There is an increasing demand for tunable lasers for test and measurement uses, wavelength characterization of optical components, fiberoptic networks and other applications. In dense wavelength division multiplexing (DWDM) fiberoptic systems, multiple separate data streams propagate concurrently in a single optical fiber, with each data stream created by the modulated output of a laser at a specific channel frequency or wavelength. Presently, channel separations of approximately 0.4 nanometers in wavelength, or about 50 GHz are achievable, which allows up to 128 channels to be carried by a single fiber within the bandwidth range of currently available fibers and fiber amplifiers. Greater bandwidth requirements will likely result in smaller channel separation in the future.
DWDM systems have largely been based on distributed feedback (DFB) lasers operating with a reference etalon associated in a feedback control loop, with the reference etalon defining a wavelength grid. Statistical variation associated with the manufacture of individual DFB lasers results in a distribution of channel center wavelengths across the wavelength grid, and thus individual DFB transmitters are usable only for a single channel or a small number of adjacent channels.
Continuously tunable external cavity lasers have been developed to overcome the limitations of individual DFB devices. Various laser tuning mechanisms have been developed to provide external cavity wavelength selection, such as mechanically tuned gratings used in transmission and reflection. External cavity lasers must be able to provide a stable, single mode output at selectable wavelengths while effectively suppress lasing associated with external cavity modes that are within the gain bandwidth of the cavity. These goals have been difficult to achieve. Effective operation of tunable lasers requires reliable wavelength reference systems for determining wavelength of laser output. Available wavelength reference systems used in external cavity lasers and other optical systems are subject to change due to aging and related changes in optical components during use, and can be unreliable. There is a need for wavelength reference apparatus methods that provide easy and accurate wavelength determination and which are reliable and not susceptible to variation due to aging during use. The present invention satisfies these needs, as well as others, and overcomes the deficiencies found in the background art.
The invention provides apparatus and methods for wavelength references and wavelength monitoring in optical systems. The apparatus of the invention comprises at least two wavelength reference or filter elements positioned in a light beam, each wavelength reference element having a different free spectral range and operable to define a joint free spectral range, and a detector positioned in the beam after the wavelength selection elements that is operable to measure or monitor the optical power level of the beam. The joint free spectral range provided by the multiple wavelength reference elements results in a joint transmission peak that is centered at a unique wavelength, and maximum optical power detectable from the beam by the detector occurs at the center wavelength of the joint transmission peak. The joint transmission peak thus provides a usable wavelength reference according to the combined free spectral ranges of the wavelength reference elements.
More specifically, the apparatus may comprise a first wavelength reference element positioned in a light beam and having a first free spectral range, a second wavelength reference element positioned in the light beam and having a second free spectral range, with the first and second wavelength reference elements configured to define a joint free spectral range and provide a joint transmission peak of unique wavelength, and a detector, positioned in the light beam after the first and second wavelength reference elements, that is operable to measure optical power of the light beam. In certain embodiments, the apparatus may comprise a third, fourth or additional wavelength reference element positioned in the beam, with each such additional wavelength reference element having a different free spectral range and being operable to contribute to the joint free spectral range and joint transmission peak of unique wavelength. The light beam may comprise a test or sample beam of light that is split or picked off from a light beam of interest for wavelength measurement or testing. In this regard, the invention may additionally comprise a beam splitter positioned in the beam of interest to form a sample or test beam wherein the wavelength reference elements and detector are positioned.
The apparatus of the invention may be embodied in a laser apparatus comprising a gain medium emitting a light beam, a first wavelength reference element with a first free spectral range positioned in the light beam, a second wavelength reference element with a second free spectral range positioned in the light beam, and a detector positioned in the light beam after the first and second wavelength reference elements. In other embodiments, the laser apparatus may comprise a gain medium emitting a light beam, a beam splitter positioned in association with the light beam and configured to split or pick off a portion of the light beam as a sample or test beam, a first wavelength reference element with a first free spectral range positioned in the test beam, a second wavelength reference element with a second free spectral range positioned in the test beam, and a detector, positioned in the test beam after the first and second wavelength reference elements, that is operable to measure optical power of the test beam. The first and second free spectral ranges differ by a known or fixed amount or offset such that the two free spectral ranges together define a joint free spectral range and provide a joint transmission peak of unique wavelength.
In certain embodiments, the laser apparatus may be in the form of an external cavity laser apparatus comprising a gain medium emitting a light beam or beams, one or more reflective elements positioned in the in association with a light beam emitted by the gain medium to define an external laser cavity, at least two wavelength reference elements positioned in a light beam emitted by the gain medium, and a detector positioned in the light beam after the wavelength reference elements. A wavelength selection element or other feedback mechanism may be included in association with the external laser cavity to provide feedback to the gain medium at a selected wavelength. A beam splitter may be included with the apparatus and positioned to pick or split off a portion of a light beam emitted by the gain medium as a sample beam, and to direct the sample beam through two or more wavelength reference elements to a detector. Thewavelength reference elements have different free spectral ranges and operate to create a joint transmission peak at a unique reference wavelength.
By way of example, and not of limitation, the wavelength reference elements may comprise etalon, interference filter, grating, prism or other wavelength devices that are capable of providing wavelength references that operate to provide a joint free spectral range with a joint transmission peak of unique wavelength in accordance with the invention. Various combinations of etalons, interference filters, gratings and prisms may be used. The gain medium may comprise a laser diode emitter, a flash lamp pumped laser dye gain medium or crystal gain medium, a gas medium that is pumped electrically, or other form of gain medium.
The gain medium may comprise first and second facets from which are emitted the first and second beams. An antireflection coating may be included on the first facet and a partially reflective coating included on the second facet such that the second facet and an external reflective element define the laser external cavity. The second beam may comprise an output beam from which a sample beam is split or picked off and directed through two or more wavelength reference elements to a detector in accordance with the invention. In certain embodiments, the laser apparatus of the invention may comprise a control element operatively coupled to the wavelength selection element and the detector that is operable to adjust or tune the wavelength selection element according to optical power levels determined by the detector.
The methods of the invention comprise, in general terms, positioning at least two wavelength reference elements of different free spectral range in a test light beam, positioning a detector in the light beam after the etalons, and measuring optical power of the light beam. The methods further comprise generating a joint transmission peak by the two or more wavelength reference elements in the test beam. The methods may further comprise splitting or picking off a portion of a light beam of interest to create the test light beam. The methods may additionally comprise emitting of the light beam by a gain medium. In certain embodiment the methods may also comprise adjusting the wavelength of the light beam of interest according to optical power measured by the detector. The methods, in some embodiments, may additionally comprise generating error signals according to detected optical power, and adjusting wavelength of the light beam of interest according to the error signals.
The invention also provides methods of laser operation which comprise emitting a light beam by a gain medium, picking or splitting off a portion of the light beam to form a test beam, positioning first and second wavelength reference elements, having respectively first and second different free spectral ranges, in the test beam, positioning a detector in the test beam after the wavelength reference elements, and measuring optical power of the test beam. In certain embodiments, the method of laser operation may comprise emitting a first light beam from a first facet of a gain medium, emitting a second light beam from a second facet of the gain medium, positioning a wavelength selection element in the first light beam, feeding back light of a selected wavelength to the gain medium from the wavelength selection element, picking or splitting off a portion of the light beam to form a test beam, positioning at least two wavelength reference elements of different free spectral range in the test light beam, positioning a detector in the test beam after the wavelength reference elements, and measuring optical power of the light beam.
The invention will be more fully understood by reference to the following drawings, which are for illustrative purposes only.
Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the apparatus shown in
Referring now to
First etalon 12 includes faces 24, 26, and acts as a Fabry-Perot interference filter with a first free spectral range FSR1 according to the spacing between faces 24, 26 and the refractive index of the material of etalon 12. Second etalon 14 includes faces 28, 30, and acts as a Fabry-Perot interference filter with a second free spectral range FSR2 defined by the spacing between faces 28, 30 and the refractive index of the material of etalon 14. Etalons 12, 14 may comprise parallel plate solid, liquid or gas spaced etalons. Etalons 12, 14 may comprise different materials with different refractive indices, and may have different dimensions to provide selected free spectral ranges FSR1, FSR2.
Referring also to
The difference between FSR1 and FSR2 or the magnitude of δFSR, may be varied according to the particular reference wavelength desired. In many embodiments, etalons 12, 14 are structured and configured such that FSR1 will be generally within a few percent of FSR2. Thus, for example, FSR1 may be equal to between approximately 99% and 101% of FSR2 in some embodiments, while in other embodiments FSR1 may be equal to between approximately 98% and 102% of FSR2. In certain embodiments, the difference between the free spectral ranges of etalons 24, 26 may be greater, such that FSR1 is equal to between approximately 95% and 105% of FSR2, and some cases, FSR1 may be equal to between approximately 90% and 110% of FSR2 or more.
The difference in the free spectral range, δFSR, of the two etalons 12, 14 is such that certain or selected peaks P1 and P2 of the two sets of transmission peaks will overlap or align, while the remainder of peaks P1 and P2 are non-overlapping or mis-aligned with respect to each other. In
The difference in free spectral range between FSR1 and FSR2 may be achieved by providing a difference in optical path length (including dispersion effects) for each of the etalons 12, 14. Structuring or configuring the etalons 12, 14 to provide different free spectral range can be achieved by various approaches. For example, a small net difference in free spectral range for two etalons may be obtained from a single parallel substrate that, after machining and polishing to attain a desired thickness, is subdivided. One half of the substrate is then subject to an additional operation wherein material is extracted by grinding, polishing or etching to reduce thickness, or wherein an additional substrate material layer or layers are added via conventional material deposition technique to increase thickness. The two halves of the original substrate will thus provide two etalons of slightly differing optical path length and different free spectral ranges. It should be noted that, for two etalons of the same material and the same nominal thickness, a small difference in free spectral range is also realizable by temperature difference or an angle difference between the two etalons, or other difference in tuning effect applied to the etalons. Other procedures for preparation of etalons of desired free spectral range may also be used and will suggest themselves to those skilled in the art.
In some embodiments of the invention one or both of etalons 12, 14 may be tunable by adjustment of etalon optical path length to adjust FSR1 and/or FSR2, which in turn provides adjustment of FSRj and the center wavelength c of the joint transmission peak Pj. Such adjustment may be achieved using various techniques including thermo-optic, electro-optic, acousto-optic and piezo-optic tuning to vary refractive index, mechanical angle tuning and/or thermal tuning to vary the spacing of etalon faces, or other mechanism. More than one such tuning effect may be applied simultaneously to one or both etalons 12, 14, depending upon the particular embodiment of the invention. The tuning of etalons to adjust FSR1 and/or FSR2 is described further below.
The center wavelength c of the joint transmission peak Pj wavelength c occurs at the transmission maximum of joint transmission peak Pj, and is usable as a wavelength reference for characterizing or determining the wavelength of test beam 16, and hence the beam of interest 22 from which test beam 16 is derived. The spectral curvature or shape of joint transmission peak Pj is such that maximum transmission of beam 16 through etalons 12, 14, which is detectable as a maximum power observed by detector 18, occurs at the center or reference wavelength c. Thus, when test beam 16 is transmitted through etalons 12, 14 with highest efficiency and a maximum in optical power is detected, the wavelength of test beam 16 (and hence beam 22) is at the reference wavelength. Transmission at other wavelengths will result in lower optical power levels received by detector 18, with the level of optical power reaching detector 18 decreasing as the wavelength of beam 16 moves away from wavelength c.
The joint free spectral range FSRj can be configured, according to the configuration of etalons 12, 14, such that there is only a single joint transmission peak Pj within a particular wavelength range of interest. As such, the transmission maximum of joint transmission peak Pj provides a unique wavelength reference within the wavelength range of interest. Such a wavelength range may comprise, for example, the gain bandwidth of a tunable laser, the wavelength range encompassed by a transmission channel grid, or other wavelength range of interest. A modulation or dither can be introduced into the joint transmission peak Pj to provide a facile route for generation of error signals for wavelength control, and is described further below.
The unique reference wavelength within a selected wavelength range as provided by the use of multiple etalons allows a unique wavelength identification to be made for test beam 16 and beam 22. Prior art wavelength references have largely been based on use of a single etalon, through which a first portion of a light beam directed through the single etalon to a first photodetector, and a second portion of the light beam passing directly to a second photodetector. Single etalon wavelength “lockers” of this sort are degenerate in etalon mode number. A light beam passing through the etalon may have departed from the grid defined by the single etalon but, since multiple transmission maxima will generally exist within the possible wavelength range of the beam being tested, a unique identification of the specific mode of the grid cannot be made. The invention avoids this problem, as the joint free spectral range resulting from the use of two etalons can be selected to avoid mode degeneracy. The use of dual photodetectors in prior art wavelength lockers also creates unreliability in wavelength characterization because the operating characteristics of the two photodetectors can vary differently over time due to aging, and the difference signals derived from the detectors for characterization of wavelength will vary correspondingly and become unreliable. The use of a single photodetector in a wavelength reference as provided by the invention overcomes this problem.
Various other arrangements of the wavelength reference apparatus of the invention are possible. The apparatus shown in
Referring now to
The use of three etalons 12, 14, 16, it should be noted, will generally result in a more complex power transmission function, such that side peaks or modes (not shown) will be associated with the joint transmission peak Pj of
Referring now to
A beam splitter 20 is positioned in optical path 54 and splits off a portion of output beam 50 to form a test beam 64 that is directed along test beam path 66. First and second etalons 12, 14 are positioned in test beam 64, and a detector 18 is positioned in test beam 64 after etalons 12, 14 to monitor the power level of test beam 64 as transmitted through etalons 12, 14. Etalons 12, 14 provide a wavelength reference as described above according to the transmission maximum of the joint transmission peak defined by etalons 12, 14.
Gain medium also emits a light beam 68 from facet 48, which is collimated by lens 70 along optical path 72 towards reflector 44, which is positioned in path 72. A wavelength selection element 74 is included in the laser apparatus 10 and is shown positioned in optical path 72 between gain medium 42 and end reflector 44. Wavelength selection element 74 may comprise one or more etalons, gratings, prisms or other element or elements that are capable of providing feedback to gain medium 42 along path 72 at a selected wavelength. In the embodiment of
The single transmission peak provided by wavelength selection element 74 allows feedback of light at the transmission peak wavelength, while suppressing potential feedback at other wavelengths which may arise due to modes associated with the external cavity defined by gain medium facet 46 and end reflector 48, transmission maxima associated with a grid generator etalon (not shown) that may be present within the external cavity, or other wavelength at which feedback is not desired. The finesse of wavelength selection element 68 may be configured as needed to provide for effective suppression of feedback within the external cavity at wavelengths other than the single transmission peak defined by wavelength selection element.
A wavelength selection controller 80 is operatively coupled to wavelength selection control element 74, and provides control signals thereto for adjustment or selection of the wavelength of the transmission peak defined by wavelength selection element, and hence the wavelength of light that is fed back to gain medium 42. Wavelength selection element 68 may be tunable by various mechanisms, including thermo-optic, electro-optic, acousto-optic, and piezo-optic tuning, mechanical angle tuning, strain-based tuning, other tuning mechanism or combination of tuning mechanisms, in order adjust the wavelength of the light that is returned to gain medium 42 along path 72. The use of mechanically tuned tapered interference filters and wedge-shaped etalons, transmissive and reflective gratings, and electro-optically tuned etalons for wavelength selection is described, for example, in U.S. patent application Ser. No. 09/814,464. The use of reflective gratings for wavelength selection is also described in U.S. patent application Ser. No. 10/099,730. The use of thermo-optically tuned etalons and etalons of birefringent material is related in U.S. patent application Ser. No. 10/099,649. The aforementioned disclosures are incorporated herein by reference. In embodiments where a reflective grating is used, end reflector 44 may be positioned in a Litmann-Metcalf arrangement to return a selected diffraction back to the gain medium 42, or, in a Littrow arrangement, end reflector 44 may be omitted, as the grating is positioned to return a selected diffraction directly to the gain medium 42. Other types of wavelength selection elements and tuning mechanisms therefore may suggest themselves to those skilled in the art and are considered to be within the scope of this disclosure.
In operation of the laser apparatus 40, current is applied to gain medium 42 in a conventional manner. The beam 68 emitted from facet 48 of gain medium 42 travels path 72 and passes through or otherwise interacts with wavelength selection element 68. Light at the selected wavelength is returned along path 72 to gain medium 42 to provide for lasing at the selected wavelength. The output beam 50 from facet 46 is directed along output path 54 and focused by lens 56 into fiber 58 for use elsewhere. Beam splitter 20 picks off a portion of the output beam as test beam 64, which is directed along optical path 66 through etalons 12, 14 to detector. Etalons 12, 14 define a unique wavelength reference at the transmission maximum of a joint transmission peak as described above. The transmission maximum of the joint transmission peak of etalons 12, 14 corresponds to or is the same as the transmission maximum of the transmission peak defined by the wavelength selection element 74. When photodetector 18 detects a maximum power level, the transmission maximum defined by wavelength selection element 74 (and hence the wavelength of the feedback to gain medium 42 from wavelength selection element 74) corresponds to or is the same as the reference wavelength provided by the joint transmission peak defined by etalons 12, 14.
Referring now to
The laser apparatus 82 may include a dither element 84 configured to introduce a frequency modulation into the transmission peak defined by wavelength selection element 74. The presence of a known frequency modulation provides a good mechanism for developing error signals indicative of deviation of laser output wavelength from the reference wavelength provided by etalons 12, 14. Dither element 84 may comprise a mechanical, piezoelectric, acoustic, thermal, or other type of device that is capable of introducing a periodic modulation or dither in the free spectral range of wavelength selection device. Such a dither may be introduced as a modulation of etalon refractive index, modulation of the spacing between faces 76, 78 of wavelength selection element 74, or both. For example, where wavelength selection element 74 comprises an etalon of electro-optic material, dither element 84 may comprise a voltage source, and frequency modulation may be introduced into the electro-optic material according to voltage modulation applied across the etalon by electrodes. The electro optic material may comprise, for example, lithium niobate or other electro-optic material that is transparent to beam 72.
Dither element 84 may alternatively comprise a mechanical, piezoelectric or acoustic device that introduces a frequency dither in wavelength selection element 74 by mechanical vibration. In still other embodiments, wavelength selection element 74 may comprise an etalon of thermo-optic material, and dither element 84 may comprise a thermal modulator capable of introducing a thermal modulation in the refractive index of the etalon material. Other mechanisms for introducing a modulation to wavelength selection element 84 will suggest themselves to those skilled in art and may also be used with the invention. The modulation introduced by dither element 84 may comprise, for example, a frequency modulation of between about 50 Hz and about 20 KHz. The use of an electro-optic dither element in an external cavity laser and related control systems therefore is described in U.S. patent application Ser. Nos. 09/900,426 and 09/900,443, incorporated herein by reference.
Modulation of wavelength selection element 74 via frequency dither introduced by element 84 produces variations, at a known frequency, in the output power of laser apparatus 82. This modulation is detectable in the monitored optical power by detector 18. The variation in detected output power will decrease in magnitude as the transmission maximum defined by wavelength selection element 74 becomes aligned with the reference wavelength defined by etalons 12, 14, and will increase with decreasing alignment. Additionally, the phase of the synchronous power variation undergoes a distinct change (nominally 180 degrees) as the reference wavelength and transmission maximum cross. In other words, power level variations and phase error in the modulation signal introduced by dither element 84 to wavelength selection element 74 are minimal or nominally zero when the transmission maximum defined by wavelength selection element 74 matches or is otherwise optimally aligned with the wavelength reference peak defined by etalons 12, 14.
Referring also to
The optical power detected by photodetector 18 results in a voltage output signal, and the voltage output signals from photodetector 18 for alignment relationships 88a, 88b, 88c are shown respectively as voltage modulation signals 90a, 90b and 90c on the right side of
The alignment relationships 88a–88c of wavelength selection element transmission peak Pws and joint transmission peak Pj affects the amplitude of the corresponding voltage signal 90a–c, with a greater degree or level of mis-alignment of peaks Pws and Pj resulting in greater amplitude in the signal modulation. Voltage signal 90a, which corresponds to alignment relationship 88a (greater peak misalignment), has a relatively large modulation amplitude, while voltage signal 90c, which corresponds to alignment 88c (lesser peak misalignment), has a correspondingly smaller modulation amplitude. Voltage signal 80b, which corresponds to centering of peaks Pws and Pws has a minimal modulation amplitude since the period of the dither modulation signal 76B occurs symmetrically about the center wavelength of peak Pws. The frequency of the dominant intensity in the case of voltage signal 90b in this instance is twice the frequency of dither modulation signal 86b.
From
In other embodiments of the invention, a frequency modulation or dither may be introduced to one or both of wavelength reference elements 12, 14 to provide the same effect described above wherein modulation is introduced to wavelength selection element 74. Referring to
In still other embodiments of the invention, wavelength reference elements 12, 14 may be tunable or adjustable as noted above, so that the joint transmission peak Pj defined by wavelength reference elements 12, 14, and hence the reference wavelength λc at the center of peak Pj, can be selectively controlled. In this regard, tuning elements 96, 98 are shown operatively coupled to wavelength reference elements 12, 14 respectively, and may be used to adjust the free spectral range of one or both of elements 12, 14 in order to alter the reference wavelength λc at the transmission maximum of joint transmission peak Pj. Wavelength reference elements may comprise etalons, gratings, prisms in various combinations as noted above, and may be tunable by thermo-optic, electro-optic, acousto-optic, and piezo-optic tuning, mechanical angle tuning, strain-based tuning, other tuning mechanisms as noted above, in generally the same manner described above for wavelength selection element 74. As shown in
Referring now to
In the embodiment of
External cavity tuning may be used in the apparatus 100 to provide fine tuning of a selected wavelength via optimizing the relationship of external cavity modes with the transmission peak of wavelength selection element 74. The external cavity modes may be adjusted by physical adjustment of the spacing between facet 104 and end reflector 44, and/or by adjusting the refractive index of material present in the external cavity. Semiconductor gain media materials such as InGaAs and InGaAsP have generally high refractive indices and thus provide an important component of the overall external cavity optical path length. Gain media materials also exhibit relatively large changes in refractive index with respect to temperature, and gain medium refractive index adjustment can be effectively carried out by temperature control of gain medium 102.
Platform 108 comprises a thermally conductive material such as aluminum nitride, to allow common thermal control of the various components of the apparatus 100. Gain medium 102 is thermally coupled to a thermoelectric controller (not shown) via thermally conductive platform 108. Gain medium 102 can thus be temperature adjusted, by heating or cooling introduced from the thermoelectric controller, to adjust gain medium refractive index, and hence external cavity optical path length. A temperature control element 113 may be operatively coupled to thermoelectric controller to provide control signals thereto for selective temperature adjustment of gain medium 102 for external cavity optical path length adjustment. A thermistor or other temperature sensor (not shown) may be included on platform 108 and operatively coupled to control element 113, to monitor the temperature of platform 108, so that if a deviation from a selected temperature is sensed by the thermistor, appropriate corrective temperature adjustment may be made by control element 113.
Both gain medium 102 and end reflector 44 are mounted on platform 108, and the material of platform may be selected to provide a coefficient of thermal expansion such that heating and cooling of platform 108 provides a corresponding expansion and contraction of platform 108 to adjust the physical separation of gain medium facet 104 and end reflector 44, and hence provide adjustment of the external cavity optical path length. The adjustment of the spacing of gain medium facet 102 and end reflector 44 in this manner may be carried out together or simultaneously with the thermal adjustment of gain medium refractive index as described above. Alternatively, gain medium 102 may be thermally isolated from platform 108 such that thermal adjustment of external cavity optical path length is carried out by spacing of gain medium facet 102 and end reflector 44 alone. The use of temperature control of external cavity optical path length is also described in the U.S. Patent Application Ser. No. 09/494,615 entitled “EXTERNAL CAVITY LASER APPARATUS AND METHODS” to inventors Andrew Daiber et al., simultaneously co-filed herewith, the disclosure of which is incorporated herein by reference.
Referring now to
The apparatus 114 also includes a grid etalon 118, which operates as a Fabry-Perot interference filter to define a plurality of transmission peaks that correspond to selectable channel wavelengths to which grating 116 may be tuned by controller 80. The use of a grid etalon to define a plurality of transmission channels is also described in U.S. patent application Ser. No. 09/814,464, noted above.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/626,526, filed Jul. 27, 2000 now U.S. Pat. No. 6,879,619 and a CIP U.S. patent application Ser. No. 10/099,649, filed Mar. 15, 2002 now U.S. Pat. No. 6,853,654; and is entitled to the benefits of U.S. Provisional Application No. 60/276,645, filed Mar. 16, 2001, U.S. Provisional Application No. 60/276,813, Mar. 16, 2001, U.S. Provisional Application Ser. No. 60/276,643, filed Mar. 16, 2001, U.S. Provisional Application No. 60/276,760, filed Mar. 16, 2001 and U.S. Provisional Application Ser. No. 60/276,646, filed Mar. 16, 2001, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3788743 | George | Jan 1974 | A |
3899748 | Bodlaj | Aug 1975 | A |
3921099 | Abrams et al. | Nov 1975 | A |
3965440 | Graves | Jun 1976 | A |
3967211 | Itzkan et al. | Jun 1976 | A |
4309671 | Malyon | Jan 1982 | A |
4410992 | Javan | Oct 1983 | A |
4460977 | Shimada et al. | Jul 1984 | A |
4504950 | AuYeung | Mar 1985 | A |
4560246 | Cotter | Dec 1985 | A |
4583227 | Kirkby | Apr 1986 | A |
4730105 | Mitschke et al. | Mar 1988 | A |
4770047 | Arditty et al. | Sep 1988 | A |
4839614 | Hill et al. | Jun 1989 | A |
4843233 | Jeunhomme | Jun 1989 | A |
4847854 | Van Dijk | Jul 1989 | A |
4870269 | Jeunhomme et al. | Sep 1989 | A |
4932782 | Graindorge et al. | Jun 1990 | A |
4934816 | Silver et al. | Jun 1990 | A |
4947398 | Yasuda et al. | Aug 1990 | A |
4994677 | Graindorge | Feb 1991 | A |
5022745 | Zayhowski et al. | Jun 1991 | A |
5028395 | Sebille et al. | Jul 1991 | A |
5050179 | Mooradian | Sep 1991 | A |
5058124 | Cameron et al. | Oct 1991 | A |
5103457 | Wallace et al. | Apr 1992 | A |
5115677 | Martin et al. | May 1992 | A |
5124993 | Braunlich et al. | Jun 1992 | A |
5130998 | Wakata et al. | Jul 1992 | A |
5141316 | Lefevre et al. | Aug 1992 | A |
5163063 | Yoshikawa et al. | Nov 1992 | A |
5172185 | Leuchs et al. | Dec 1992 | A |
5181078 | Lefevre et al. | Jan 1993 | A |
5181214 | Berger et al. | Jan 1993 | A |
5185643 | Vry et al. | Feb 1993 | A |
5214659 | Terada et al. | May 1993 | A |
5218610 | Dixon | Jun 1993 | A |
5225930 | Land et al. | Jul 1993 | A |
5245626 | Burke et al. | Sep 1993 | A |
5251222 | Hester et al. | Oct 1993 | A |
5263037 | Trutna, Jr. et al. | Nov 1993 | A |
5270791 | Lefevre et al. | Dec 1993 | A |
5289491 | Dixon | Feb 1994 | A |
5305330 | Rieder et al. | Apr 1994 | A |
5319668 | Luecke | Jun 1994 | A |
5321717 | Adachi et al. | Jun 1994 | A |
5327447 | Mooradian | Jul 1994 | A |
5331651 | Becker et al. | Jul 1994 | A |
5347527 | Favre et al. | Sep 1994 | A |
5349439 | Graindorge et al. | Sep 1994 | A |
5349440 | DeGroot | Sep 1994 | A |
5373515 | Wakabayashi et al. | Dec 1994 | A |
5387974 | Nakatani | Feb 1995 | A |
5412474 | Reasenberg et al. | May 1995 | A |
5412676 | Schnier et al. | May 1995 | A |
5414280 | Girmay | May 1995 | A |
5418800 | Prior et al. | May 1995 | A |
5420687 | Kachanov | May 1995 | A |
5428700 | Hall | Jun 1995 | A |
5438579 | Eda et al. | Aug 1995 | A |
5444724 | Goto | Aug 1995 | A |
5450202 | Tisue | Sep 1995 | A |
5473625 | Hansen et al. | Dec 1995 | A |
5543916 | Kachanov | Aug 1996 | A |
5583638 | Cutler | Dec 1996 | A |
5594744 | Lefevre et al. | Jan 1997 | A |
5606439 | Wu | Feb 1997 | A |
5631736 | Thiel et al. | May 1997 | A |
5651018 | Mehuys et al. | Jul 1997 | A |
5673129 | Mizrahi | Sep 1997 | A |
5712704 | Martin et al. | Jan 1998 | A |
5719674 | Martin et al. | Feb 1998 | A |
5737109 | Goodwin | Apr 1998 | A |
5751750 | Friede et al. | May 1998 | A |
5760391 | Narendran | Jun 1998 | A |
5777773 | Epworth et al. | Jul 1998 | A |
5802085 | Lefevre et al. | Sep 1998 | A |
5812716 | Ohishi | Sep 1998 | A |
5825792 | Villeneuve et al. | Oct 1998 | A |
5848092 | Mitsumoto et al. | Dec 1998 | A |
5862162 | Maeda | Jan 1999 | A |
5872881 | Rossi et al. | Feb 1999 | A |
5886785 | Lefevre et al. | Mar 1999 | A |
5917188 | Atkinson et al. | Jun 1999 | A |
5943352 | Fee | Aug 1999 | A |
5946331 | Amersfoort et al. | Aug 1999 | A |
5991061 | Adams et al. | Nov 1999 | A |
6018535 | Maeda | Jan 2000 | A |
6018536 | Alphonse | Jan 2000 | A |
6026100 | Maeda | Feb 2000 | A |
6034799 | Hansen | Mar 2000 | A |
6040950 | Broome | Mar 2000 | A |
6043883 | Leckel et al. | Mar 2000 | A |
6044095 | Asano et al. | Mar 2000 | A |
6061369 | Conradi | May 2000 | A |
6064501 | Roberts et al. | May 2000 | A |
6081539 | Mattori et al. | Jun 2000 | A |
6084695 | Martin et al. | Jul 2000 | A |
6108355 | Zorabedian | Aug 2000 | A |
6115121 | Erskine | Sep 2000 | A |
6115401 | Scobey et al. | Sep 2000 | A |
6141370 | Avrutsky et al. | Oct 2000 | A |
6151337 | Carlsten et al. | Nov 2000 | A |
6181717 | Kner et al. | Jan 2001 | B1 |
RE37044 | Wu | Feb 2001 | E |
6192058 | Abeles | Feb 2001 | B1 |
6201638 | Hall et al. | Mar 2001 | B1 |
6205159 | Sesko et al. | Mar 2001 | B1 |
6215802 | Lunt | Apr 2001 | B1 |
6229835 | Tomaru et al. | May 2001 | B1 |
6243517 | Deacon | Jun 2001 | B1 |
6246480 | O'Brien | Jun 2001 | B1 |
6249364 | Martin et al. | Jun 2001 | B1 |
6249365 | Mizrahi et al. | Jun 2001 | B1 |
6252718 | Lefevre | Jun 2001 | B1 |
6259712 | DeCain et al. | Jul 2001 | B1 |
6263004 | Arvidsson et al. | Jul 2001 | B1 |
6282215 | Zorabedian et al. | Aug 2001 | B1 |
6301274 | Tayebati et al. | Oct 2001 | B1 |
6301280 | Broutin et al. | Oct 2001 | B1 |
6304586 | Pease et al. | Oct 2001 | B1 |
6314115 | Delfyett et al. | Nov 2001 | B1 |
6321011 | Deacon | Nov 2001 | B1 |
6324204 | Deacon | Nov 2001 | B1 |
6330253 | Tuganov et al. | Dec 2001 | B1 |
6331892 | Green | Dec 2001 | B1 |
6337660 | Esman et al. | Jan 2002 | B1 |
6366592 | Flanders | Apr 2002 | B1 |
6366689 | Rao et al. | Apr 2002 | B1 |
6404538 | Chen et al. | Jun 2002 | B1 |
6441933 | Jang | Aug 2002 | B1 |
6463085 | Tayebati | Oct 2002 | B1 |
6470036 | Bailey et al. | Oct 2002 | B1 |
6526071 | Zorabedian et al. | Feb 2003 | B1 |
6532091 | Miyazaki et al. | Mar 2003 | B1 |
6600760 | Green et al. | Jul 2003 | B1 |
20020048297 | Irie et al. | Apr 2002 | A1 |
20020054614 | Jin | May 2002 | A1 |
20020126345 | Green et al. | Sep 2002 | A1 |
20020126386 | Jordan et al. | Sep 2002 | A1 |
20020136104 | Daiber | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
0924628 | Jun 1999 | EP |
WO 9805105 | Feb 1998 | WO |
WO 9844424 | Oct 1998 | WO |
WO 0049689 | Aug 2000 | WO |
WO 0104999 | Jan 2001 | WO |
WO 02078137 | Oct 2002 | WO |
WO 03005500 | Jan 2003 | WO |
WO 03005501 | Jan 2003 | WO |
WO 03005512 | Jan 2003 | WO |
0207672 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030016707 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60276645 | Mar 2001 | US | |
60276813 | Mar 2001 | US | |
60276643 | Mar 2001 | US | |
60276760 | Mar 2001 | US | |
60276646 | Mar 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10099649 | Mar 2002 | US |
Child | 10173514 | US | |
Parent | 09626526 | Jul 2000 | US |
Child | 10099649 | US |