Wavelength-division multiplexing in a multi-wavelength photon density wave system

Information

  • Patent Grant
  • 8494604
  • Patent Number
    8,494,604
  • Date Filed
    Monday, September 21, 2009
    15 years ago
  • Date Issued
    Tuesday, July 23, 2013
    11 years ago
Abstract
Multi-wavelength photon density wave medical systems, methods, and devices are provided. In one embodiment, a multi-wavelength photon density wave patient monitor includes multiple light sources, a driving circuit, a fiber coupler, a sensor cable connector, a wavelength demultiplexer, detectors, and data processing circuitry. The driving circuit may modulate the light sources to produce several single-wavelength input photon density wave signals, which the fiber coupler may join into a multi-wavelength input signal. The sensor cable connector may provide this multi-wavelength input signal to a sensor attached to the patient and receive a multi-wavelength output signal. The wavelength demultiplexer may separate the multi-wavelength output signal into single-wavelength output signals for detection by the detectors. Based on a comparison of one of the single-wavelength output signals to a corresponding one of the single-wavelength input signals, the data processing circuitry may determine a physiological parameter of the patient.
Description
BACKGROUND

The present disclosure relates generally to non-invasive measurement of physiological parameters and, more particularly, to multi-wavelength photon density wave measurements of physiological parameters.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


Pulse oximetry may be defined as a non-invasive technique that facilitates monitoring of a patient's blood flow characteristics. For example, pulse oximetry may be used to measure blood oxygen saturation of hemoglobin in a patient's arterial blood and/or the patient's heart rate. Specifically, these blood flow characteristic measurements may be acquired using a non-invasive sensor that passes light through a portion of a patient's tissue and photo-electrically senses the absorption and scattering of the light through the tissue. Typical pulse oximetry technology may employ two light emitting diodes (LEDs) and a single optical detector to measure pulse and oxygen saturation of a given tissue bed.


A typical signal resulting from the sensed light may be referred to as a plethysmograph waveform. Such measurements are largely based on absorption of emitted light by specific types of blood constituents. Once acquired, this measurement may be used with various algorithms to estimate a relative amount of blood constituent in the tissue. For example, such measurements may provide a ratio of oxygenated hemoglobin to total hemoglobin in the volume being monitored. The amount of arterial blood in the tissue is generally time-varying during a cardiac cycle, which is reflected in the plethysmographic waveform.


The accuracy of blood flow characteristic estimation via pulse oximetry may depend on a number of factors. For example, variations in light absorption characteristics can affect accuracy depending on where the sensor is located and/or the physiology of the patient being monitored. Additionally, various types of noise and interference can create inaccuracies. For example, electrical noise, physiological noise, and other interference can contribute to inaccurate blood flow characteristic estimates.


SUMMARY

Certain aspects commensurate in scope with the originally claimed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the embodiments might take and that these aspects are not intended to limit the scope of the presently disclosed subject matter. Indeed, the embodiments may encompass a variety of aspects that may not be set forth below.


Present embodiments relate to multi-wavelength photon density wave medical systems, methods, and devices. For example, a multi-wavelength photon density wave patient monitor may include one or more light sources, a driving circuit, a fiber coupler, a sensor cable connector, a wavelength demultiplexer, detectors, and data processing circuitry. The driving circuit may modulate the one or more light sources to produce several single-wavelength photon density wave signals, which the fiber coupler may combine into a multi-wavelength input signal. The sensor cable connector may provide this multi-wavelength input signal to a sensor attached to the patient and receive a multi-wavelength output signal. The wavelength demultiplexer may separate the multi-wavelength output signal into single-wavelength output signals for detection by the detectors. Based on a comparison of one of the single-wavelength output signals to a corresponding one of the single-wavelength input signals, the data processing circuitry may determine a physiological parameter of the patient.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the presently disclosed subject matter may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a perspective view of a pulse oximeter system in accordance with an embodiment;



FIG. 2 is a block diagram of the pulse oximeter system of FIG. 1, in accordance with an embodiment;



FIG. 3 is a plot of a multi-wavelength photon density wave signal for use in the system of FIG. 1, in accordance with an embodiment;



FIG. 4 is a plot representing a single-wavelength photon density wave signal received when the multi-wavelength photon density wave signal of FIG. 3 is passed through a patient, in accordance with an embodiment;



FIG. 5 is a plot representing another single-wavelength photon density wave signal received when the multi-wavelength photon density wave signal of FIG. 3 is passed through a patient, in accordance with an embodiment;



FIG. 6 is a plot representing a comparison between the multi-wavelength photon density wave signal of FIG. 3 and the received single-wavelength photon density wave signals of FIGS. 4 and 5, in accordance with an embodiment;



FIG. 7 is a flow chart representing an embodiment of a method for obtaining physiological measurements using the system of FIG. 1, in accordance with an embodiment; and



FIG. 8 is a flowchart representing an embodiment of an algorithm for use by the system of FIG. 1 for determining scattering and absorption properties of patient tissue.





DETAILED DESCRIPTION

One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


Present embodiments relate to non-invasively measuring physiological parameters corresponding to blood flow in a patient. Specifically, light may be emitted into a patient and photoelectrically detected after having passed through pulsatile patient tissue. Rather than send a light signal modulated at a rate that is effectively DC through the pulsatile patient tissue, present embodiments involve modulating the light at frequencies sufficient to produce waves of photons known as photon density waves in the tissue. The photon density waves produced by the modulated light source may propagate through the pulsatile tissue of the patient, undergoing refraction, diffraction, interference, dispersion, attenuation, and so forth. These effects may vary depending on the current composition of the patient tissue, which in turn may vary as blood enters and exits the tissue.


Multiple photon density wave signals of various wavelengths of light may be multiplexed at a patient monitor into a single emission optical cable and provided to a sensor attached to a patient. Such a multi-wavelength photon density wave signal, emitted into pulsatile patient tissue, may be recovered by the sensor after reflection or transmission through the tissue. Thereafter, a single detection optical cable may carry the received signal to the patient monitor. The patient monitor may demultiplex the received multi-wavelength photon density wave signal into single-wavelength signals before photoelectrically detecting them.


Each received and detected single-wavelength photon density wave signal may be analyzed to obtain scattering and absorption properties of the pulsatile patient tissue. In particular, a change in phase of a photon density wave signal passed through the patient tissue may correspond to scattering components of the tissue, while a change in amplitude may correspond to absorptive components in the tissue. For example, since the scattering coefficient may change over time depending on a total quantity of hemoglobin in the tissue, variations in phase changes may correspond to variations in total hemoglobin. Thus, such changes in phase over time may be due predominantly to the total number of scattering particles (e.g., total hemoglobin), and not merely a ratio of particles (e.g., oxygenated and total hemoglobin).


Changes in amplitude of the photon density wave signals may correspond to the absorptive components of the pulsatile patient tissue, not scattering components. Certain components of the tissue may absorb different wavelengths of light, such as red or infrared light, in different amounts. By analyzing decreases in amplitudes of the received single-wavelength photon density wave signals, a ratio of different types of particles in the pulsatile patient tissue, such as oxygenated and deoxygenated hemoglobin, may be estimated. With measurements of scattering and absorption characteristics of the tissue, physiological parameters such as regional oxygen saturation, total hemoglobin, perfusion, and many others may be obtained.



FIG. 1 illustrates a perspective view of a photon density wave pulse oximetry system 10, which may include a patient monitor 12 and a pulse oximeter sensor 14. A sensor cable 16 may connect the patient monitor 12 to the sensor 14, and may include two fiber optic cables. One of the fiber optic cables within the sensor cable 16 may transmit a multi-wavelength photon density wave input signal from the patient monitor 12 to the sensor 14, and another of the fiber optic cables may transmit a multi-wavelength photon density wave output signal from the sensor 14 to the patient monitor 12. The cable 16 may couple to the monitor 12 via an optical connection 18. Based on signals received from the sensor 14, the patient monitor 12 may determine certain physiological parameters that may appear on a display 20. Such parameters may include, for example, a plethysmogram or numerical representations of patient blood flow (e.g., partial oxygen saturation or a measurement of total hemoglobin).


The patient monitor 12 may modulate light sources of two or more wavelengths at modulation frequencies of approximately 50 MHz-3 GHz, which may produce resolvable photon density wave signals in pulsatile tissue because the resulting photon density waves at such frequencies may have wavelengths shorter than a mean absorption distance in pulsatile tissue. In some embodiments, the patient monitor 12 may sweep the modulation frequency of one or more of the light sources in a range from 50 MHz to 2.4 GHz. Some embodiments of the patient monitor 12 may be configured to modulate between 100 MHz and 1 GHz or to sweep a range from 100 MHz to 1 GHz. The patient monitor 12 may, in certain embodiments, modulate the light sources primarily at a frequency of approximately 500 MHz.


The patient monitor 12 may multiplex these several single-wavelength photon density wave signals into a single multi-wavelength photon density wave signal, which may be provided to the sensor 14 via the sensor cable 16. The sensor 14 may include an emitter output 22 and a detector input 24. The emitter output 22 may guide the multi-wavelength photon density wave signal from the sensor cable 16 to enter pulsatile tissue of a patient 26. The detector input 24 may receive the resulting multi-wavelength photon density signal from the pulsatile tissue of the patient 26 and guide the received signal back to the patient monitor 12 via the sensor cable 16. The sensor 14 may be, for example, a reflectance-type sensor or a transmission-type sensor.


When the resulting multi-wavelength photon density wave signal reaches the patient monitor 12, the patient monitor 12 may demultiplex the signal into single-wavelength component signals. Wave characteristics of the received single-wavelength photon density signals may be measured in accordance with present embodiments, and may include characteristics that relate predominantly to absorption of the emitted light in the probed medium (e.g., amplitude change) and characteristics that relate predominantly to scattering in the probed medium (e.g., phase shift). The correlation of certain wave characteristic (e.g., amplitude and phase) measurements to certain medium characteristics (e.g., quantity of scattering particles and blood oxygen saturation) may depend on the modulation of the light sources within the patient monitor, which may generate resolvable photon density waves. Specifically, to produce resolvable photon density waves, the modulation frequency of such signals should produce photon density waves having modulation wavelengths that are shorter than a mean absorption distance of the probed tissue medium.


As indicated above, the system 10 may be utilized to make measurements that relate predominantly to scattering in the observed volume. More specifically, the system 10 may be utilized to make measurements relating to a total amount of scattering particles in the observed volume based on phase shifts detected in the emitted light waves. For example, the system 10 may emit light that is modulated at a frequency (e.g., 50 MHz to 3 GHz) sufficient to generate resolvable photon density waves, and then measure the phase shift of these waves to facilitate estimation of a total number of scattering particles in the observed medium. Similarly, as set forth above, the system 10 may be utilized to make measurements that relate predominantly to absorption in an observed volume. For example, the system 10 may detect changes in AC and DC amplitudes of the resolvable photon density waves to facilitate detection of a ratio of certain constituents in the blood (e.g., a ratio of oxygenated hemoglobin to the total hemoglobin). It should be noted that the amplitude changes and phase shifts measured at a detection point may be considered relative to one or more points. For example, the amplitude and phase shifts measured from the detector input may be considered relative to the associated values generated at the emitter output.



FIG. 2 represents a block diagram of the system 10 of FIG. 1. As illustrated in FIG. 2, the patient monitor 12 may generate several single-wavelength photon density wave signals using a driving circuit 28, which may include two or more light sources, at least two of which may emit different wavelengths of light. Such wavelengths may include red wavelengths of between approximately 600-700 nm and/or infrared wavelengths of between approximately 800-1000 nm. By way of example, the light sources of the driving circuit 28 may be laser diodes that emit red or infrared light with wavelengths of approximately 660 nm or 808 nm, respectively. In some embodiments, the one or more light sources of the driving circuit 28 may emit three or more different wavelengths light. Such wavelengths may include a red wavelength of between approximately 620-700 nm (e.g., 660 nm), a far red wavelength of between approximately 690-770 nm (e.g., 730 nm), and an infrared wavelength of between approximately 860-940 nm (e.g., 900 nm). Other wavelengths that may be emitted by the one or more light sources of the driving circuit 28 may include, for example, wavelengths of between approximately 500-600 nm and/or 1000-1100 nm


The driving circuit 28 may modulate these light sources at a modulation frequency between approximately 50 MHz to 3 GHz. Such modulation frequencies may suffice to produce resolvable photon density waves when emitted into pulsatile tissue of the patient 26, since corresponding wavelengths of the photon density waves may be shorter than a mean distance of absorption in the tissue. The modulation frequency of each light source may vary, as one light source may have a higher or lower modulation frequency than another light source. The driving circuit 28 may represent one or more components of commonly available drive circuits (e.g., DVD R/W driver circuits) for high-frequency modulation. Examples of such devices may include the LMH6525 available from National Semiconductor Inc.


In FIG. 2, the driving circuit 28 is illustrated to generate two single-wavelength photon density wave signals of different wavelengths respectively through an optical cable 30 and an optical cable 32. A fiber coupler 34 may join the two optical cables 30 and 32 together, multiplexing the two single-wavelength photon density wave signals into a multi-wavelength photon density wave signal. An optical cable 36, serving as an emitting cable, may carry the multi-wavelength photon density wave signal through the sensor cable 16 to the emitter output 22 of the sensor 14. The multi-wavelength photon density wave signal may thereafter enter pulsatile tissue of the patient 26, where the signal may be scattered and absorbed by various components of the tissue. The detector input 24 may receive and guide the portion of the signals reflected or transmitted through the patient 26 tissue to the patient monitor 12 over an optical cable 38, which may be a second of only two optical cables of the sensor cable 16.


The received multi-wavelength photon density wave may be separated into its component light signals of various wavelengths by a wavelength demultiplexer 40. Using filters or gratings, for example, the wavelength demultiplexer 40 may split the received multi-wavelength photon density wave signal from optical cable 38 into received single-wavelength photon density wave signals that correspond to the emitted single-wavelength photon density wave signals originally produced by the driving circuit 28. In other words, the wavelength demultiplexer 40 may break the received multi-wavelength photon density wave signal into a first received signal at the first wave length (e.g., 660 nm) and a second received signal at the second wave length (e.g., 808 nm), which respectively may be analyzed by photodetectors 42. The detectors 42 may receive, amplify, and convert these received single-wavelength photon density wave signals into corresponding electrical signals. Resulting electrical signals may enter phase detection circuitry 44. The output of the phase detection circuitry 44 may be amplified and digitized and then input into a digital signal processor (DSP) 46 to be analyzed for phase and amplitude changes.


By analyzing changes in amplitude and phase between the received single-wavelength photon density wave signals and corresponding emitted single-wavelength photon density wave signals of a particular wavelength of light, absorption and scattering properties of the patient 26 tissue for that wavelength of light may be determined. To obtain phase changes corresponding to scattering in the patient 26 tissue, the phase detection circuitry 44 may obtain the received single-wavelength photon density wave signals from the detectors 42 and clock signals or reference signals relating to the corresponding original emitted single-wavelength photon density wave signals from the driving circuitry 28. The phase detection circuitry 44 may simultaneously detect phase changes on multiple channels of signals, or may detect phase changes by cycling through multiple channels and sampling the channels one at a time. In certain embodiments, the phase detection circuitry 44 and the driving circuit 28 may be individual components of a single semiconductor device, such as a DVD R/W driver circuit. Such devices may include the LMH6525 available from National Semiconductor Inc.


The DSP 46 may receive the phase change information from the phase detection circuitry 44, reference signal information from the driver circuit 28. By comparing amplitude changes between the received single-wavelength photon density wave signals and the emitted single-wavelength photon density wave signals of the same corresponding wavelength of light, absorption properties of the patient 26 tissue for each wavelength of light may be determined. Using the absorption and scattering information associated with the amplitude changes and phase changes of the photon density wave signals passed through the patient 26, the DSP 46 may determine a variety properties based on algorithms stored in memory on the DSP 46 or received from external sources, such as a microprocessor 48 or other devices via a bus 50. One example of such an algorithm may be described below with reference to FIG. 8.


In general, the DSP 46 may ascertain certain properties of the patient 26 tissue based on the following relationships described below. For a modulation frequency where the product of the frequency and the mean time between absorption events is much larger than 1, the change in phase Δφ between two points located a distance r from each other on a tissue bed may be given by the following relation:










Δϕ
=

r




ω






μ
s




6

c





,




(
1
)








where c is the speed of light, ω is the angular frequency of modulation, and μ′s is the reduced scattering coefficient. The reduced scattering coefficient for a tissue bed accounts for both blood and surrounding tissue components. This can be written as:

μ′stotal=Vbloodμ′sblood+Vtissueμ′stissue  (2).

The time varying component of this equation at a single wavelength will generally be only the portion due to arterial blood. The time varying component of this equation at a second wavelength will allow for the deconvolution of the scattering coefficient. The scattering coefficient for blood is related to the hematocrit (HCT) through the following relation:

μ′sbloods(HCT/Vi)(1−HCT)(1.4−HCT)  (3),

where g is the anisotropy factor, σ is the scattering cross section of an erythrocyte, Vi is the volume of an erythrocyte and HCT is the hematocrit.


As indicated above, the phase of the photon density waves may be sensitive to changes in the scattering coefficient, while the amplitude of the photon density waves may be sensitive to the concentration of absorbers in the medium. Specifically, with regard to amplitude measurements, the AC amplitude and DC amplitude may yield information about absorption in the volume. Thus, detection of amplitude changes in the photon density waves may be utilized to calculate absorber concentration values in the observed medium, such as blood oxygen saturation values. Such calculations may be made using a standard ratio of ratios (e.g., ratrat) technique for the constant and modulated values of the photon density wave amplitudes at two wavelengths. Once the ratio of ratios values is obtained, it may be mapped to the saturation from clinical calibration curves. In general, the amplitude of the resulting photon density waves after passing through the patient 26 tissue may be described as follows:










A
=



A
0


4

π






Dr
sd





exp
[


-

r
sd








[



(


μ
a


c

)

2

+

ω
2


]


1
2


+


μ
a


c



2

D




]



,




(
4
)








where A0 is the initial amplitude, D is the diffusion coefficient given as






D
=


c

3


(


μ
s


+

μ
a


)



·

μ
a







is the absorption coefficient, and rsd is the distance between the emitter and the detector.


With regard to phase shift measurements, when the wavelength of the photon density waves is less than a mean absorption distance of the pulsatile tissue of the patient 26, the phase becomes almost exclusively a function of the scattering coefficient. While dependent upon the tissue bed being probed, this is generally believed to occur at a modulation frequency in the range of approximately 500 MHz. Thus, the phase shift measurement may yield information about the number of erythrocytes or red blood cells in the local probed volume. The HCT discussed above is proportional to the number of erythrocytes. Accordingly, by sweeping frequencies, a multi-parameter output may be obtained that relates to standard pulse oximetry measurements as well as the puddle hematocrit. In general, the change in phase of the resulting photon density waves after passing through the patient 26 tissue may be described as follows:










ΔΦ
=



r
sd







[



(


μ
a


c

)

2

+

ω
2


]


1
2


-


μ
a


c


D



+

Φ
0



,




(
5
)








where Φ0 is a constant.


The amplitude and phase at a given frequency may be proportional to the scattering and absorption coefficient at a given wavelength until the product of the frequency and the mean time between absorption events is much larger than 1. When the product of the frequency and the mean time between absorption events is much larger than 1, the amplitude is a function of the absorption and phase is only a function of the scattering. Thus, in some embodiments, the driving circuit 28 may perform a frequency sweep over time (e.g., from 100 MHz to 1 GHz) to reduce the error in the determination of a single value of reduced scattering coefficient for the blood and a single value of absorption coefficient.


In some embodiments, by modulating the light sources at a sufficient frequency, and, thus, facilitating a detectable phase shift that corresponds to scattering particles, present embodiments may provide an extra degree of certainty for blood flow parameter measurements. Indeed, the detected amplitude for the photon density waves may be utilized to calculate traditional pulse oximetry information and the phase may be utilized to confirm that such values are correct (e.g., within a certain range of error). For example, the amplitude information may be utilized to calculate a blood oxygen saturation (SpO2) value and empirical data may indicate that a particular SpO2 value should correspond to a particular phase variation at a given frequency. In other words, there may be a certain phase change that should accompany a given increase in absorber observed as a change in amplitude. Various known techniques (e.g., learning based algorithms such as support vector machines, cluster analysis, neural networks, and PCA) based on the measured phase shift and amplitude change may be compared to determine if the amplitude shift and phase shift correlate to a known SpO2. If both the measured amplitude shift and phase shift correlate to a known SpO2, the measured SpO2 value may be deemed appropriate and displayed or utilized as a correct SpO2 value. Alternatively, if the measured amplitude shift and phase shift do not agree, the calculated SpO2 value may be identified as being corrupt or including too much noise and, thus, may be discarded


As shown in FIG. 2, the patient monitor 12 may include a general- or special-purpose microprocessor 48 on a bus 50, which may govern other general operations of the patient monitor 12, such as how data from the DSP 46 is employed by other components on the bus 50. A network interface card (MC) 52 may enable the patient monitor 12 to communicate with external devices on a network. A read only memory (ROM) 54 may store certain algorithms, such as those used by the DSP 46 to determine absorption and scattering properties of the patient 26 tissue, and nonvolatile storage 56 may store longer long-term data. Additionally or alternatively the nonvolatile storage 56 may also store the algorithms for determining tissue properties.


Other components of the patient monitor 12 may include random access memory (RAM) 58, a display interface 60, and control inputs 62. The RAM 58 may provide temporary storage of variables and other data employed while carry out certain techniques described herein, while the display interface 60 may allow physiological parameters obtained by the patient monitor 12 to appear on the display 20. Control inputs 62 may enable a physician or other medical practitioner to vary the operation of the patient monitor 12. By way of example, a practitioner may select whether the patient 26 is an adult or neonate, and/or whether the tissue is high perfusion or low perfusion tissue. Such a selection with the control inputs 60 may vary the modulation frequency of one or more of the single-wavelength photon density wave signals, may disable one or more of the single-wavelength photon density wave signals, or may cause a preprogrammed sequence of operation, such as a sweep of modulation frequencies for one or more of the single-wavelength photon density wave signals, to begin.


As noted above, the driving circuit 28 may emit several single-wavelength photon density wave signals, which may be combined in the fiber coupler 34 into a one multi-wavelength photon density wave signal and sent to the sensor 14. Turning to FIG. 3, a plot 64 may describe an embodiment of such a multi-wavelength photon density wave signal that includes two single-wavelength photon density waves at the same modulation frequency and at the same phase. In the plot 64, an ordinate 66 represents relative amplitude, and an abscissa 68 represents time in units of nanoseconds (ns). Numerals 70 and 72 respectively refer to two single-wavelength photon density wave signals (e.g., a 660 nm photon density wave signal and an 808 nm photon density wave signal), which happen to have the same amplitude, be modulated at the same frequency, and be in phase. It should be understood that the two signals 70 and 72 may alternatively have different amplitudes, modulation frequencies, and/or phases.


A multi-wavelength photon density wave signal, such as the signal illustrated in plot 64 of FIG. 3, may pass through the pulsatile tissue of the patient 26 via the sensor 14. A resulting multi-wavelength photon density wave signal may be received by the sensor 14 and sent to the patient monitor 12. This resulting multi-wavelength photon density wave signal may be separated by the wavelength demultiplexer 40 into component single-wavelength photon density wave signals. FIGS. 4 and 5 illustrate these resulting single-wavelength photon density wave signals.


In particular, plot 74 of FIG. 4 illustrates a single-wavelength photon density wave signal of a first wavelength (e.g., 660 nm). In the plot 74, an ordinate 76 represents relative amplitude, and an abscissa 78 represents time in units of nanoseconds (ns). Numeral 80 refers to the received output single-wavelength photon density wave signal of the first wavelength, which may generally differ from the corresponding original input single-wavelength photon density wave signal 70 in that amplitude may be reduced and phase may be offset.


Similarly, plot 82 of FIG. 5 illustrates a single-wavelength photon density wave signal of a second wavelength (e.g., 808 nm). In the plot 82, an ordinate 84 represents relative amplitude, and an abscissa 86 represents time in units of nanoseconds (ns). Numeral 88 refers to the received output single-wavelength photon density wave signal of the second wavelength, which may generally differ from the corresponding original input single-wavelength photon density wave signal 72 in that amplitude may be reduced and phase may be offset.


Superimposing the plots 64, 74, and 82 may illustrate how the received single-wavelength photon density wave signals 80 and 88 differ from their corresponding original input single-wavelength photon density wave signals 70 and 72, as shown in FIG. 6. Like the plots 64, 74, and 82 of FIGS. 3-5, plot 90 of FIG. 6 includes an ordinate 92 representing relative amplitude and an abscissa 94 representing time in units of nanoseconds (ns). The emitted input single-wavelength photon density wave signal 70 and the corresponding output single-wavelength photon density wave signal 80 may have a DC amplitude difference of ΔDC1, an AC amplitude difference of ΔAC1, and a phase difference of Δφ1. Meanwhile, the emitted input single-wavelength photon density wave signal 72 and the corresponding output single-wavelength photon density wave signal 88 may have a DC amplitude difference of ΔDC2, an AC amplitude difference of ΔAC2, and a phase difference of Δφ2. Since the amplitude measurements ΔDC1, ΔAC1, ΔDC2, and ΔAC2 correspond essentially only to absorption in the patient 26 tissue, and the phase differences Δφ1 and Δφ2, comparing the signals 80 and 88 to signals 70 and 72, respectively, produces at least four measurements associated with properties of the patient 26 tissue, including two absorption and two scattering properties, as generally described with reference to FIG. 8 below.



FIG. 7 illustrates a flowchart 96, which represents an embodiment of a method for performing photon density wave measurements using two wavelengths of light. In a first step 98, the driving circuit 28 may modulate light sources of different wavelengths at modulation frequencies sufficient to produce resolvable photon density waves within the patient 26. Generally, such modulation frequencies may result in a photon density wave wavelength shorter than a mean absorption distance of the pulsatile tissue of the patient 26. In other words, such modulation frequencies may exceed the product of the mean absorption coefficient multiplied by the speed of light. Thus, depending on the patient 26, modulation frequencies may be between 50 MHz to 3 GHz. The modulation frequencies may or may not vary among the light sources and may or may not vary over time. In some embodiments, all light sources may be modulated at a frequency of approximately 500 MHz.


In step 100, the several single-wavelength photon density wave signals may be combined into a single multi-wavelength photon density wave signal via the fiber coupler 34, before being transmitted to the sensor 14 via the optical cable 36. In step 102, the multi-wavelength photon density wave signal may enter pulsatile tissue of the patient 26 through the emitter output 22 of the sensor 14. After the signal has been reflected or transmitted through the patient 26 tissue, the detector input 24 of the sensor 14 may receive and guide the signal to the optical cable 38, which may transmit the signal back to the patient monitor 12.


The output multi-wavelength photon density wave signal may be demultiplexed into its component output single-wavelength photon density wave signals in the wavelength demultiplexer 40 using grating or optical filters, before being respectively detected in the detectors 42 in step 104. In step 106, the phase detection circuitry 44 may determine phase changes between the output single-wavelength photon density wave signals and the input single-wavelength photon density wave signals, and the DSP 46 may determine amplitude changes. The DSP 46 and/or microprocessor 48 may thereafter determine various scattering and absorption properties of the patient 26 tissue, since changes in phase may correspond to scattering in the patient 26 tissue, while changes in amplitude may correspond to absorption.



FIG. 8 is a flowchart 108, which represents an algorithm that may be used by a processor, such as the DSP 46 of the patient monitor 12, to determine physiological properties of the patient 26 tissue using values obtained by passing a multi-wavelength photon density wave signal through the patient 26 tissue. As such, it should be understood that the flowchart 108 may generally begin after all or part of the flowchart 96 of FIG. 7 has been carried out. In a first step 110, phase change Δφ1 and/or amplitude change ΔDC1 and/or ΔAC1 values for one of the single-wavelength components of the multi-wavelength photon density wave signal may be received into or determined by a processor, such as the DSP 46.


In step 112, the DSP 46 may determine a scattering property of the patient 26 tissue for the moment in time at which the single-wavelength component of the multi-wavelength photon density wave signal has passed through the pulsatile tissue of the patient 26. Generally, the scattering property may be represented by a scattering coefficient, and may be determined based on the phase change Δφ1 value obtained in step 110 by using Equation (I).


In step 114, the DSP 46 may determine an absorption property of the patient 26 tissue for the moment in time at which the single-wavelength component of the multi-wavelength photon density wave signal has passed through the pulsatile tissue of the patient 26. Generally, the scattering property may be represented by an absorption coefficient, and may be determined based on the amplitude change ΔDC1 and/or ΔAC1 values obtained in step 110 by using Equations (1) and (4).


While the embodiments set forth in the present disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. The disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the following appended claims.

Claims
  • 1. A patient monitor comprising: one or more light sources configured to emit a respective plurality of wavelengths of light;a driving circuit configured to simultaneously modulate the one or more light sources at modulation frequencies sufficient to produce resolvable photon density waves in a patient to produce a plurality of single-wavelength input photon density wave signals;a fiber coupler configured to combine the plurality of single-wavelength input photon density wave signals into a multi-wavelength input photon density wave signal;a sensor cable connector configured to provide the multi-wavelength input photon density wave signal to a first optical cable coupled to a medical sensor attached to the patient and configured to receive a multi-wavelength output photon density wave signal from a second optical cable coupled to the medical sensor;a wavelength demultiplexer configured to separate the multi-wavelength output photon density wave signal into a plurality of single-wavelength output photon density wave signals that correspond respectively to the plurality of single-wavelength input photon density wave signals; anddata processing circuitry configured to determine a physiological parameter of the patient based at least in part on a comparison of one of the plurality of single-wavelength output photon density wave signals to a corresponding one of the plurality of single-wavelength input photon density wave signals.
  • 2. The patient monitor of claim 1, wherein the one or more light sources comprise one or more laser diodes configured to be modulated at modulation frequencies sufficient to produce resolvable photon density waves in the patient.
  • 3. The patient monitor of claim 1, wherein the driving circuit is configured to modulate the one or more light sources at modulation frequencies between 50 MHz and 3 GHz.
  • 4. The patient monitor of claim 1, wherein the driving circuit is configured to modulate the one or more light sources at different respective modulation frequencies.
  • 5. The patient monitor of claim 1, wherein the wavelength demultiplexer comprises an optical filter, grating, and/or a combination thereof.
  • 6. The patient monitor of claim 1, wherein the data processing circuitry is configured to determine an absorption property of the patient based at least in part on a change in amplitude between the one of the plurality of single-wavelength output photon density wave signals and the corresponding one of the plurality of single-wavelength input photon density wave signals.
  • 7. The patient monitor of claim 1, wherein the data processing circuitry is configured to determine a scattering property of the patient based at least in part on a change in phase between the one of the plurality of single-wavelength output photon density wave signals and the corresponding one of the plurality of single-wavelength input photon density wave signals.
  • 8. A system comprising: a sensor having an emitter output and a detector input, wherein the emitter output is configured to pass an input multi-wavelength photon density wave signal into a patient and wherein the detector input is configured to receive an output multi-wavelength photon density wave signal from the patient resulting from the passing of the input multi-wavelength photon density wave signal through pulsatile tissue of the patient;a sensor cable coupled to the sensor and having a first optical cable configured to transmit the input multi-wavelength photon density wave signal to the sensor and having a second optical cable configured to receive the output multi-wavelength photon density wave signal; anda patient monitor configured to couple to the sensor cable, generating the input multi-wavelength photon density wave signal by modulating simultaneously a plurality of light sources at modulation frequencies sufficient to produce resolvable photon density waves in the pulsatile tissue of the patient to produce a plurality of input photon density wave signals, and coupling the plurality of input photon density wave signals together to produce a single multi-wavelength photon density wave signal in the first optical cable of the sensor cable.
  • 9. The system of claim 8, wherein the sensor is a transmission-type, reflectance-type sensor, and/or a combination thereof.
  • 10. The system of claim 8, wherein the sensor cable comprises no greater than two optical cables.
  • 11. The system of claim 8, wherein the sensor cable comprises a length containing essentially only optical cables.
  • 12. The system of claim 8, wherein the plurality of light sources comprises a red light source, a near infrared source, an infrared light source, and/or any combination thereof.
  • 13. The system of claim 8, wherein the plurality of light sources comprises a red light source, a far red light source, and an infrared light source.
  • 14. The system of claim 8, wherein the patient monitor is configured to receive and demultiplex the output multi-wavelength photon density wave signal to obtain a plurality of output photon density wave signals that corresponds respectively to the plurality of input photon density wave signals.
  • 15. The system of claim 14, wherein the patient monitor is configured to determine a physiological parameter of the patient based at least in part on a comparison of one of the plurality of output photon density wave signals to a corresponding one of the plurality of input photon density wave signals.
  • 16. The system of claim 14, wherein the patient monitor is configured to determine a physiological parameter of the patient based at least in part on a perceived change in phase between one of the of the plurality of output photon density wave signals and a corresponding one of the plurality of input photon density wave signals.
  • 17. The system of claim 14, wherein the patient monitor is configured to determine a physiological parameter of the patient based at least in part on a perceived change in amplitude between one of the of the plurality of output photon density wave signals and a corresponding one of the plurality of input photon density wave signals.
  • 18. A method comprising: simultaneously modulating two light sources of different wavelengths at one or more respective modulation frequencies sufficient to produce resolvable photon density waves in pulsatile tissue of a patient to produce two input photon density wave signals;combining the two input photon density wave signals into a first optical cable to produce a single input multi-wavelength photon density wave signal;emitting the single input multi-wavelength photon density wave signal through the pulsatile tissue of the patient using a sensor coupled to the first optical cable and attached to the patient;receiving an output multi-wavelength photon density wave signal that results when the single input multi-wavelength photon density wave signal is emitted through the pulsatile tissue of the patient into a second optical cable using the sensor attached to the patient;demultiplexing the output multi-wavelength photon density wave signal from the second optical cable to produce two output photon density wave signals; andcomparing phases of the two output photon density wave signals to respective phases of the two input photon density wave signals to determine scattering properties of the pulsatile tissue of the patient using phase detection circuitry and data processing circuitry.
  • 19. The method of claim 18, wherein the two light sources are modulated at different respective modulation frequencies.
  • 20. The method of claim 18, comprising comparing amplitudes of the two output photon density wave signals to respective amplitudes of the two input photon density wave signals to determine absorption properties of the pulsatile tissue of the patient using amplitude detection circuitry and the data processing circuitry.
US Referenced Citations (234)
Number Name Date Kind
3638640 Shaw Feb 1972 A
4223680 Jöbsis Sep 1980 A
4281645 Jöbsis Aug 1981 A
4321930 Jöbsis et al. Mar 1982 A
4714341 Hamaguri et al. Dec 1987 A
4805623 Jöbsis Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4936679 Mersch Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4971062 Hasebe et al. Nov 1990 A
4972331 Chance Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5028787 Rosenthal et al. Jul 1991 A
5065749 Hasebe et al. Nov 1991 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5119815 Chance Jun 1992 A
5122974 Chance Jun 1992 A
5167230 Chance Dec 1992 A
5190038 Polson et al. Mar 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5263244 Centa et al. Nov 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5297548 Pologe Mar 1994 A
5355880 Thomas et al. Oct 1994 A
5372136 Steuer et al. Dec 1994 A
5385143 Aoyagi Jan 1995 A
5390670 Centa et al. Feb 1995 A
5413099 Schmidt et al. May 1995 A
5460182 Goodman et al. Oct 1995 A
5469845 DeLonzor et al. Nov 1995 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5497769 Gratton et al. Mar 1996 A
5553614 Chance Sep 1996 A
5555885 Chance Sep 1996 A
5564417 Chance Oct 1996 A
5575285 Takanashi et al. Nov 1996 A
5611337 Bukta Mar 1997 A
5630413 Thomas et al. May 1997 A
5645059 Fein et al. Jul 1997 A
5645060 Yorkey Jul 1997 A
5680857 Pelikan et al. Oct 1997 A
5692503 Keunstner Dec 1997 A
5730124 Yamauchi Mar 1998 A
5758644 Diab et al. Jun 1998 A
5779631 Chance Jul 1998 A
5782757 Diab et al. Jul 1998 A
5786592 Hök Jul 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830139 Abreu Nov 1998 A
5831598 Kauffert et al. Nov 1998 A
5842981 Larsen et al. Dec 1998 A
5871442 Madarasz et al. Feb 1999 A
5873821 Chance et al. Feb 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995859 Takahashi Nov 1999 A
6011986 Diab et al. Jan 2000 A
6049727 Crothall Apr 2000 A
6064898 Aldrich May 2000 A
6081742 Amano et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6120460 Abreu Sep 2000 A
6122042 Wunderman et al. Sep 2000 A
6134460 Chance Oct 2000 A
6150951 Olejniczak Nov 2000 A
6154667 Miura et al. Nov 2000 A
6163715 Larsen et al. Dec 2000 A
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6192260 Chance Feb 2001 B1
6192261 Gratton et al. Feb 2001 B1
6230035 Aoyagi et al. May 2001 B1
6266546 Steuer et al. Jul 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6312393 Abreu Nov 2001 B1
6322515 Goor et al. Nov 2001 B1
6352502 Chaiken et al. Mar 2002 B1
6353750 Kimura et al. Mar 2002 B1
6397091 Diab et al. May 2002 B2
6415236 Kobayashi et al. Jul 2002 B2
6419671 Lemberg Jul 2002 B1
6438399 Kurth Aug 2002 B1
6453183 Walker Sep 2002 B1
6461305 Schnall Oct 2002 B1
6466809 Riley Oct 2002 B1
6487439 Skladnev et al. Nov 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6516209 Cheng et al. Feb 2003 B2
6526301 Larsen et al. Feb 2003 B2
6544193 Abreu Apr 2003 B2
6546267 Sugiura et al. Apr 2003 B1
6549795 Chance Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6591122 Schmitt Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6606509 Schmitt Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6618042 Powell Sep 2003 B1
6622095 Kobayashi et al. Sep 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Pishney et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6662030 Khalil et al. Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6690958 Walker et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
6708048 Chance Mar 2004 B1
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714245 Ono Mar 2004 B1
6731274 Powell May 2004 B2
6785568 Chance Aug 2004 B2
6793654 Lemberg Sep 2004 B2
6801648 Cheng Oct 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6829496 Nagai et al. Dec 2004 B2
6850053 Daalmans et al. Feb 2005 B2
6859658 Krug Feb 2005 B1
6863652 Huang et al. Mar 2005 B2
6873865 Steuer et al. Mar 2005 B2
6889153 Dietiker May 2005 B2
6898451 Wuori May 2005 B2
6939307 Dunlop Sep 2005 B1
6947780 Scharf Sep 2005 B2
6949081 Chance Sep 2005 B1
6961598 Diab Nov 2005 B2
6983178 Fine et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7006676 Zeylikovich et al. Feb 2006 B1
7024235 Melker et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7035697 Brown Apr 2006 B1
7047056 Hannula et al. May 2006 B2
7090648 Sackner et al. Aug 2006 B2
7127278 Melker et al. Oct 2006 B2
7162306 Caby et al. Jan 2007 B2
7164938 Geddes et al. Jan 2007 B2
7209775 Bae et al. Apr 2007 B2
7236811 Schmitt Jun 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Schmid Sep 2007 B2
7330746 Demuth et al. Feb 2008 B2
7373193 Al-Ali et al. May 2008 B2
7375347 Colvin et al. May 2008 B2
7378954 Wendt May 2008 B2
20010005773 Larsen et al. Jun 2001 A1
20010020122 Steuer et al. Sep 2001 A1
20010039376 Steuer et al. Nov 2001 A1
20010044700 Kobayashi et al. Nov 2001 A1
20020016536 Benni Feb 2002 A1
20020026106 Khalil et al. Feb 2002 A1
20020035318 Mannheimer et al. Mar 2002 A1
20020038079 Steuer et al. Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020049389 Abreu Apr 2002 A1
20020062071 Diab et al. May 2002 A1
20020068859 Knopp Jun 2002 A1
20020111748 Kobayashi et al. Aug 2002 A1
20020133068 Huiku Sep 2002 A1
20020147400 Chance Oct 2002 A1
20020156354 Larson Oct 2002 A1
20020161287 Schmitt Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165439 Schmitt Nov 2002 A1
20020198443 Ting Dec 2002 A1
20030023140 Chance Jan 2003 A1
20030055324 Wasserman Mar 2003 A1
20030060693 Monfre et al. Mar 2003 A1
20030139687 Abreu Jul 2003 A1
20030144584 Mendelson Jul 2003 A1
20030220548 Schmitt Nov 2003 A1
20030220576 Diab Nov 2003 A1
20040010188 Wasserman Jan 2004 A1
20040054270 Pewzner et al. Mar 2004 A1
20040087846 Wasserman May 2004 A1
20040107065 Al-Ali Jun 2004 A1
20040127779 Steuer et al. Jul 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040176670 Takamura et al. Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040230106 Schmitt et al. Nov 2004 A1
20050080323 Kato Apr 2005 A1
20050101850 Parker May 2005 A1
20050113651 Wood et al. May 2005 A1
20050113656 Chance May 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050177034 Beaumont Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050209516 Fraden Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050267346 Faber et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060009688 Lamego et al. Jan 2006 A1
20060015021 Cheng Jan 2006 A1
20060020181 Schmitt Jan 2006 A1
20060030763 Mannheimer et al. Feb 2006 A1
20060052680 Diab Mar 2006 A1
20060058595 Herrmann Mar 2006 A1
20060058683 Chance Mar 2006 A1
20060063995 Yodh et al. Mar 2006 A1
20060064024 Schnall Mar 2006 A1
20060122475 Balberg et al. Jun 2006 A1
20060129037 Kaufman et al. Jun 2006 A1
20060129038 Zelenchuk et al. Jun 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060247506 Balberg et al. Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20070093702 Yu et al. Apr 2007 A1
20080139908 Kurth Jun 2008 A1
20080200823 Cho et al. Aug 2008 A1
20080220512 Koh Sep 2008 A1
20080312533 Balberg et al. Dec 2008 A1
Foreign Referenced Citations (44)
Number Date Country
732799 May 2001 AU
69123448 May 1997 DE
19640807 Sep 1997 DE
0194105 Sep 1986 EP
3124073 May 1991 JP
3170866 Jul 1991 JP
3238813 Oct 1991 JP
4191642 Jul 1992 JP
4332536 Nov 1992 JP
5049624 Mar 1993 JP
7124138 May 1995 JP
10216115 Sep 1998 JP
11019074 Jan 1999 JP
2003194714 Jul 2003 JP
2003210438 Jul 2003 JP
2003275192 Sep 2003 JP
2003339678 Dec 2003 JP
2004008572 Jan 2004 JP
2004194908 Jul 2004 JP
2004202190 Jul 2004 JP
2004248819 Sep 2004 JP
2004290544 Oct 2004 JP
2004290545 Oct 2004 JP
WO9101678 Feb 1991 WO
WO9200513 Jan 1992 WO
WO9221281 Dec 1992 WO
WO9309711 May 1993 WO
WO9313706 Jul 1993 WO
WO9316629 Sep 1993 WO
WO9403102 Feb 1994 WO
WO9512349 May 1995 WO
WO9749330 Dec 1997 WO
WO9817174 May 1998 WO
WO9842249 Oct 1998 WO
WO9842251 Oct 1998 WO
WO9843071 Oct 1998 WO
WO9932030 Jul 1999 WO
WO0021438 Apr 2000 WO
WO0140776 Jun 2001 WO
WO03077750 Sep 2003 WO
WO2004010844 Feb 2004 WO
WO2005009221 Feb 2005 WO
WO2005064314 Jul 2005 WO
WO2007051066 May 2007 WO
Non-Patent Literature Citations (69)
Entry
International Search Report PCT/US2010/046686, 3 pages, mailed Feb. 2, 2011.
D.J. Pine, et al.; “Diffusing-Wave Spectroscopy,” The American Physical Society, vol. 60, No. 12, Mar. 1988, pp. 1134-1137.
D.J. Pine, et al.; “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. France, vol. 51, Sep. 1990, pp. 2101-2127.
X.L. Wu, et al.; “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B., vol. 7, No. 1, Jan. 1990, pp. 15-20.
J.M. Schmitt, et al.; “Interference of diffusive light waves,” J. Opt. Soc. Am. A., vol. 9, No. 10 (Oct. 1992), pp. 1832-1843.
Aoyagi, T., et al.; “Analysis of Motion Artifacts in Pulse Oximetry,” Japanese Society ME, vol. 42, p. 20 (1993) (Article in Japanese—contains English summary of article).
D.A. Weitz, et al.; “Diffusing-Wave Spectroscopy: The Technique and Some Applications,” Physica Scripta, vol. T49, 1993, pp. 610-621.
Barreto, A.B., et al.; “Adaptive Cancelation of Motion artifact in Photoplethysmographic Blood Volume Pulse Measurements for Exercise Evaluation,” IEEE-EMBC and CMBEC—Theme 4: Signal Processing, pp. 983-984 (1995).
Vincente, L.M., et al.; “Adaptive Pre-Processing of Photoplethysmographic Blood Volume Pulse Measurements,” pp. 114-117 (1996).
Plummer, John L., et al.; “Identification of Movement Artifact by the Nellcor N-200 and N-3000 Pulse Oximeters,” Journal of clinical Monitoring, vol. 13, pp. 109-113 (1997).
Barnum, P.T., et al.; “Novel Pulse Oximetry Technology Capable of Reliable Bradycardia Monitoring in the Neonate,” Respiratory Care, vol. 42, No. 1, p. 1072 (Nov. 1997).
Poets, C. F., et al.; “Detection of movement artifact in recorded pulse oximeter saturation,” Eur. J. Pediatr.; vol. 156, pp. 808-811 (1997).
Masin, Donald I., et al.; “Fetal Transmission Pulse Oximetry,” Proceedings 19th International Conference IEEE/EMBS, Oct. 30-Nov. 2, 1997; pp. 2326-2329.
Nijland, Roel, et al.; “Validation of Reflectance Pulse Oximetry: An Evaluation of a new Sensor in Piglets,” Journal of Clinical Monitoring, vol. 13, pp. 43-49 (1997).
Nogawa, Masamichi, et al.; “A New Hybrid Reflectance Optical Pulse Oximetry Sensor for Lower Oxygen Saturation Measurement and for Broader Clinical Application,” SPIE, vol. 2976, pp. 78-87 (1997).
Mannheimer, Paul D., et al.; “Wavelength Selection for Low-Saturation Pulse Oximetry,” IEEE Transactions on Biomedical Engineering, vol. 44, No. 3, pp. 148-158 (Mar. 1997).
Buschman, J.P., et al.; “Principles and Problems of Calibration of Fetal Oximeters,” Biomedizinische Technik, vol. 42, pp. 265-266 (1997).
Leahy, Martin J., et al.; “Sensor Validation in Biomedical Applications,” IFAC Modelling and Control in Biomedical Systems, Warwick, UK; pp. 221-226 (1997).
Barreto, Armando B., et al.; “Adaptive LMS Delay Measurement in dual Blood Volume Pulse Signals for Non-Invasive Monitoring,” IEEE, pp. 117-120 (1997).
East, Christine E., et al.; “Fetal Oxygen Saturation and Uterine Contractions During Labor,” American Journal of Perinatology, vol. 15, No. 6, pp. 345-349 (Jun. 1998).
Hayes, Matthew J., et al.; “Quantitative evaluation of photoplethysmographic artifact reduction for pulse oximetry,” SPIE, vol. 3570, pp. 138-147 (Sep. 1998).
Edrich, Thomas, et al.; “Can the Blood Content of the Tissues be Determined Optically During Pulse Oximetry Without Knowledge of the Oxygen Saturation?—An In-Vitro Investigation,” Proceedings of the 20th Annual International conference of the IEEE Engie in Medicine and Biology Society, vol. 20, No. 6, p. 3072-3075, 1998.
Hayes, Matthew J., et al.; “Artifact reduction in photoplethysmography,” Applied Optics, vol. 37, No. 31, pp. 7437-7446 (Nov. 1998).
S.E. Skipetrov, et al.; “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” Journal of Experimental and Theoretical Physics, vol. 86, No. 4, Apr. 1998, pp. 661-665.
Such, Hans Olaf; “Optoelectronic Non-invasive Vascular Diagnostics Using multiple Wavelength and Imaging Approach,” Dissertation, (1998).
Lutter, N., et al.; “Comparison of Different Evaluation Methods for a Multi-wavelength Pulse Oximeter,” Biomedizinische Technik, vol. 43, (1998).
Z.L. Wu, et al.; “Laser modulated scattering as a nondestructive evaluation tool for defect inspection in optical materials for high power laser applications,” Optics Express, vol. 3, No. 10; Nov. 1998, pp. 376-383.
Todd, Bryan, et al.; “The Identification of Peaks in Physiological Signals,” Computers and Biomedical Research, vol. 32, pp. 322-335 (1999).
G. Popescu, et al.; “Optical path-length spectroscopy of wave propagation in random media,” Optics Letters, vol. 24, No. 7, Apr. 1999, pp. 442-444.
Rhee, Sokwoo, et al.; “Design of a Artifact-Free Wearable Plethysmographic Sensor,” Proceedings of the First joint BMES/EMBS Conference, Oct. 13-16, 1999, Altanta, Georgia, p. 786.
Rheineck-Leyssius, Aart t., et al.; “Advanced Pulse Oximeter Signal Processing Technology Compared to Simple Averaging: I. Effect on Frequency of Alarms in the Operating Room,” Journal of clinical Anestesia, vol. 11, pp. 192-195 (1999).
Kaestle, S.; “An Algorithm for Reliable Processing of Pulse Oximetry Signals Under strong Noise Conditions,” Dissertation Book, Lubeck University, Germany (1999).
Seelbach-Göbel, Birgit, et al.; “The prediction of fetal acidosis by means of intrapartum fetal pulse oximetry,” Am J. Obstet. Gynecol., vol. 180, No. 1, Part 1, pp. 73-81 (1999).
Goldman, Julian M.; “Masimo Signal Extraction Pulse Oximetry,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 475-483 (2000).
Coetzee, Frans M.; “Noise-Resistant Pulse Oximetry Using a Synthetic Reference Signal,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 8, Aug. 2000, pp. 1018-1026.
Al. N. Korolevich, et al.: “Experimental study of the potential use of diffusing wave spectroscopy to investigate the structural characteristics of blood under multiple scattering,” Bioelectrochemistry, vol. 52, 2000, pp. 223-227.
V. Ntziachristos, et al.; “Oximetry based on diffuse photon density wave differentials,” Am. Assoc. Phys. Med., vol. 27, No. 2, Feb. 2000, pp. 410-521.
Yao, Jianchu, et al.; “Design of a Plug-and-Play Pulse Oximeter,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas, Oct. 23-26, 2002; pp. 1752-1753.
Kaestle, S.; “Determining Artefact Sensitivity of New Pulse Oximeters in Laboratory Using Signals Obtained from Patient,” Biomedizinische Technik, vol. 45 (2000).
Cysewska-Sobusaik, Anna; “Metrological Problems With noninvasive Transillumination of Living Tissues,” Proceedings of SPIE, vol. 4515, pp. 15-24 (2001).
Belal, Suliman Yousef, et al.; “A fuzzy system for detecting distorted plethysmogram pulses in neonates and paediatric patients,” Physiol. Meas., vol. 22, pp. 397-412 (2001).
Hayes, Matthew J., et al.; “A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 4, pp. 452-461 (Apr. 2001).
Maletras, Francois-Xavier, et al.; “Construction and calibration of a new design of Fiber Optic Respiratory Plethysmograph (FORP),” Optomechanical Design and Engineering, Proceedings of SPIE, vol. 4444, pp. 285-293 (2001).
Gehring, Harmut, et al.; “The Effects of Motion Artifact and Low Perfusion on the Performance of a New Generation of Pulse Oximeters in Volunteers Undergoing Hypoxemia,” Respiratory Care, Vo. 47, No. 1, pp. 48-60 (Jan. 2002).
Jopling, Michae W., et al.; “Issues in the Laboratory Evaluation of Pulse Oximeter Performance,” Anesth Analg, vol. 94, pp. S62-S68 (2002).
Lutter, N., et al.; “Accuracy of Noninvasive Continuous Blood Pressure; Measurement Utilising the Pulse Transit Time,” Journal of clinical Monitoring and Computing, vol. 17, Nos. 7-8, pp. 469 (2002).
Gostt, R., et al.; “Pulse Oximetry Artifact Recognition Algorithm for Computerized Anaesthetic Records,” Journal of Clinical Monitoring and Computing Abstracts, p. 471 (2002).
Chan, K.W., et al.; “17.3: Adaptive Reduction of Motion Artifact from Photoplethysmographic Recordings using a Variable Step-Size LMS Filter,” IEEE, pp. 1343-1346 (2002).
Yamaya, Yoshiki, et al.; “Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia,” J. Appl. Physiol., vol. 92, pp. 162-168 (2002).
Relente, A.R., et al.; “Characterization and Adaptive Filtering of Motion Artifacts in Pulse Oximetry using Accelerometers,” Proceedings of the Second joint EMBS/BMES Conference, Houston, Texas, Oct. 23-26, 2002; pp. 1769-1770.
Yoon, Gilwon, et al.; Multiple diagnosis based on Photo-plethysmography: hematocrit, SpO2, pulse and respiration, Optics in Health Care and Biomedical optics: Diagnostics and Treatment; Proceedings of the SPIE, vol. 4916; pp. 185-188 (2002).
Tremper, K.K.; “A Second Generation Technique for Evaluating Accuracy and Reliability of Second Generation Pulse Oximeters,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 473-474 (2000).
Lopez-Silva, Sonnia Maria Lopez, et al.; “Near-infrared transmittance pulse oximetry with laser diodes,” Journal of Biomedical Optics, vol. 8, No. 3, pp. 525-533 (Jul. 2003).
Cyrill, D., et al.; “Adaptive Comb Filter for Quasi-Periodic Physiologic Signals,” Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 2439-2442.
Stetson, Paul F.; “Determining Heart Rate from Noisey Pulse Oximeter Signals Using Fuzzy Logic,” The IEEE International Conference on Fuzzy Systems, St. Louis, Missouri, May 25-28, 2003; pp. 1053-1058.
Aoyagi, Takuo; “Pulse oximetry: its invention, theory, and future,” Journal of Anesthesia, vol. 17, pp. 259-266 (2003).
Lee, C.M., et al.; “Reduction of motion artifacts from photoplethysmographic recordings using wavelet denoising approach,” IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Oct. 20-22, 2003; pp. 194-195.
A. Johansson; “Neural network for photoplethysmographic respiratory rate monitoring,” Medical & Biological Engineering & Computing, vol. 41, pp. 242-248 (2003).
Lopez-Silva, S.M., et al.; “Transmittance Photoplethysmography and Pulse Oximetry With Near Infrared Laser Diodes,” IMTC 2004—Instrumentation and Measurement Technology Conference, Como, Italy, May 18-20, 2004; pp. 718-723.
Addison, Paul S., et al.; “A novel time-frequency-based 3D Lissajous figure method and its application to the determination of oxygen saturation from the photoplethysmogram,” Institute of Physic Publishing, Meas. Sci. Technol., vol. 15, pp. L15-L18 (2004).
Yao, Jianchu, et al.; “A Novel Algorithm to Separate Motion Artifacts from Photoplethysmographic Signals Obtained With a Reflectance Pulse Oximeter,” Proceedings of the 26th Annual International conference of the IEEE EMBS, San Francisco, California, Sep. 2004, pp. 2153-2156.
Matsuzawa, Y., et al.; “Pulse Oximeter,” Home Care Medicine, pp. 42-45 (Jul. 2004); (Article in Japanese—contains English summary of article).
Crespi, F., et al.; “Near infrared oxymeter prototype for non-invasive analysis of rat brain oxygenation,” Optical Sensing, Proceedings of SPIE, vol. 5459, pp. 38-45 (2004).
Yan, Yong-sheng, et al.; “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of NeuroEngineering and Rehabilitation, vol. 2, No. 3 (9 pages) (Mar. 2005).
F. Jaillon, et al.; “Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer,” Optics Express, vol. 14, No. 22; Oct. 2006, pp. 10181-10194.
G. Dietsche, et al.; “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics, vol. 46, No. 35; Dec. 2007, pp. 8506-8514.
U.S. Appl. No. 12/563,852, filed Sep. 21, 2009, Youzhi Li.
U.S. Appl. No. 12/570,394, filed Sep. 30, 2009, Clark R. Baker.
U.S. Appl. No. 12/241,160, Sep. 30, 2008, Ed McKenna.
Related Publications (1)
Number Date Country
20110071371 A1 Mar 2011 US