Not Applicable.
The invention described herein may be manufactured, used and licensed by or for the Government for governmental purposes without the payment to the inventors of any royalties thereon.
1. Field of the Invention
The invention relates to devices utilized for supporting and launching tactical ground-based missiles. More specifically, the present invention relates to a mounting unit and remote position detection system for missiles mounted on a movable or stationary platform.
2. Description of the Related Art
Shoulder supported small missile launching devices are known in the art of weaponry available for infantry. A typical man-portable missile launching device is disclosed in U.S. Pat. No. 3,990,355 (the '355 patent), issued to L. L. Looger et al. The '355 patent discloses a shoulder carried anti-tank rocket launcher including a launch tube in which a rocket resides until launched, a firing sight, and folding shoulder recoil stop mechanism. The shoulder carried rocket launcher is designed to be light weight and easily aimed to facilitate rapid use on the battlefield. The shoulder carried rocket launcher requires the soldier to be positioned near the target and at least briefly unprotected during targeting and launch, therefore the soldier is vulnerable to immediate attack from enemy soldiers and/or the mechanized target.
A guidance system for a shoulder fired missile launcher is disclosed in U.S. Pat. No. 4,519,315 (the '315 patent), issued to J. H. Arszman. The guidance system is utilized with a shoulder held man-portable missile launcher. The guidance system provides target identification by a rangefinder, calculation of range and launch elevation, and firing of a missile from a shoulder carried missile launcher at a significant distance from the target. The missile proceeds along a ballistic trajectory to an aerial position above the target, with motor unit separation from the missile carrying a warhead, electronics unit and drag spoiler. The missile is guided to drop on the target by a target detection sensor associated with the warhead. The ability to fire the missile launcher a significant distance from the target, along with flight along a ballistic trajectory path to the target, provides for attack on a target by a soldier positioned a significant distance from a target during targeting, launch and transit of a missile, with reduction in vulnerability of a soldier except during operation of the missile launcher.
A soldier transport vehicle preferably includes armament mounted on an exterior of a transport vehicle sized to transport soldiers during battle. A need exists for a rotatable and pivotable mounting and position recognition system for a missile mounted on a vehicle, which allows for missile position adjustments during targeting by a soldier inside a vehicle and allows for rapid vehicle movement following launch.
A weapon mounting and missile position recognition system is disclosed, including a weapon station frame for support of a launch tube assembly sized to hold a tactical missile capable of being remotely positioned and fired by an operator within a vehicle on which the missile is mounted. The tactical missile comprises any of a variety of small anti-tank missiles, including but not limited to a U.S. Army Javelin anti-tank missile system. The launch tube assembly (hereinafter, the launch tube or LTA) is pivotably mounted to extend laterally from the weapon station frame which is rotatably mounted at a base end to an exterior of a wheeled or tracked vehicle, such as a U.S. Army Stryker® Light Armored Vehicle or any of a variety of military vehicles and boats utilized to transport soldiers, equipment, and/or supplies. A command launch unit (hereinafter, CLU) is connected relative to the weapon station frame in an orientation substantially adjacent of the launch tube. The rotatable mounting of the weapon station frame, LTA and the CLU relative to the vehicle allows for rapid CLU adjustments in angle orientation and in rotational orientation while the CLU is tracking a target. The CLU includes multiple instruments for sighting a target and determining range to a target, including at least one visual light sighting device and at least one infrared sighting device. For optimal missile positioning and launch, the LTA should move with the CLU when pivoting and rotating relative to the vehicle.
The launch tube is pivotably positioned to move in angle orientation relative to the weapon station frame and the CLU by a mounting bracket, cradle and a tube drive arm attached between the launch tube and the weapon station frame. The angle of orientation and rotational position of the launch tube is ascertained by a position encoder positioned proximal to an inboard side of the mounting bracket and the launch tube. The mounting bracket includes an opening against which a sealed bearing unit is positioned to provide a pivoting connection between the mounting bracket, encoder cap and the position encoder to allow remote recognition of the launch tube position. The position encoder is enclosed by an encoder cap disposed inboard of the mounting bracket and sealed bearing unit. An encoder hub unit is attached between the encoder cap and a side portion of an upper frame cross-member of the weapon station frame. The mounting bracket, bearing unit, encoder cap and encoder hub unit maintain the position encoder in a protected position adjacent to the launch tube to enable remote verification of positioning of the launch tube by an occupant within the vehicle during targeting and launch. The encoder cap protects the position encoder from outside interference by environmental contaminants or light impairment, and allows the position encoder to accurately confirm and remotely convey position coordinates of the LTA to a launch computer control module associated with the CLU during targeting of the missile. The mounting bracket, bearing unit, encoder cap and position encoder also allows an operator to remain protected in a vehicle on which the weapon station frame is mounted during positioning of the launch tube leading to missile launch.
The present invention is illustrated in the drawings in which like element numbers represent like parts in each figure, including:
Referring now to
In one illustrated embodiment, the LTA 40 is supported by a weapon station frame 20 attachable to an outer surface of an armored vehicle 12 (see
The LTA 40 is supported for pivoting at a pivot axis at approximately the tube mid-segment to allow elevation changes 40′″ for the missile ejection end 40′ relative to the command launch unit 30 rotatably supported by the weapon station frame 20. The LTA 40 is attached to a mounting plate 44, which is pivoted by a drive arm 42 extended from a connection end 42′ which extends inboard to attach at an inboard end 42″ to an upper frame cross-member 28 (see
Elevation changes for the LTA 40 are provided by a mechanical means attached to the drive arm 42, which extends from an inboard side of the mounting plate 44 at a position ahead of (see
Movement of the LTA 40 is provided by the launch tube being pivotably supported by a mounting plate 44 and cradle support 46 which are moved by the drive arm 42. The mounting plate 44 includes an opening 48 at about a mid-segment and correlating with a mid-segment of the LTA 40. The opening 48 includes an adequate diameter for a sealed roller bearing ring 58 to be attached against an inboard side of the mounting plate 44. The sealed roller bearing ring 58 serves as a rotational connector unit between the mounting plate 44, the encoder hub connector 60, and the encoder cap 50 and includes a typical roller bearing assembly in the form of a ring 58 having roller bearings therein. The rotational connector unit allows the LTA 40 to pivot through a plurality of angles of orientation relative to the generally upright weapon station frame 20, and to pivot in different orientations relative to a separately pivoting weapon cradle 80 attached to an upper portion of the upper frame cross-member 28.
Remote recognition of the angle of orientation of the LTA 40 relative to the upper frame cross-member 28, the CLU 30 and the weapon station frame 20 is provided by a launch tube position recognition unit 70 (see
One embodiment for orientation of the position encoder 72 includes an outboard end 72′ disposed within the encoder cap outboard end 50′, which is positioned within the bearing ring 58 and encoder hub connector 60 connectable against the mounting plate 44 and adjacent of a mid-segment of the LTA 40 (see
The encoder cap 50 is configured to include an interior 52 adequate to receive therein the position encoder 72 (see
The sealed roller bearing ring 58 and encoder hub connector 60 allow the launcher assembly 40, 42, 44 to rotate with the weapon station frame 20 and to be repositioned 40′″ in a plurality of angled elevations during targeting of the LTA 40. The encoder cap 50 maintains an enclosing orientation with the position encoder 72 during rapid repositioning of the LTA 40 during tracking and targeting of a moving target by the launch computer control module 78 and the launch electronics assembly 32 associated with the CLU 30. As illustrated in
While numerous embodiments and methods of use for this invention are illustrated and disclosed herein, it will be recognized that various modifications and embodiments of the invention may be employed without departing from the spirit and scope of the invention as set forth in the appended claims. Further, the disclosed invention is intended to cover all modifications and alternate methods falling within the spirit and scope of the invention as set forth in the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3106132 | Biermann et al. | Oct 1963 | A |
| 3865009 | Kongelbeck | Feb 1975 | A |
| 3892162 | Phillips | Jul 1975 | A |
| 3946640 | Baumann | Mar 1976 | A |
| 3990355 | Looger et al. | Nov 1976 | A |
| 4166406 | Maughmer | Sep 1979 | A |
| 4305325 | Lange et al. | Dec 1981 | A |
| 4444086 | White | Apr 1984 | A |
| 4519315 | Arszman | May 1985 | A |
| 5123327 | Alston et al. | Jun 1992 | A |
| 5129307 | Cain et al. | Jul 1992 | A |
| 6584881 | Boudreau et al. | Jul 2003 | B1 |
| 6691600 | Boudreau et al. | Feb 2004 | B2 |
| 6742433 | Smith et al. | Jun 2004 | B2 |
| Number | Date | Country |
|---|---|---|
| WO 9417357 | Aug 1994 | WO |