, as shown in
According to the disclosed embodiments, the all-inorganic perovskite quantum dot having the chemical formula of CsPb(ClaBr1-a-bIb)3, complying with 0≦a≦1, 0≦b≦1, can exhibit a good property of an emission spectrum having a narrow FWHM and pure quality of color, and can improve an emission effect of a light emitting device as being applied for the light emitting device.
While the invention has been described by way of example and in terms of the preferred embodiment (s), it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
105131057 | Sep 2016 | TW | national |
This application claims the benefit of U.S. provisional application Ser. No. 62/260,657, filed Nov. 30, 2015; U.S. provisional application Ser. No. 62/291,552, filed Feb. 5, 2016; U.S. provisional application Ser. No. 62/334,502, filed May 11, 2016; Taiwan application Serial No. 105131057, filed Sep. 26, 2016, the subject matters of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62260657 | Nov 2015 | US | |
62291552 | Feb 2016 | US | |
62334502 | May 2016 | US |