The present invention relates to wavelength selective optical power measurement.
Generally, wavelength selective optical power measurement is known in the prior art. Wavelength selective optical power measurements can be divided into a variety of different applications with different requirements. Standard tool for a wavelength selective optical power measurement is an optical spectrum analyzer (OSA). An OSA fulfils the common needs, e.g. a high resolution and a continuous wide tuning range.
It is an object of the invention to provide improved wavelength sensitive optical power measurement.
The object is solved by the independent claims.
The present invention comprises the perception that it is more and more necessary to perform wavelength selective measurements due to the fast growing number of different wavelengths present in today's optical fibers. Today many different wavelengths are used because service providers have to use the same optical fiber for different services, e.g. television and telephone, to be cost efficient. Therefore, corresponding fiber optic networks often share their optical path with many signals operating at different wavelengths. DWDM (dense wavelength division multiplexing) systems carry a plurality of different closely spaced wavelengths whereas CWDM (coarse wavelength division multiplexing) systems typically are composed of only a few different closely, sometimes equally, e.g. by 20 nm, spaced signals. Typical wavelengths frequently used today are 1310 nm, 1490 nm and 1550 nm.
Moreover, there is a strong trend called “fiber to the home”, i.e., using optical fibers also on the very last meters to the home of the user instead of copper wires. Therefore, for checking such optical fibers the wavelength selective optical power measurement has to be performed at each home of the user in short time.
However, today's low-cost power meters are not having a resolution which is sufficient to measure such closely spaced wavelengths as mentioned above. Such power meters would only measure the total power of all wavelengths together. On the other side, an OSA is too expensive for such kind of applications. This is because these outside applications are quite cost sensitive and require both simple and flexible solutions in terms of manufacturability and application fit.
Additionally, when examining CWDM systems a high resolution, continuous wavelength scan over the whole system bands is not necessarily required. Power measurements at the center of the individual signal channel is sufficient in most cases.
Thus, a wavelength selective instrument capable of measuring optical power at a given number of wavelengths, e.g. at 1310 nm, 1490 nm and 1550 nm for Fiber-to-the-premises (FTTP) deployment, is the right tool.
For this and similar applications a preferably simple solution according to an embodiment of the present invention is an apparatus comprising at least one optical wavelength selective component or selector that selects a certain wavelength or spectral part of an optical signal under test comprising different wavelengths and directs this part onto at least one corresponding photo detector for that certain part.
In a preferred example of the present invention the apparatus comprises a cascaded arrangement of more than one selector and a corresponding number of photo detectors to be able to detect more than one wavelength at the same time. Such an arrangement is flexible in a way that it can easily be scaled to a varying number of wavelength channels.
Preferred embodiments of the present invention comprise a compact, lightweight and further preferred robust encapsulated arrangement of multiple filters and photo detectors that allows the usage of standard packages for photo detectors and readily available standard filter dies.
The predominant advantages of these preferred embodiments of the present invention are as follows:
It is possible to generate a fully automated manufacturing process for manufacturing the apparatus since the apparatus can be built up with the use of small, reliable, cost efficient, flexible and scalable standard parts, like reflective and transmissive thin film filters and TO packages for photo diodes.
Therefore, such a preferred apparatus is small and inexpensive so it can be preferably incorporated into a hand-held instrument for fiber-to-the-home employment, where the demand for thousands of measurements make the service providers and fiber installers provide each of their employees with their own apparatus.
And it is therefore possible to provide an easy implementation of an optical power measurement with different wavelength ranges.
In other preferred embodiments the total optical power over a wide wavelength range can be measured and displayed on a display at the same time. Here, the optical power in selective wavelength ranges and the total optical power can be measured and displayed simultaneously.
It is possible that such a display indicates the measured wavelength or just indicates if a certain detector of the apparatus has detected a signal above a predetermined threshold. The indication can be done by two LEDs, e.g. one green diode and one red diode, indicating a detection of the wavelength signal above a predetermined threshold of this detector, e.g. by the green diode, and no detection, e.g. by the red diode.
However, if the display indicates the measured wavelength it is possible to display the measured wavelength on a linear scale or on a logarithmic scale. Moreover, it is possible to display the measured wavelength as absolute values or as relative values. All those values can be displayed in all known physical units.
Other preferred embodiments are shown by the dependent claims.
The invention can be partly embodied or supported by one or more suitable software programs, which can be stored on or otherwise provided by any kind of data carrier, and which might be executed in or by any suitable data processing unit. Software programs or routines are preferably applied to the realization of the inventive method.
Other objects and many of the attendant advantages of the present invention will be readily appreciated and become better understood by reference to the following detailed description when considering in connection with the accompanied drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Features that are substantially or functionally equal or similar will be referred to with the same reference sign(s).
Referring now in greater detail to the drawings,
The beam splitter 104 splits the parallel beam 112 into two parts 112a and 112b. One part 112a of the beam 112 is transmitted to a first wavelength selective reflective filter 105. The other part 112b of the beam 112 is reflected at a 90° (or any other) angle to a first one of photo detectors 103. The first one of photo detectors 103 serves to measure the total wavelength selective optical power of the beam 112.
The first wavelength selective reflective optical filter 105 has a center wavelength λC. At the center wavelength λC filter 105 has a maximum of reflectivity as shown in
Apparatus 200 of
The beam splitter 202 splits the parallel beam 212 into two parts 212a and 212b. One part 212a of the beam 212 is transmitted to a first wavelength selective transmissive optical filter 203. The other part 212b is reflected at a 90° (or any other) angle to a first photo detector 206a. Photo detector 206a serves to measure the total wavelength selective optical power of the beam 212.
The first wavelength selective transmissive optical filter 203 has a center wavelength λC. At the center wavelength λC filter 203 has a maximum of transmissivity as shown in
In both apparatuses of both
The amplifiers can be connected to a not shown indicator, preferably comprising a display or speaker for indicating the result of the measurement. It is possible that the display indicates the measured wavelength(s) or just indicates if a certain detector 103, 206a, 206, 216, 218 has detected a signal above a predetermined threshold.
If the indicator comprises a display the indication can be done by two LEDs, e.g. one green diode and one red diode, indicating a detection of the wavelength signal above a predetermined threshold of this detector, e.g. by the green diode, and no detection, e.g. by the red diode.
However, if the display indicates the measured wavelength(s) it is possible to display the measured wavelength on a linear scale or on a logarithmic scale. Moreover, it is possible to display the measured wavelength as absolute values or as relative values. All those values can be displayed in all known units, e.g. in mW, dB or dBm.
As filters 105, 106, . . . , 107, 203, 204, 205 any known filter can be used. E.g. gratings, TFF (thin film filters), Fabry-Perot filters, or other interference filters can be used.
As mentioned above
| Number | Date | Country | Kind |
|---|---|---|---|
| 05100916.5 | Feb 2005 | EP | regional |