1. Field of the Invention
This disclosure relates to optical amplifiers, and, in particular to wavelength-stabilized pump diodes for pumping gain media in an ultrashort (e.g., chirped) pulsed laser system.
2. Description of the Prior Art
To produce the pumping light, the pump 110 comprises one or more pump diodes 150 coupled by a single-mode optical fiber to a fiber Bragg grating 155. The fiber Bragg grating 155 is slightly reflective (e.g., 1%–3%) so that a small amount of pumping light generated by the pump diodes 150 at the appropriate wavelength is reflected back into the pump diodes 150. The pump diodes 150 enter a coherence collapse regime, whereby instead of emitting a single laser spectral line that mode hops (i.e. changes wavelength) and fluctuates in power at the output of the pump diodes 150, the pumping light is a relatively stable wavelength with a shaped characteristic (e.g., square, rounded, etc.) due to the fiber Bragg grating 155.
A limitation with the optical amplifier 100 is that the pump diodes 150 generally drift in wavelength with temperature and drive current. Because the peak absorption of the gain fiber 130 may be fairly narrow spectrally, if the pump diodes 150 drift slightly off-wavelength by as little as a few nanometers, then the gain and output power of the optical amplifier 100 is reduced. The resulting drift or shift in wavelength of the output of the pump diodes 150 significantly reduces output power and power efficiency of the optical amplifier 100. If one wishes to excite the gain fiber 130 at a wavelength that does not correspond to its peak absorption, then one must use longer lengths of gain fiber 130 to achieve similar gain in the optical amplifier 100 as when the peak absorption of the gain fiber 130 is excited by the pump diodes 150.
Therefore, in the conventional optical amplifier 100, temperature of the pump diodes 150 must be maintained within a few degrees of a desired operating temperature in order for the wavelength of the pumping light to remain fairly stable. For example, with a temperature coefficient of drift of the pump diodes 150 of typically 0.3 nm/degree Kelvin (K), then if the temperature of the pump diodes 150 is allowed to drift by 10 degrees then the wavelength of the pumping light from the pump 110 may drift by 3 nm.
Consequently, to improve temperature and current stability and reduce wavelength drift of the pumping light, the pump 110 conventionally includes a temperature and/or current control 160. The temperature and/or current control 160 may include a water chiller and heat exchanger or thermoelectric converters (TEC elements or Peltier devices) for keeping the pump diodes 150 at a fairly constant temperature.
One limitation with water chillers is that chillers are relatively large bulky devices that increase the size and power draw of the optical amplifier 100. TEC elements are generally very expensive, relatively inefficient, and consume large amounts of power. TEC elements typically consume three times more energy than the amount of heat energy to be removed from the pump diodes 150. For example, to remove 5 watts of heat energy from the pump diodes 150, the TEC elements may require 15 watts of power.
The pump diodes 150 themselves are generally not highly efficient, typically converting only 25–50% of consumed power to pumping light output. For example, with 100 watts of electricity into the pump diodes 150, only about 28 watts of pumping light may be generated by the pump diodes 150. Furthermore, the gain fiber 130 has a relatively low conversion efficiency, with typically only 20% of the light input converted to the desired wavelength.
Therefore, including other inefficiencies in the system of which the optical amplifier 100 is merely one component, overall efficiency of the system can be as low as 1%. For example, for a 10 watt laser light output, the system may require 1 kilowatt of electrical power input. The remaining 990 watts of energy is converted into heat, which is a very inefficient conversion of electrical energy to useful laser light output from the system. The overall power-to-light conversion efficiency (also referred to as power or plug efficiency) of the optical amplifier 100 is relatively low, and the plug efficiency of the optical amplifier 100 is further reduced by the temperature and/or current control 160.
In one aspect, a system for optical amplification comprises one or more passively wavelength-stabilized pump diodes configured to generate pumping light, a gain medium configured to be excited by the pumping light near an absorption peak of the gain medium, and an output section. The gain medium is further configured to amplify a pulsed laser signal coupled into the gain medium to a high peak power with minimal non-linear distortion. The output section is configured to process the amplified pulsed laser signal to result in an ultrashort pulse of light
In some embodiments, the system may comprise a volume phase hologram device configured to wavelength-stabilize the one or more pump diodes by reflecting a portion of the pumping light back to the one or more pump diodes. The absorption peak of the gain medium may span a narrower wavelength range than results from the wavelength drift of non-wavelength-stabilized pump diodes with temperature or current variations. The gain medium may comprise a solid-state optical medium, a multimode optical fiber, a photonic bandgap optical fiber, or a rare-earth-ion doped optical fiber.
In another aspect, a method comprises generating a pumping light from a laser device, reflecting a portion of the pumping light back to the laser device to result in a passively wavelength-stabilized pumping light, coupling the passively wavelength-stabilized pumping light into a gain medium near an absorption peak of the gain medium, amplifying a pulsed laser signal to a high peak power with minimal non-linear distortion in the gain medium, and processing the amplified pulsed laser signal to result in an ultrashort pulse of light.
In a further aspect, a system for optical amplification comprises one or more passively wavelength-stabilized pump diodes configured to generate pumping light, a gain medium comprising a first portion and a second portion, and an output section. The gain medium is configured to receive the pumping light near an absorption peak of the gain medium into the first portion and amplify to a high peak power pulsed laser light coupled into the second portion of the gain medium. The output section is configured to process the amplified pulsed laser light to result in an ultrashort athermally-ablative pulse of light.
In some embodiments, the gain medium comprises a multimode optical fiber less than about five meters in length. The gain medium may comprise a double clad optical fiber in which the first portion comprises an outer core of the optical fiber and the second portion comprises an inner core of the optical fiber. The inner and/or outer cores of the optical fiber may be multimode.
In a further aspect, a pulse amplification system comprises one or more pump diodes configured to generate a pumping light, a passive optical device configured to wavelength-stabilize the pumping light by reflecting a portion of the pumping light back to the one or more pump diodes, a laser seed source configured to generate an ultrashort pulsed signal, a pulse stretcher configured to stretch the ultrashort pulsed signal, a gain medium excited by the pumping light near an absorption peak of the gain medium and configured to amplify the stretched pulsed signal, and an output stage configured to compress the amplified stretched pulsed signal to result in an ultrashort athermally-ablative pulse of light.
In general, passively wavelength-stabilizing the pump diodes, provides improved power efficiency of the optical amplifier and the pulsed amplification system. Another advantage is higher peak power by operating the gain medium of the optical amplifier near a fairly narrow peak on the absorption spectrum of the gain medium.
The present invention will now be described with reference to drawings that represent a preferred embodiment of the invention. In the drawings, like components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following figures:
As described further herein, passively wavelength-stabilized pump diodes in an optical amplifier generate pumping light to excite a gain medium near an absorption peak of the gain medium. The gain medium amplifies a pulsed laser signal coupled into the gain medium to a high peak power. A volume phase hologram device may passively wavelength stabilize the pump diodes by reflecting a portion of the pumping light back to the pump diodes.
In general, one advantage of passively wavelength-stabilizing the pump diodes is improved power efficiency of the optical amplifier and the system of which the optical amplifier is merely one component, since one does not have to actively stabilize the wavelength of the pump diodes. Another advantage is higher peak power out of the system with low optical nonlinear-induced distortions by operating the gain medium of the optical amplifier at its maximum absorption, which may be a fairly narrow peak on the absorption spectrum of the gain medium.
Although the instant invention will be described with reference to the CPA system 200, which may be utilized for athermal ablation with the ultrashort high-intensity pulses, it will be readily appreciated by skilled artisans that the high-intensity ultrashort pulses described herein need not be utilized for ablation, and the invention is not to be limited thereby. That is, the principles disclosed herein for generating ultrashort duration high-intensity pulses may be utilized in a CPA system for athermal ablation, but may find use in other applications.
While definitions vary, in general “ultrashort” generally refers to optical pulses of a duration less than approximately 10 psec, and this definition is used herein. Ultrashort light pulses are generated at low pulse energies (typically <1 nanojoule) through the use of a mode-locked laser oscillator or seed source 205. Some embodiments of the seed source 205 are further delineated in co-pending U.S. patent application Ser. No. 11/229,302 entitled “Actively Stabilized Systems for the Generation of Ultrashort Optical Pulses” filed Sep. 15, 2005 which is incorporated by reference as if set forth fully herein.
The duration of the ultrashort pulses from the seed source 205 is then increased by dispersing the pulses temporally as a function of wavelength (also referred to as “stretching” or “chirping” to lengthen the pulses in time) in the pulse stretcher 210. The pulse stretcher 210 comprises a dispersive delay line such as a silica optical fiber or a diffraction-grating arrangement (e.g. fiber Bragg grating). The dispersive delay line stretches the pulses temporally by orders of magnitude, for example from less than 100 femtoseconds to ˜100 picoseconds. Stretching the pulses decreases the peak power of the chirped pulses by the stretch factor, approximately 3 orders of magnitude in this example.
The chirped pulses are amplified in the high peak power optical amplifier 215 (described further with respect to
The pulse compressor 220 and the pulse delivery component 225 may be considered as an output stage configured to process and compress the amplified pulses to result in ultrashort high intensity pulses of light. In the embodiment of
An advantage of the CPA system 200 is that by chirping the pulses, the optical amplifier 215 can increase the energy of the pulses with minimal nonlinear distortion to a high peak power that is well below a level that can cause damage to the optical amplifier 215. Specifically, energy can be efficiently extracted from a gain medium in the optical amplifier 215 with minimal nonlinear distortion, while the peak power levels of the stretched pulses are kept below the damage threshold of the gain medium. The CPA technique of the CPA system 200 is particularly useful for efficient utilization of solid-state optical gain media with high stored energy densities in the optical amplifier 215, where full amplification of non-chirped short pulses may not be possible because the peak power of the pulses is above the nonlinear distortion or damage thresholds of the optical amplifier 215 materials.
Heretofore, passive wavelength-stabilization has not been realized in a high power CPA system such as the CPA system 200. Wavelength-stabilization has been used in the past for stabilizing pump diodes, but not the high power pump diodes in a CPA system. Pump diodes in a high-power CPA system optical amplifier are typically coupled into multimode fiber that cannot be used with traditional passive wavelength-stabilization devices such as a fiber Bragg grating. Therefore, it was conventionally assumed that pump diodes in an amplifier of a CPA system needed to be controlled by active temperature and/or current control, and not use a fiber Bragg grating to passively wavelength-stabilize the pump diodes.
Further, in a conventional CPA system with a commonly used erbium-ytterbium or erbium or ytterbium doped optical fiber gain medium, the pump diodes are typically tuned to generate pumping light over the wavelength range 930 nm to 940 nm, a relatively wide absorption domain. Pumping at 930–940 nm at the relatively wide absorption domain reduces the requirement for wavelength-stabilization of the pump diodes. However, pumping at the wide absorption domain requires a relatively long fiber for the gain medium (on the order of 5 meters), which increases the nonlinear distortions induced in the amplified signal at high peak powers.
A limitation with pumping at the wide absorption domain is that, in a CPA system, the longer the gain medium the lower the peak power must be Nonlinear effects in the gain medium can cause length-dependent distortions of a pulse being amplified in the gain medium.
One reason that a long fiber gain medium reduces peak power of a pulse in a CPA system is that pulse amplification and propagation within the fiber gain medium may activate one or more nonlinear responses of the fiber gain medium owing to the high peak power of the short laser pulses. Chief among these nonlinear effects are self-phase modulation (SPM) and stimulated Raman scattering (SRS).
SPM generally widens the spectrum and distorts phasing of the wave in the fiber gain medium. SRS generally shifts the wavelength of a portion of the pulsed laser signal to be amplified to a longer color, causing a longer-wavelength shift in the laser signal to an undesired wavelength and separating that energy from the original laser signal. SPM can cause pulse spectrum breakup, self focusing, and catastrophic failure in the fiber gain medium. Both effects distort the pulsed laser signal and can impair or completely prevent pulse compression after amplification.
As described further herein, power amplification of a pulsed laser signal 350 from the seed source 205 and pulse stretcher 210 in the optical amplifier 215 is generated by pumping the gain medium 340 with a passively wavelength-stabilized pumping light from the pump diodes 305 and the volume phase hologram 315. The pumping light is tuned to a relatively narrow absorption peak of the gain medium 340 to provide relatively high efficiency amplification in the gain medium 340 and reduce or eliminate the possibility of damage of the gain medium 340 with high peak power.
Pumping at a narrow absorption peak improves the optical to optical conversion efficiency of the gain medium 340, so that for a given pulse energy at the output, the gain medium 340 can be shorter. Since the onset of non-linear effects is a function of length of the gain medium 340, for a given output energy per pulse, higher peak power can be tolerated in a shorter gain medium 340. Further, tuning the pumping light to a relatively narrow absorption peak of the gain medium 340 reduces or eliminates the effect of nonlinear distortion in the gain medium 340.
Considering first the gain medium 340, the gain medium 340 is described further herein by way of an exemplary embodiment, although persons of ordinary skill will recognize that there are many materials and configurations for the gain medium 340. For example, the gain medium 340 may comprise double clad optical fiber, solid-state optical gain medium, photonic bandgap optical fiber, and optical fiber doped with rare-earth-ions such as erbium and/or ytterbium.
A generic characteristic of these many materials and configurations is that the gain medium 340 comprises a first portion that receives the passively wavelength-stabilized pumping light near an absorption peak of the gain medium 340 and amplify a pulsed laser signal 350 coupled into a second portion of the gain medium 340. The gain medium 340 amplifies the pulsed laser signal 350 to a high peak power with minimal non-linear distortion.
For example, a solid-state optical gain medium 340 can be considered to have a first portion and a second portion. Into the first portion, the passively wavelength-stabilized pumping light is either end pumped (coaxially with respect to the pulsed laser signal 350), radially pumped (perpendicular to the pulsed laser signal 350 from multiple directions) or side pumped (perpendicular to the pulsed laser signal 350 from one direction). The second portion comprises the portion of the solid-state optical gain medium 340 (e.g., the end) into which the pulsed laser signal 350 is coupled for amplification.
The gain medium 340 of the exemplary embodiment comprises double clad optical fiber of less than 5 meters in length, preferably erbium-ytterbium doped optical fiber with 25 um core and fiber length of 1.7 meters. The double clad optical fiber includes an inner core (inner portion, not shown) doped with erbium-ytterbium rare-earth-ions and a concentric non-doped outer core (outer portion, not shown).
The pulsed laser signal 350 is coupled by the combiner 320 into the inner core of the gain medium 340. The pumping light from the pump diodes 305 and volume phase hologram 315 is coupled by the combiner 320 into the outer core of the gain medium 340. The outer core of the gain medium 340 acts as a waveguide that traps and guides the pumping light along the length of the inner core. The pumping light in the outer core is eventually absorbed by the inner core of the gain medium 340 and used to amplify the pulsed laser signal 350.
If the gain medium 340 is ytterbium-doped silica glass, the absorption spectrum of the gain medium 340 exhibits a fairly narrow absorption peak at 976 nm, equivalent to about 3 times more absorption as compared to a relatively wider absorption domain at 930–940 nm. Because the gain medium 340 exhibits a narrow absorption peak at 976 nm, the gain medium 340 has a relatively short fiber length of 1.7 meters (as compared to a relatively longer fiber of at least about 5 meters that would be required if the gain medium 340 was pumped at 930–940 nm as is done for example in a conventional CPA system). The short fiber length is possible by increasing the length-dependent absorption of the gain medium by exciting it at its peak absorption. The short fiber length minimizes nonlinear distortions such as SPM and SRS in the gain medium 340.
However, because of the narrow absorption peak at 976 nm, if the pump diodes 305 drift slightly off of the 976 nm wavelength even by as little as +/−3 nm, then the gain of the optical amplifier 215 would be significantly reduced along with the output power and efficiency of the CPA system 200.
Accordingly, the pump diodes 305 and volume phase hologram 315 are configured to generate passively wavelength-stabilized pumping light at a wavelength of 976 nm. The volume phase hologram 315 is configured to reflect a portion of the pumping light back to the pump diodes 305 to at the appropriate 976 nm wavelength. The volume phase hologram 315 of one embodiment comprises a LuxxMaster® Wavelength Stabilizer, available from PD-LD, Inc., of Pennington, N.J. The volume phase hologram 315 is usable with multimode fiber gain media such as the gain medium 340 of the exemplary embodiment.
Passive wavelength-stabilization by reflection of a portion of the output of the pump diodes 305 back to the pump diodes 305 results in stability of 0.01 nm/K as compared to non-stabilized drift of the pump diodes 305 of +/3 nm/degree K. With passive wavelength-stabilization, the pump diodes 305 may be operated over a 30 degree temperature range, for example, yet still provide only 3 nm of drift in the output frequency of the pump diodes 305. For example, controlling the pump diodes 305 within a 5–10 degree K temperature range may be performed with cooling fans and/or cooling fins (not shown), which are significantly smaller in size and less expensive in cost than water chillers or TEC devices. Cooling fans and/or cooling fins are considered as passive devices because there is no active control over the temperature and/or current of the pump diodes 305.
Therefore, an advantage of operating the pump diodes 305 at or near an absorption peak of the gain medium 340 is shorter length in the gain medium 340 (e.g., less fiber). Pumping the gain medium 340 at or near an absorption peak reduces nonlinear distortion in the gain medium 340, yielding relatively higher peak power in the gain medium 340 and higher energy per pulse at the output of the CPA system 200.
Furthermore, eliminating the water chillers or TEC devices increases plug efficiency of the CPA system 200. Although such temperature and/or current control devices may be utilized in the CPA system 200, the passive wavelength-stabilization technique described herein reduces or eliminates the need for such active wavelength-stabilization methods. Providing passive wavelength-stabilization in the CPA system 200 allows significant reductions in the physical size, power consumption, and power efficiency of the CPA system 200.
In various alternative embodiments, the CPA system 200 incorporates other types of the gain medium 340 and/or operation at other narrow absorption peaks. For example, the gain medium 340 may comprise an erbium-doped fiber pumped at 1480 nm. Accordingly, the scope of the invention is considered to include erbium-ytterbium fiber, ytterbium fiber, and other gain media such as solid-state gain media with different absorption characteristics for the gain media 340. Further, the CPA system 200 may incorporate large mode field fiber for the gain medium 340 to further reduce nonlinearities or further minimize fiber length.
The invention has been described herein in terms of preferred embodiments. Other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
3631362 | Almasi et al. | Dec 1971 | A |
3808549 | Maurer | Apr 1974 | A |
3963953 | Thornton, Jr. | Jun 1976 | A |
4289378 | Remy et al. | Sep 1981 | A |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4722591 | Haffner | Feb 1988 | A |
4750809 | Kafka et al. | Jun 1988 | A |
4808000 | Pasciak | Feb 1989 | A |
4815079 | Snitzer et al. | Mar 1989 | A |
4824598 | Stokowski | Apr 1989 | A |
4829529 | Kafka | May 1989 | A |
4902127 | Byer et al. | Feb 1990 | A |
4913520 | Kafka | Apr 1990 | A |
4915757 | Rando | Apr 1990 | A |
4972423 | Alfano et al. | Nov 1990 | A |
5014290 | Moore et al. | May 1991 | A |
5022042 | Bradley | Jun 1991 | A |
5043991 | Bradley | Aug 1991 | A |
5132996 | Moore et al. | Jul 1992 | A |
5162643 | Currie | Nov 1992 | A |
5166818 | Chase et al. | Nov 1992 | A |
5187759 | DiGiovanni et al. | Feb 1993 | A |
5237576 | DiGiovanni et al. | Aug 1993 | A |
5265107 | Delfyett, Jr. | Nov 1993 | A |
5291501 | Hanna | Mar 1994 | A |
5302835 | Bendett et al. | Apr 1994 | A |
5313262 | Leonard | May 1994 | A |
5329398 | Lai et al. | Jul 1994 | A |
5367143 | White, Jr. | Nov 1994 | A |
5400350 | Galvanauskas | Mar 1995 | A |
5414725 | Fermann et al. | May 1995 | A |
5418809 | August, Jr. et al. | May 1995 | A |
5430572 | DiGiovanni et al. | Jul 1995 | A |
5440573 | Fermann | Aug 1995 | A |
5450427 | Fermann et al. | Sep 1995 | A |
5479422 | Fermann et al. | Dec 1995 | A |
5489984 | Hariharan et al. | Feb 1996 | A |
5499134 | Galvanauskas et al. | Mar 1996 | A |
5517043 | Ma et al. | May 1996 | A |
5548098 | Sugawara et al. | Aug 1996 | A |
5572335 | Stevens | Nov 1996 | A |
5572358 | Gabl et al. | Nov 1996 | A |
5585652 | Kamasz et al. | Dec 1996 | A |
5585913 | Hariharan et al. | Dec 1996 | A |
5592327 | Gabl et al. | Jan 1997 | A |
5596668 | DiGiovanni et al. | Jan 1997 | A |
5602677 | Tournois | Feb 1997 | A |
5617434 | Tamura et al. | Apr 1997 | A |
5627848 | Fermann et al. | May 1997 | A |
5633750 | Nogiwa et al. | May 1997 | A |
5633885 | Galvanauskas et al. | May 1997 | A |
5651018 | Mehuys et al. | Jul 1997 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5663731 | Theodoras, II et al. | Sep 1997 | A |
5677769 | Bendett | Oct 1997 | A |
5689519 | Fermann et al. | Nov 1997 | A |
5696782 | Harter et al. | Dec 1997 | A |
5701319 | Fermann | Dec 1997 | A |
5703639 | Farrier et al. | Dec 1997 | A |
5708669 | DiGiovanni et al. | Jan 1998 | A |
5710424 | Theodoras, II et al. | Jan 1998 | A |
5720894 | Neev et al. | Feb 1998 | A |
5726855 | Mourou et al. | Mar 1998 | A |
5778016 | Sucha et al. | Jul 1998 | A |
5815519 | Aoshima et al. | Sep 1998 | A |
5818630 | Fermann et al. | Oct 1998 | A |
5822097 | Tournois | Oct 1998 | A |
5847863 | Galvanauskas et al. | Dec 1998 | A |
5862287 | Stock et al. | Jan 1999 | A |
5867304 | Galvanauskas et al. | Feb 1999 | A |
5875408 | Bendett et al. | Feb 1999 | A |
5880823 | Lu | Mar 1999 | A |
5880877 | Fermann et al. | Mar 1999 | A |
5898485 | Nati, Jr. | Apr 1999 | A |
5907157 | Yoshioka et al. | May 1999 | A |
5920668 | Uehara et al. | Jul 1999 | A |
5923686 | Fermann et al. | Jul 1999 | A |
5936716 | Pinsukanjana et al. | Aug 1999 | A |
6014249 | Fermann et al. | Jan 2000 | A |
6020591 | Harter et al. | Feb 2000 | A |
6034975 | Harter et al. | Mar 2000 | A |
6061373 | Brockman et al. | May 2000 | A |
6072811 | Fermann et al. | Jun 2000 | A |
6075588 | Pinsukanjana et al. | Jun 2000 | A |
6081369 | Waarts et al. | Jun 2000 | A |
6120857 | Balooch et al. | Sep 2000 | A |
6122097 | Weston et al. | Sep 2000 | A |
6130780 | Joannopoulos et al. | Oct 2000 | A |
6151338 | Grubb et al. | Nov 2000 | A |
6154310 | Galvanauskas et al. | Nov 2000 | A |
6156030 | Neev | Dec 2000 | A |
6181463 | Galvanauskas et al. | Jan 2001 | B1 |
6198568 | Galvanauskas et al. | Mar 2001 | B1 |
6208458 | Galvanauskas et al. | Mar 2001 | B1 |
6246816 | Moore et al. | Jun 2001 | B1 |
6249630 | Stock et al. | Jun 2001 | B1 |
6252892 | Jiang et al. | Jun 2001 | B1 |
6256328 | Delfyett et al. | Jul 2001 | B1 |
6269108 | Tabirian et al. | Jul 2001 | B1 |
6275512 | Fermann | Aug 2001 | B1 |
6281471 | Smart | Aug 2001 | B1 |
6303903 | Liu | Oct 2001 | B1 |
6314115 | Delfyett et al. | Nov 2001 | B1 |
6327074 | Bass et al. | Dec 2001 | B1 |
6327282 | Hammons et al. | Dec 2001 | B2 |
6334011 | Galvanauskas et al. | Dec 2001 | B1 |
6335821 | Suzuki et al. | Jan 2002 | B1 |
RE37585 | Mourou et al. | Mar 2002 | E |
6355908 | Tatah et al. | Mar 2002 | B1 |
6362454 | Liu | Mar 2002 | B1 |
6365869 | Swain et al. | Apr 2002 | B1 |
6370171 | Horn et al. | Apr 2002 | B1 |
6404944 | Wa et al. | Jun 2002 | B1 |
6421169 | Bonnedal et al. | Jul 2002 | B1 |
6433303 | Liu et al. | Aug 2002 | B1 |
6433305 | Liu et al. | Aug 2002 | B1 |
6433760 | Vaissie et al. | Aug 2002 | B1 |
6501590 | Bass et al. | Dec 2002 | B2 |
6522460 | Bonnedal et al. | Feb 2003 | B2 |
6525873 | Gerrish et al. | Feb 2003 | B2 |
6526327 | Kar et al. | Feb 2003 | B2 |
6529319 | Youn et al. | Mar 2003 | B2 |
6549547 | Galvanauskas et al. | Apr 2003 | B2 |
6567431 | Tabirian et al. | May 2003 | B2 |
6573813 | Joannopoulos et al. | Jun 2003 | B1 |
6574024 | Liu | Jun 2003 | B1 |
6576917 | Silfvast | Jun 2003 | B1 |
6580553 | Kim et al. | Jun 2003 | B2 |
6597497 | Wang et al. | Jul 2003 | B2 |
6603911 | Fink et al. | Aug 2003 | B2 |
6621045 | Liu et al. | Sep 2003 | B1 |
6627844 | Liu et al. | Sep 2003 | B2 |
6642477 | Patel et al. | Nov 2003 | B1 |
6647031 | Delfyett et al. | Nov 2003 | B2 |
6654161 | Bass et al. | Nov 2003 | B2 |
6661816 | Delfyett et al. | Dec 2003 | B2 |
6671298 | Delfyett et al. | Dec 2003 | B1 |
6690686 | Delfyett et al. | Feb 2004 | B2 |
6710288 | Liu et al. | Mar 2004 | B2 |
6710293 | Liu et al. | Mar 2004 | B2 |
6720519 | Liu et al. | Apr 2004 | B2 |
6723991 | Sucha et al. | Apr 2004 | B1 |
6728273 | Perry | Apr 2004 | B2 |
6728439 | Weisberg et al. | Apr 2004 | B2 |
6735229 | Delfyett et al. | May 2004 | B1 |
6738144 | Dogariu | May 2004 | B1 |
6744555 | Galvanauskas et al. | Jun 2004 | B2 |
6749285 | Liu et al. | Jun 2004 | B2 |
6760356 | Erbert et al. | Jul 2004 | B2 |
6774869 | Biocca et al. | Aug 2004 | B2 |
6782207 | Efimov | Aug 2004 | B1 |
6785303 | Holzwarth et al. | Aug 2004 | B1 |
6787734 | Liu | Sep 2004 | B2 |
6788864 | Ahmad et al. | Sep 2004 | B2 |
6791060 | Dunsky et al. | Sep 2004 | B2 |
6801551 | Delfyett et al. | Oct 2004 | B1 |
6803539 | Liu et al. | Oct 2004 | B2 |
6804574 | Liu et al. | Oct 2004 | B2 |
6807375 | Dogariu | Oct 2004 | B2 |
6815638 | Liu | Nov 2004 | B2 |
6819694 | Jiang et al. | Nov 2004 | B2 |
6819702 | Sverdlov et al. | Nov 2004 | B2 |
6819837 | Li et al. | Nov 2004 | B2 |
6822251 | Arenberg et al. | Nov 2004 | B1 |
6829517 | Cheng et al. | Dec 2004 | B2 |
6878900 | Corkum et al. | Apr 2005 | B2 |
6885683 | Fermann et al. | Apr 2005 | B1 |
6897405 | Cheng et al. | May 2005 | B2 |
6917631 | Richardson et al. | Jul 2005 | B2 |
7088756 | Fermann et al. | Aug 2006 | B2 |
20020176676 | Johnson et al. | Nov 2002 | A1 |
20030202547 | Fermann et al. | Oct 2003 | A1 |
20040231682 | Stoltz | Nov 2004 | A1 |
20050008044 | Fermann et al. | Jan 2005 | A1 |
20050035097 | Stoltz | Feb 2005 | A1 |
20050038487 | Stoltz | Feb 2005 | A1 |
20050061779 | Blumenfeld et al. | Mar 2005 | A1 |
20050065502 | Stoltz | Mar 2005 | A1 |
20050074974 | Stoltz | Apr 2005 | A1 |
20050077275 | Stoltz | Apr 2005 | A1 |
20050127049 | Woeste et al. | Jun 2005 | A1 |
20050163426 | Fermann et al. | Jul 2005 | A1 |
20050167405 | Stoltz et al. | Aug 2005 | A1 |
20050171516 | Stoltz | Aug 2005 | A1 |
20050171518 | Stoltz et al. | Aug 2005 | A1 |
20050175280 | Nicholson | Aug 2005 | A1 |
20050177143 | Bullington et al. | Aug 2005 | A1 |
20050195726 | Bullington et al. | Sep 2005 | A1 |
20050226278 | Gu et al. | Oct 2005 | A1 |
20050226286 | Liu et al. | Oct 2005 | A1 |
20050238070 | Imeshev et al. | Oct 2005 | A1 |
20060056480 | Mielke et al. | Mar 2006 | A1 |
20060120418 | Harter et al. | Jun 2006 | A1 |
20060126679 | Brennan et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
214100 | Mar 1987 | EP |
2003181661 | Jul 2003 | JP |
WO 9428972 | Dec 1994 | WO |
WO 2004105100 | Dec 2004 | WO |
WO 2004114473 | Dec 2004 | WO |
WO 2005018060 | Feb 2005 | WO |
WO 2005018061 | Feb 2005 | WO |
WO 2005018062 | Feb 2005 | WO |
WO 2005018063 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070064304 A1 | Mar 2007 | US |