Waveplate lenses and methods for their fabrication

Information

  • Patent Grant
  • 10114239
  • Patent Number
    10,114,239
  • Date Filed
    Friday, March 14, 2014
    10 years ago
  • Date Issued
    Tuesday, October 30, 2018
    6 years ago
Abstract
The invention provides for lenses fabricated as planar thin film coatings with continuous structure. The lensing action is due to optical axis orientation modulation in the plane of the lens. The lenses of the current invention are fabricated using photoalignment of a liquid crystal polymer wherein the polarization pattern of radiation used for photoalignment is obtained by propagating the light through an optical system comprising a shape-variant nonlinear spatial light polarization modulators.
Description
FIELD OF THE INVENTION

This invention relates to optical lenses, aspheric and apodizing components, and the method of their fabrication. The field of applications of such components includes imaging systems, astronomy, displays, polarizers, optical communication and other areas of laser and photonics technology.


BACKGROUND OF THE INVENTION

Lenses are commonly made by shaping an optical material such as glass. The weight of such lenses increases strongly with diameter making them very expensive and prohibitively heavy for applications requiring large area. Also the quality of a lens typically decreases with increasing size. Diffractive lenses such as Fresnel lenses are relatively thin, however, the structural discontinuity adds to aberrations. Uses of holographic lenses are limited by the compromise of efficiency and dispersion.


In the present invention, such components are obtained on the basis of diffractive waveplates. An exemplary structure of one of the optical components of interest is schematically shown in FIG. 1. Essentially, it is an optically anisotropic film 100 with the optical axis orientation 101 rotating in the plane of the film, the x,y plane in FIG. 1. The thickness L of the film is defined by half-wave phase retardation condition L=λ/(n−n), where n and n are the principal values of the refractive indices of the material; and λ is the radiation wavelength. The required half-wave phase retaradation condition can be met for as low as a few micrometer thick films, particularly, for liquid crystalline materials. Such a structure imposes a phase shift Φ=±2 α(x,y) on circular polarized beams propagating through it with the sign depending on the handedness of polarization. In simplest realization, the rotation angle α of the optical axis orientation is a linear function of a single coordinate, α=2πx/Λ with Λ characterizing the period of the pattern. With account of α=2πx/Λ=qx, where q=2π/Λ, an unpolarized beam is thus diffracted by the diffractive waveplate into +/−1st diffraction orders with the magnitude of the diffraction angle equal to λ/Λ. The phase Φ in the equation above, known as geometrical or Pancharatnam phase, does not depend on wavelength, hence the broadband nature of the diffraction. Due to its half-wave plate nature, there are well developed techniques for making the component essentially achromatic in a wide range of wavelengths. In case of quadratic variation pattern of the optical axis orientation, α˜x2 or, in two dimensional case, α˜x2+y2, the parabolic phase modulation profile produces cylindrical or spherical lens action, correspondingly.


Thus, there is a need and an opportunity provided by the current invention for fabricating lenses and other nonlinear phase modulating components that could be obtained in the form of thin film structurally continuous coatings on a variety of substrates.


BRIEF SUMMARY OF THE INVENTION

The objective of the present invention is providing structurally continuous thin film lenses, positive or negative.


The second objective of the present invention is providing a polarizing lens.


The third objective of the present invention is providing a lens with polarization dependent power sign.


The fourth objective of the present invention is providing a lens wherein the power can be varied (increased) without varying (increasing) thickness.


The fifth objective of the present invention is providing means for fabricating aspherical optical components in the form of thin film coatings.


The sixth objective of the present invention is providing thin film variable lens.


The seventh objective of the present invention is providing micro lenses and their arrays as thin film coatings.


The eight objective of the present invention is providing broadband/achromatic thin film lenses for different spectral range.


The ninth objective of the present invention is providing a method for fabricating and replicating waveplate lenses.


Still another objective of the present invention is providing electrically controlled waveplate lenses.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1A shows spatial distribution of optical axis orientation in a vortex waveplate lens.



FIG. 1B shows spatial distribution of optical axis orientation in a spherical waveplate lens.



FIG. 1C shows spatial distribution of optical axis orientation in a cylindrical waveplate lens.



FIG. 2 schematically shows a shape-variant polarization converter comprising a concave and a convex lens sandwiching a planar aligned nematic liquid crystal in-between. A cylindrical system is shown for drawing simplicity.



FIG. 3A schematically shows an optical system for recording nonlinear variation patterns for liquid crystal orientation on a substrate coated with a photoaligning material film.



FIG. 3B schematically shows an optical system with a biriefringent wedge acting as spatial light polarization modulator, and twist oriented liquid crystal cells as polarization converter components.



FIG. 4 shows photos of a laser beam received at the output of the optical recording system observed with and without a polarizer for both a cylindrical and a spherical birefringent lens.



FIG. 5 shows photos of liquid crystal polymer films photoaligned with a cylindrical and spherical lens. Photos are obtained between crossed polarizers.



FIG. 6A shows photos of a laser beam focused with a cylindrical waveplate-lens for different polarization states: linear, right-hand circular, and left-hand circular.



FIG. 6B shows far field photos of a laser beam focused with a cylindrical waveplate-lens for different polarization states: linear, right-hand circular, and left-hand circular.



FIG. 6C shows photos of projections of a triangular aperture with a spherical waveplate-lens for different polarization states: linear, right-hand circular, and left-hand circular. Photos are obtained at planes before, at, and far from the focus of the lens.



FIG. 6D shows switching the focusing state to defocusing state by switching the handedness of a circular polarized beam.



FIG. 7 shows photos of a cylindrical and spherical waveplate-microlenses.



FIG. 8 schematically shows an array of spherical microlenses.





DETAILED DESCRIPTION OF THE INVENTION

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not limitation.


Patterns of optical axis orientation demonstrating examples of waveplate lenses of current invention are shown in FIG. 1. An example of a key component of spatially nonlinear polarization converting system of the present invention shown in FIG. 2 comprises a cylindrical plano-convex lens 202 and a cylindrical plano-concave lens 201 sandwiching a planar aligned nematic liquid crystal (NLC) layer 203. Cylindrical or spherical lenses are used for fabricating cylindrical or spherical waveplate lenses, correspondingly. The focal length of plano-convex and plano-concave lenses can be chosen to create a cell gap between the lenses with depth as small as 1 μm or as large as 1 mm. For example, a lense of focal length F1=150 mm with curvature radii ?? can be combined with a lens of focal length F2=−100 mm with curvature radii ?? for obtaining a gap of 340 μm.


To align the NLC layer within the lenses, the surfaces of the lenses that are in touch with the NLC can be spin-coated with 0.5 wt. % solution of PVA in distilled water at 3000 rpm for 30 s. Then, they can be dried during 20 min at 100° C. and rubbed with a soft cloth in one direction. NLC E48 (Merck) can be used to fill in the cells, as an example.


This shape-variant birefringent film 203 provides spatially varying phase retardation acting as a spatial light polarization modulator (SLPM). The polarization control system may further incorporate additional polarizing optics that ensures equality of the electric field strength of ordinary and extraordinary wave components generated in the SLPM film. For example, when using a linear polarized laser beam 301 in FIG. 3A, a quarter-waveplate 311 can be used for creating a circular polarized light beam incident on the SLPM film 320 as shown in FIG. 3A. Alternatively, a twisted liquid crystal polarization rotator 313 can be used to rotate the polarization of the incident light beam 301 to arrange it at 45 degrees with respect to the anisotropy axis of the SLPM film 320 as show in FIG. 3B. The spatial modulation of polarization obtained at the output of the film is further transformed by a second quarter-waveplate 312 in the schematic shown in FIG. 3A or a twisted nematic film 313 in the example shown in FIG. 3B. Thus, cyclodal distribution of light polarization can be obtained in a particular case of a SLPM film in the form of a birefringent wedge 321 in FIG. 3B. The twist angle, when using NLC cells for controlling the beam polarization at the input and output of the SLPM film may be 45 degrees as depicted schematically in FIG. 3B. The mutual alignment of the axes of the quarter-waveplates in FIG. 3A or the twist NLC cells in FIG. 3B shall be such as the transmitted beam is linear polarized at the absence of the SLPM film.


An expanded beam of an Argon ion laser operating at 488 nm wavelength providing a power density 12 mW/cm2 can be used for photoalignment of the photoaligning layer 330 deposited on a support substrate 340. The beam propagates through two quarter waveplates and the SLPM film 320 between them in FIG. 3A. In the example shown in FIG. 3B, the beam propagates through the system of two polarization rotators and the SLPM film 321 between them.


The pattern of polarization distribution of the beam at the output of the system can be verified with a linear polarizer on a screen. Cylindrical and spherical cycloidal distribution of polarization is shown in FIG. 4. The item 401 in FIG. 4 corresponds to the pattern observed without polarizers. It shows homogeneous distribution of light intensity since the only parameter being modulated is polarization. In contrast, polarization modulation is revealed between polarizers as parabolic fringes in case of cylindrical lens 402 and concentric modulation pattern in case of a spherical lens 403.


The polarization modulation patterns can be recorded, as an example, on PAAD series photoalignment material layers (available at beamco.com). The PAAD layer is created on a substrate, glass, for example, by spin-coating a solution of PAAD-72(1%)/DMF at 3000 rpm during 30 s. PAAD layer can be pre-exposed with linear polarized LED light, 459 nm wavelength, for example, before recording the lens; the pre-exposure time is approximately 10 min at power density 10 mW/cm2. The pre-aligned PAAD layer is exposed then to the Argon ion laser beam during 60 s.


Having thus created the required alignment conditions, the PAAD coated substrate can be coated with layers of liquid crystal monomer solution, for example, RMS-03-001C (Merck, Ltd.), followed by photopolymerization with unpolarized UV light at 365 nm wavelength during 5 min. The first layer of the RMS-03-001C can be spin-coated on PAAD-72 layer at a speed 3000 rpm during 1 min. A second layer of RMS-03-001C can be spin-coated on the first layer at a 2000 rpm during 1 min followed by photopolymerization as indicated above to create half-wave phase retardation condition at, for example, 633 nm wavelength.


Alternatively, photoaligned substrates can be used for making electrically or optically controlled liquid crystal cells resulting in electrically or optically controlled waveplate lenses. Details?


Cylindrical and spherical LC polymer lens structures are shown in FIG. 5, items 501 and 502, correspondingly, between crossed polarizers. Focusing and defocusing patterns of a red laser beam on above structures are shown in FIG. 6 at different conditions. The Focal length of the cylindrical waveplate-lenses used in FIG. 6 is 84 cm and 7 cm: photos 601-603 (F=84 cm) are obtained in its focal plane. Photos 607-609 (F=7 cm) correspond to far field zone. Photos 601, and 607 correspond to linear polarized incident light. Photos 602, and 608 correspond to left-hand circular polarized incident beam. The photos 603, and 609 correspond to right-hand circular polarized incident beam.


Projection of a mask with a triangular opening with the aid of a spherical cycloidal lens is shown in FIG. 6. Photos 611, 612, and 613 were taken behind the lens before focus. Photos 621, 622, and 623 were taken at the focus of the lens (F=190 mm), and the Photos 631, 632, and 633 were taken far from the focus. The photos 611, 621 and 631 correspond to linear polarized or unpolarized incident beam. The photos 612, 622 and 632 correspond to left-hand circular polarized incident beam, and the photos 613, 623, and 633 correspond to right-hand circular polarized beam, correspondingly. The focusing conditions can be controlled by using electrically or optically controlled phase retardation plates to modulate the polarization state and distribution in the input light.


Lenses of different focal length can be recorded by simply changing the size of the polarization modulation pattern projected onto the photoalignment layer. FIG. 7 shows examples of lenses of less than a mm diameter. The projection can be simply made by a focusing lens placed after the output quarter-wave plate. Lens size of 0.6 mm, for example, corresponded to a focal length of 3 mm while a lens size of 6 mm exhibited a focal length of 475 mm. Arrays of such microlenses can be printed as schematically shown in FIG. 8.


Although the present invention has been described above by way of a preferred embodiment, this embodiment can be modified at will, within the scope of the appended claims, without departing from the spirit and nature of the subject invention.

Claims
  • 1. A method for fabricating diffractive waveplate lens of nonlinear phase modulation profile comprising: (a) providing a substrate;(b) dispensing a photoaligning material layer over said substrate;(c) providing a light source with wavelength in the absorption band of said photoalignment material;(d) propagating a light beam from the light source through polarization control optics comprising a polarization converter outputting a spatially nonlinear distribution of linear polarization along a radial direction;(e) further propagating said light beam from the light source through an optical projection system;(f) exposing said photoaligning material layer to said light beam at the output of said optical projection system,(g) dispensing a polymerizable liquid crystal precursor over the photoaligned material layer; and(h) in-situ reacting said polymerizable liquid crystal to form a polymer film.
  • 2. The method for fabricating diffractive waveplate lens as in claim 1 further comprising deposition of two or more liquid crystal polymer films which vary in thickness, optical anisotropy and chirality.
  • 3. The method as in claim 1 wherein said spatially nonlinear polarization converter comprises an assembly of a first substrate and a second substrate with at least one of the first and the second substrate having non-planar surface topology, said first substrate and said second substrate treated for inducing alignment of liquid crystalline materials, and a liquid crystalline material being sandwiched in-between the first substrate and the second substrate.
  • 4. The method as in claim 3 wherein said first and second substrates are plano-convex and plano-concave lenses.
  • 5. The method as in claim 1 wherein said polarization control optics further comprises an input and an output quarter waveplates with their axes aligned parallel or perpendicular to each other.
  • 6. The method as in claim 1 wherein said polarization control optics further comprises an input and an output liquid crystal cells, each possessing a twist, oriented such as the resultant polarization is linear at the absence of the nonlinear polarization converter.
  • 7. The method as in claim 1 wherein said nonlinear polarization converter comprises a diffractive waveplate-lens meeting half-wave phase retardation condition for the wavelength of the recording radiation.
  • 8. The method as in claim 1 wherein said nonlinear polarization converter comprises material with spatially varying optical anisotropy in the radial direction.
CROSS REFERENCES

14,193,027February 2014Tabirian et al.61/757,259January 2013Tabirian et al. This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/801,251 filed Mar. 15, 2013, the contents of which are relied upon and are incorporated herein, and this application is a Continuation-In-Part of U.S. patent application Ser. No. 13/860,934 filed Apr. 11, 2013, which is a Continuation of U.S. patent application Ser. No. 12/662,525 filed Apr. 21, 2010.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Contract No. W911QY-12-C-0016. The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.

US Referenced Citations (93)
Number Name Date Kind
2435616 Wittum Feb 1948 A
3721486 Bramley Mar 1973 A
3897136 Bryngdahl Jul 1975 A
4301023 Schuberth Nov 1981 A
4956141 Allen Sep 1990 A
4983332 Hahn Jan 1991 A
5032009 Gibbons Jul 1991 A
5047847 Toda Sep 1991 A
5142411 Fiala Aug 1992 A
5325218 Willett Jun 1994 A
5610325 Yoshida Apr 1997 A
5712721 Large Jan 1998 A
5895422 Hauber Apr 1999 A
5903330 Funschilling May 1999 A
5989758 Komatsu Nov 1999 A
6025899 Fukunaga Feb 2000 A
6091471 Kim Jul 2000 A
6139147 Zhang Oct 2000 A
6219185 Hyde Apr 2001 B1
6551531 Ford Apr 2003 B1
6792028 Cook Sep 2004 B2
7094304 Nystrom Aug 2006 B2
7095772 Delfyett et al. Aug 2006 B1
7196758 Crawford Mar 2007 B2
7319566 Prince Jan 2008 B2
7324286 Glebov Jan 2008 B1
7450213 Kim et al. Nov 2008 B2
7764426 Lipson Jul 2010 B2
8077388 Gerton Dec 2011 B2
8264623 Marrucci Sep 2012 B2
8520170 Escuti Aug 2013 B2
8982313 Escuti et al. Mar 2015 B2
9658512 Tabirian et al. May 2017 B2
9715048 Tabirian et al. Jul 2017 B2
9753193 Tabirian et al. Sep 2017 B2
9983479 Tabirian et al. May 2018 B2
10031424 Tabirian et al. Jul 2018 B2
10036886 Tabirian et al. Jul 2018 B2
20010002895 Kawano Jun 2001 A1
20010018612 Carson Aug 2001 A1
20010030720 Ichihashi Oct 2001 A1
20020027624 Seiberle Mar 2002 A1
20020097361 Ham Jul 2002 A1
20020167639 Coates Nov 2002 A1
20030072896 Kwok Apr 2003 A1
20030137620 Wang Jul 2003 A1
20030152712 Motomura Aug 2003 A1
20040105059 Ohyama Jun 2004 A1
20050030457 Kuan et al. Feb 2005 A1
20050110942 Ide May 2005 A1
20060008649 Shinichiro Jan 2006 A1
20060055883 Morris Mar 2006 A1
20060221449 Gleboz et al. Oct 2006 A1
20060222783 Hayashi Oct 2006 A1
20070032866 Portney Feb 2007 A1
20070115551 Spilman May 2007 A1
20070122573 Yasuike May 2007 A1
20070132930 Ryu et al. Jun 2007 A1
20070247586 Tabirian Oct 2007 A1
20070258677 Chigrinov Nov 2007 A1
20080226844 Shemo Sep 2008 A1
20080278675 Escuti Nov 2008 A1
20090002588 Lee et al. Jan 2009 A1
20090052838 McDowall Feb 2009 A1
20090073331 Shi Mar 2009 A1
20090122402 Shemo May 2009 A1
20090141216 Marrucci Jun 2009 A1
20090256977 Haddock Oct 2009 A1
20090257106 Tan Oct 2009 A1
20090264707 Hendricks Oct 2009 A1
20100066929 Shemo Mar 2010 A1
20110075073 Oiwa Mar 2011 A1
20110085117 Moon et al. Apr 2011 A1
20110097557 May Apr 2011 A1
20110109874 Piers May 2011 A1
20110135850 Saha Jun 2011 A1
20110188120 Tabirian Aug 2011 A1
20110234944 Powers Sep 2011 A1
20110262844 Tabirian Oct 2011 A1
20120140167 Blum Jun 2012 A1
20120162433 Fuentes Gonzalez Jun 2012 A1
20120188467 Escuti Jul 2012 A1
20130057814 Prushinskiy et al. Mar 2013 A1
20140055740 Spaulding Feb 2014 A1
20140211145 Tabirian Jul 2014 A1
20140252666 Tabirian Sep 2014 A1
20150049487 Connor Feb 2015 A1
20150276997 Tabirian et al. Oct 2015 A1
20160023993 Tabirian Jan 2016 A1
20160047955 Tabirian Feb 2016 A1
20160047956 Tabirian Feb 2016 A1
20160363783 Blum Dec 2016 A1
20170010397 Tabirian Jan 2017 A1
Foreign Referenced Citations (7)
Number Date Country
1970734 Sep 2008 EP
2088456 Dec 2009 EP
2209751 May 1989 GB
2001142033 May 2001 JP
2004226752 Aug 2004 JP
2008130555 Oct 2008 WO
2008130559 Oct 2008 WO
Non-Patent Literature Citations (71)
Entry
Fan et al; Axially symmetric polarization converter made of patterned liuid crystal quarter wave plate; Optics Express; vol. 20, No. 21; pp. 23036-23043; published Sep. 24, 2012.
Pagliusi et al. Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain, Opt. Expr. vol. 16, Oct. 2008, 9 pages.
M. Honma, T. Nose, Polarization-independent liquid crystal grating fabricated by microrubbing process, Jpn. J. Appl. Phys., Part 1, vol. 42, 2003, 3 pages.
Anderson, G., et al., Broadband Antihole Photon Sieve Telescope, Applied Optics, vol. 16, No. 18., Jun. 2007, 3 pages.
Early, J. et al., Twenty Meter Space Telescope Based on Diffractive Fresnel Lens, SPIE, U.S. Department of Energy, Lawrence Livermore National Laboratory, Jun. 2003, 11 pages.
Martinez-Cuenca, et al., Reconfigurable Shack-Hartmann Sensor Without Moving Elements,Optical Society of America, vol. 35, No. 9, May 2010, 3 pages.
Serak, S., et al., High-efficiency 1.5 mm Thick Optical Axis Grating and its Use for Laser Beam Combining, Optical Society of America, vol. 32, No., Jan. 2007, 4 pages.
Ono et al., Effects of phase shift between two photoalignment substances on diffration properties in liquid crystalline grating cells, Appl. Opt. vol. 48, Jan. 2009, 7 pgs.
Naydenova et al., “Diffraction form polarization holographic gratings with surface relief in side chain azobenzene polyesters” J. Opt. Soc. Am. B, vol. 15, (1998), 14 pages.
Oh et al., Achromatic polarization gratings as highly efficent thin-film polarizing beamsplitters for broadband light Proc. SPIE vol. 6682, (2007), 4 pages.
Nersisyan, S., et al., Polarization insensitive imaging through polarization gratins, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages.
Oise, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Optical Society of America, Orlando, FL., Nov. 12-13, 2003, 9 pages.
Dierking, Polymer Network-Stabilized Liquid Crystals, Advanced Materials, vol. 12, No. 3, 2000, 15 pages.
Tabirian, N., et al., U.S. Appl. No. 61/757,259, filed Jan. 28, 2013, 29 pages.
U.S. Appl. No. 14/193,027, filed Feb. 2014, Tabirian et al.
U.S. Appl. No. 61/757,259, filed Jan. 2013, Tabirian et al.
Tabiryan, et al., The Promise of Diffractive Waveplates, OPN Optics and Photonics News, Mar. 2010, 6 pages.
Tabiryan, et al., Fabricating Vector Vortex Waveplates for Coronagraphy, 2012, 12 pages.
Tabirian, et al., PCT Application No. PCT/US15/26186 filed Apr. 16, 2015, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority dated Jul. 14, 2015, 17 pages.
Beam Engineering for Advaced Measurements Co., et al., PCT Application No. PCT/US2016/038666 filed Jun. 22, 2016, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority , or the Declaration dated Oct. 10, 2016, 16 pages.
Nersisyan, et al., Study of azo dye surface command photoalignment material for photonics applications, Applied Optics, vol. 49, No. 10, Apr. 1, 2010, 8 pages.
Nersisyan, et al., Characterization of optically imprinted polarization gratings, Applied Optics, vol. 48, No. 21, Jul. 20, 2009, 6 pages.
Niersisyan, et al., Fabrication of Liquid Crystal Polymer Axial Waveplates for UV-IR Wavelengths, Optics Express, vol. 17, No. 14, Jul. 2009, 9 pages.
Nersisyan, et al., Optical Axis Gratings in Liquid Crystals and Their Use for Polarization Insensitive Optical Switching, Journal of Nonlinear Optical Physics & Materials, vol. 18, No. 1, 2009, 47 pages.
Niersisyan, et al., Polarization insensitive imaging through polarization gratings, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages.
Sarkissian, et al., Longitudinally modulated nematic bandgap structure, Optical Society of America, vol. 23, No. 8, Aug. 2008, 6 pages.
Sarkissian, et al., Polarization-universal bandgap in periodically twisted nematics, Optics Letters, vol. 31, No. 11, Jun. 1, 2006, abstract, 4 pages.
Sarkissian, et al., Periodically Aligned Liquid Crystal: Potential Application for Projection Displays, Mol. Cryst. Liq. Cryst., vol. 451, 2006, 19 pages.
Sarkissian, et al., Potential application of Periodically Aligned Liquid Crystal cell for projection displays, JThE12, 2005, 3 pages.
Sarkissian, et al., Polarization-Controlled Switching Between Diffraction Orders in Transverse-Periodically Aligned Nematic Liquid Crystals, Optics Letters, Aug. 2006, abstract, 4 pages.
Schadt, et al., Photo-Induced Alignment and Patterning of Hybrid Liquid Crystalline Polymer Films on Single Substrates, Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6B, Jun. 15, 1995, 4 pages.
Schadt , et al., Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters, Jpn. J. Appl. Phys., vol. 34, Part 1, No. 6A, Jun. 1995, 10 pages.
Schadt, et al., Optical patterning of multi-domain liquid-crystal displays with wide viewing angles, Nature, vol. 381, May 16, 1996, 4 pages.
Escuti, et al., A Polarization-Independent Liquid Crystal Saptial-Light-Modulator, Liquid Crystals X, Proc. of SPIE, vol. 6332, 2006, 9 pages.
Escuti, et al., Polarization-Independent LC Microdisplays Using Liquid Crystal Polarization Gratings: A Viable Solution (?), Dept of Electrical & Computer Engineering @ ILCC, Jul. 1, 2008, 30 pages.
Escuti, et al, Simplified Spectropolarimetry Using Reactive Mesogen Polarization Gratings, Imaging Spectrometry XI, Proc. of SPIE, vol. 6302, 2006, 11 pages.
Gibbons, et al., Surface-mediated alignment of nematic liquid crystals with polarized laser light, Nature, vol. 351, May 2, 1991, 1 page.
Gibbons, et al., Optically Controlled Alignment of Liquid Crystals: Devices and Applications, Molecular Crystals and Liquid Crystals, vol. 251, 1994, 19 pages.
Gibbons, et al., Optically generated liquid crystal gratings, Appl. Phys. Lett., 65, Nov. 14, 1994, 3 pages.
University of Central Florida, School of Optics CREOL PPCE, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Nov. 12-13, 2003, 9 pages.
Ichimura, et al., Surface assisted photoalignment control of lyotropic liquid crystals, Part 1, Characterization and photoalignment of aqueous solutions of a water soluble dyes as lyotropic liquid crystals, J. Materials. Chem., vol. 12, 2002, abstract, 2 pages.
Ichimura, et al., Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by “Command Surfaces” Modified with an Azobenzene Monolayer, American Chemical Society, Langmuir, vol. 4, No. 5, 1988, 3 pages.
Zel'Dovich, et al., Devices for displaying visual information, Disclosure, School of Optics/CREOL, University of Central Florida, Jul. 2000, 10 pages.
Provenzano, et al., Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces, Applied Physics Letter 89, 2006, 4 pages.
Titus, et al., Efficient polarization-independent, re ective liquid crystal phase grating, Applied Physics Letter 71, Oct. 20, 1197, 3 pages.
Chen, et al. An Electrooptically Controlled Liquid-Crystal Diffraction Grating, Applied Physics Letter 67, Oct. 30, 1995, 4 pages.
Kim, et al., Unusual Characteristics of Diffraction Gratings in a Liquid Crystal Cell, Advanced Materials, vol. 14, No. 13-14, Jul. 4, 2002, 7 pages.
Pan, et al., Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns, Chinese Journal of Physics, vol. 41, No. 2, Apr. 2003, 8 pages.
Fuh, et al., Dynamic studies of holographic gratings in dye-doped liquid-crystal films, Optics Letter, vol. 26, No. 22, Nov. 15, 2001, 3 pages.
Yu, et al., Polarization Grating of Photoaligned Liquid Crystals with Oppositely Twisted Domain Structures, Molecular Crystals Liquid Crystals, vol. 433, 2005, 7 pages.
Crawford, et al., Liquid-crystal diffraction gratings using polarization holography alignment techniques, Journal of Applied Physics 98, 2005, 10 pages.
Seiberle, et al., 38.1 Invited Paper: Photo-Aligned Anisotropic Optical Thin Films, SID 03 Digest, 2003, 4 pages.
Wen, et al., Nematic liquid-crystal polarization gratings by modification of surface alignment, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, 5 pages.
Anagnostis, et al., Replication produces holographic optics in volume, Laser Focus World, vol. 36, Issue 3, Mar. 1, 2000, 6 pages.
Gale, Replicated Diffractive Optics and Micro-Optics, Optics and Photonics News, Aug. 2003, 6 pages.
McEldowney, et al., Creating vortex retarders using photoaligned LC polymers, Optics Letter, vol. 33, No. 2, Jan. 15, 2008, 3 pages.
Marrucci, et al., Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain, Appl. Phys. Lett. 88, 2006, 3 pages.
Stalder, et al., Lineraly polarized light with axial symmetry generated by liquid-crystal polarization converters, Optics Letters vol. 21, No, 1996, 3 pages.
Kakichashvili, et al., Method for phase polarization recording of holograms, Sov. J. Quantum. Electron, vol. 4, 6, Dec. 1974, 5 pages.
Todorov, et al., High-Sensitivity Material With Reversible Photo-Induced Anisotropy, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 4 pages.
Attia, et al., Anisoptropic Gratings Recorded From Two Circularly Polarized Coherent Waves, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 6 pages.
Cipparrone, et al., Permanent polarization gratings in photosensitive langmuir blodget films, Applied Physics Letter, vol. 77, No. 14, Oct. 2, 2000, 4 pages.
Nikolova, et al., Diffraction Efficiency and Selectivity of Polarization Holographic Recording, Optica Acta: International Journal of Optics, vol. 31, No. 5, 1984, 11 pages.
Lee et al., “Generation of pretilt angles of liquid crystals on cinnamte-based photoalignment . . . ”, Opt., Expr., vol. 17 (26) (Dec. 2009), abstract, 4 pages.
Yaroshchuk et al. “Azodyes as photoalignment agents for polymerizable liquid crystals”, IDW'06 Digest vol. 1-3, 2006, 4 pages.
Chigrinov et al. “Anchoring properties of photoaligned azo-dye materials” Phys. Rev., E vol. 68, (Dec. 2003), 5 pages.
Pepper, M. et al, Nonlinear Optical Phase Conjugation, IEEE, Sep. 1991, pp. 21-34, 14 pages.
Tabirian, N., U.S. Appl. No. 14/194,808 filed Mar. 2, 2014, Office Action Summary dated Feb. 9, 2018, 10 pages.
Tabirian, N., U.S. Appl. No. 14/324,126, filed Jul. 4, 2014, Office Action Summary dated Feb. 8, 2018, 13 pages.
Tabirian, et al., Utility U.S. Appl. No. 14/688,197 filed Apr. 16, 2016, Office Action Summary dated Aug. 6, 2018, 19 pages.
Tabirian, et al., Utility U.S. Appl. No. 15/621,553 filed Jun. 13, 2017, Office Action Summary dated Aug. 7, 2018, 11 pages.
Related Publications (2)
Number Date Country
20170045760 A1 Feb 2017 US
20180024387 A9 Jan 2018 US
Provisional Applications (1)
Number Date Country
61801251 Mar 2013 US
Continuations (1)
Number Date Country
Parent 12662525 Apr 2010 US
Child 13860934 US
Continuation in Parts (1)
Number Date Country
Parent 13860934 Apr 2013 US
Child 14214375 US