Wear and erosion resistant alloys applied by cold spray technique

Information

  • Patent Grant
  • 6780458
  • Patent Number
    6,780,458
  • Date Filed
    Thursday, August 1, 2002
    22 years ago
  • Date Issued
    Tuesday, August 24, 2004
    20 years ago
Abstract
A wear alloy coating (14) applied to a substrate material (12) by a cold spray process. Particles of the wear alloy coating material (16) are directed toward a target surface (18) of the substrate at a velocity sufficiently high for the particles to deform and to adhere to the target surface. The size and composition of the particles may be varied during the cold spray process to produce a coating with a varying property across the depth of the coating. Particles of the wear alloy material may be applied by cold spraying along with particles of a second material such as a lubricant or a ceramic material. For Group 5 hard facing materials, the size and distribution of the embedded carbide nodules may be controlled by controlling the selection of the carbide particles being sprayed. The cold spray process permits a wear alloy coating to be applied proximate a brazed joint or over a directionally stabilized or single crystal material without degrading the underlying material.
Description




FIELD OF THE INVENTION




This invention relates generally to the field of materials technology, and more specifically to a wear alloy coating and a process for applying such coatings.




BACKGROUND OF THE INVENTION




It is well known to apply a wear alloy coating to a substrate material to improve its resistance to abrasion, galling, hammering, moisture erosion, solid particle erosion or other types of wear. “Hard facing” is defined in Materials Handbook, Ninth Edition, Volume 3, published by The American Society of Metals, on pages 563-567, as “the process of applying, by welding, plasma spraying or flame plating, a layer, edge or point of wear-resistant metal onto a metal part to increase its resistance to abrasion, erosion, galling, hammering or other form of wear.” Nonferrous alloys are also used for wear applications, both as wrought parts and as coatings, as discussed on pages 589-594 of the same Materials Handbook. The term “wear alloys” as used herein is meant to include both the hard facing materials discussed on pages 563-567 and the nonferrous alloys discussed on pages 589-594 of the Material Handbook.




Wear alloys are frequently used in applications where systematic lubrication against abrasion is not feasible or is inadequate to give a desired service life to a component. New parts may be provided with a wear alloy coating in selected areas and worn parts may be refaced multiple times before replacement of the entire part becomes necessary, thereby reducing the lifetime cost of the part.




Hard facing materials are classified in Materials Handbook into five major groups defined primarily according to total alloy content (elements other than iron). Generally, as the group number Increases from Group 1 to Group 5, the alloy content, wear resistance and cost will all increase. Groups 1, 2 and 3 hard facing materials are ferrous materials generally contain a total alloy content of less than 50%. Group 4 materials contain from 50-100% alloy content, typically nickel-based and cobalt-based alloys with alloying elements of nickel, chrome, cobalt, boron and tungsten. Group 5 materials consist of hard granules of carbide distributed In a metal matrix. The carbide may be tungsten carbide, titanium carbide, chromium carbide or tantalum carbide. The metal matrix may be a ductile material such as iron, cobalt or nickel. Carbide based wear resistant materials are often used in applications of severe low stress abrasion where cutting edge retention is needed. Low stress wear resistance is an important component of a carbide material's performance. Some carbide systems, such as those with chromium carbide, also afford significant high temperature oxidation/corrosion resistance while retaining excellent wear resistance properties.




Nonferrous wear alloys may be wrought cobalt-base alloys (such as commercial brands sold under the names of Stellite 6B, Stellite 6K, Haynes 25 and and Tribaloy T-400), beryllium-copper alloys (for example C17200) and certain aluminum bronzes (C60800, C61300 and C61400 soft ductile alloys and very hard proprietary die alloys).




Welding, brazing and flame spraying techniques have been used to apply wear alloy coatings. Brazed materials are limited in their potential uses by the melting temperature of the braze alloy. A welded or flame sprayed wear alloy coating may be subject to cracking upon its application due to the shrinkage cracking of these relatively brittle coating materials. Furthermore, the heat input during the application of a wear alloy coating may cause warping of a relatively thin substrate member such as a turbine blade. The heat input from the application of a wear alloy coating may melt or otherwise metallurgical degrade properties of an underlying single crystal or directionally stabilized substrate material or a proximate brazed joint.




Dilution is the interalloying of the wear alloy and the base metal, and it is usually expressed as the percentage of base metal in the deposited wear alloy. A dilution of 10% means that the deposit contains 10% base metal and 90% wear alloy. As dilution increases, the hardness, wear resistance and other desirable properties of the deposit are reduced. The amount of dilution may vary depending upon the deposition process being used and the thickness of the coating. One known technique used to control the amount of dilution it to deposit a buffer layer between the base metal and the wear alloy.




For applications requiring a thick layer of hard face coating material, several coating layers may be used. However, highly alloyed deposits are likely to spall if applied to a thickness of more than 6 mm (¼ inch) as a result of interfaces created within the coating by splat boundaries between sprayed layers or brittle phases between welded layers.




SUMMARY OF THE INVENTION




Accordingly, a wear alloy coating having improved properties and an improved process for applying the coating are needed.




A process for applying a wear alloy coating to a component is described herein as including the steps of: providing a predetermined mix of particles of a wear alloy material; and cold spraying the particle mix toward a target surface of a substrate material at a velocity sufficiently high to cause at least a portion of the particles to adhere to the target surface. The process may further include providing the predetermined mix of particles to include particles of a carbide material having a predetermined size range, or providing the predetermined mix of particles to include particles of a wear alloy material and particles of a second material. The second material may be a lubricant material such as graphite or a ceramic material. The process may further include: selecting the substrate material to comprise one of a single crystal material and a directionally solidified material; and cold spraying the particle mix toward the target surface at a velocity sufficiently high to cause the particles to adhere to the target surface without recrystallization of the substrate material. The velocity or size range of the particle mix may be controlled to achieve a predetermined surface roughness. The process may include changing a size range of the particle mix during the step of cold spraying to produce a coating having a varying property across its depth.




A process for applying a wear alloy coating is described as including: cold spraying particles of a first particle mix comprising a wear alloy material toward a target surface at a velocity sufficiently high to cause the particles to adhere to the target surface to form a first wear alloy coating region; and cold spraying particles of a second particle mix different than the first particle mix toward a surface of the first wear alloy coating region at a velocity sufficiently high to cause the particles to adhere to the first wear alloy coating layer to form a second wear alloy coating region.




A coating for a component surface is described herein as including particles of a wear alloy material and particles of a second material different than the wear alloy material applied to the component surface by a cold spray process. The concentration of the second material relative to the wear alloy material may vary across a depth of the coating. The size range of the particles of the second material may vary across a depth of the coating. The second material may be a lubricant material or a ceramic material.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other advantages of the invention will be more apparent from the following description in view of the drawings that show:





FIG. 1

is a partial cross-sectional view of a component having a wear alloy coating applied by a cold spray process wherein particles of carbides of a predetermined size are intermixed with particles of a metal matrix material.





FIG. 2

is a partial cross-sectional view of a component having a wear alloy coating applied by a cold spray process to form two distinct layers on a target substrate surface.





FIG. 3

is a partial cross-sectional view of a component having a wear alloy coating applied by a cold spray process to have a gradual change in the size of carbide particles across a depth of the coating.





FIG. 4

is a partial cross-sectional view of a component having a wear alloy coating applied by a cold spray process to have both carbide particles and graphite particles surrounding by a metal matrix.











DETAILED DESCRIPTION OF THE INVENTION




U.S. Pat. No. 5,302,414 dated Apr. 12, 1994, incorporated by reference herein, describes a cold gas-dynamic spraying process for applying a coating, also referred to herein as a cold spray process. That patent describes a process and apparatus for accelerating solid particles having a size from about 1-50 microns to supersonic speeds in the range of 300-1,200 meters per second and directing the articles against a target surface. When the particles strike the target surface, the kinetic energy of the particles is transformed Into plastic deformation of the particles, and a bond is formed between the particles and the target surface. This process forms a dense coating with little or no thermal effect on the underlying target surface.




The applicants have found that a cold spray process may be used advantageously to apply and to control the material properties of a wear alloy coating. Furthermore, a cold spray process may be used to apply wear alloy materials in applications where traditional brazed or weld-applied coatings are not practical. A wear alloy coating may be applied to a component surface by a cold spray coating process to increase the surface resistance to wear, erosion, cavitation, and severe low stress abrasion while retaining cutting edge retention and good high temperature properties, high toughness, excellent corrosion and oxidation resistance, as well as excellent resistance to thermal shock and impact. Particles of the coating material are directed at a high speed against the surface to be coated. The particles deform upon impact with the surface, causing them to adhere to each other and to the target surface.





FIG. 1

illustrates a partial cross-sectional view of a magnified section of a component


10


having a substrate material


12


coated with a layer


14


of a wear alloy material. Layer


14


is formed by cold spraying a mix of particles


16


toward a target surface


18


of the component


10


at a velocity sufficiently high to cause the particles


16


to deform and to adhere to the target surface


18


. As will be described more fully below, the particles


16


may all be of a similar size and composition, or the particles may be selected to have different size ranges and/or different compositions. In the embodiment of

FIG. 1

, the layer


14


includes particles of a first material


20


and particles of a second material


22


. The size of each type of particle is selected to fall within a predetermined size range, and the relative quantities of the two types are particles are controlled during the preparation of the particle mixture or during the cold spray application process. In one embodiment, the first material


20


may be a cobalt, iron or nickel matrix material and the second material


22


may be tungsten carbide (WC). Together, these particles adhere to surface


18


to form a layer


14


of a Group


5


hard facing material. In another embodiment, only a single composition of material may be used; i.e. first material


20


and second material


22


are the same material, for example a Group 1, 2 or 3 ferrous hard facing material or a Group 4 nickel-base or cobalt-base hard facing material alloy or a nonferrous wear alloy such as powders of a wrought cobalt-base material, aluminum bronze material or copper-beryllium material. Because the size and relative quantities of the powder materials may be selected for use in the cold spray application process, and because cold spray process parameters such as velocity and angle of impact may be controlled, a wear alloy coating having predetermined performance characteristics may be designed and manufactured with a high degree of control.





FIG. 2

illustrates another aspect of the invention wherein a plurality of layers


26


,


28


is applied to a target surface


30


of a substrate material


32


of a component


34


by a cold spray process to form a wear alloy coating layer


36


. The layers


26


,


28


are formed by changing the composition, size and/or mix of the particles and/or changing the cold spraying parameters used to form the respective layers


26


,


28


. The resulting coating


36


will exhibit a varying property across its depth. Such a coating


36


may be useful in applications where a change in chemical or mechanical properties is desired as the coating


36


wears away. For example the concentration of cobalt included in the coating


36


may vary across the depth of the coating, such as having a greater concentration of cobalt in layer


26


than in layer


28


.

FIG. 2

is illustrated as having two discrete layers


26


,


28


, although additional discrete layers may be formed.





FIG. 3

illustrates another embodiment of a component


40


having a graduated layer


42


of a wear alloy material applied to a substrate


43


by a cold spray process, wherein there is a gradual change in a property across the depth of the wear alloy layer


42


.

FIG. 3

illustrates a layer


42


having a change in the size of carbide particles


44


across the depth of a matrix material


46


. In other embodiments, the concentration of carbide particles


44


in relation to the concentration of matrix material


46


particles may vary across depth. Such variation can be achieved by changing the particle mix


16


during the cold spraying process as the coating thickness grows. In other embodiments, the particle size may remain constant while the chemical composition of the particles is varied across the depth of the coating, or both the particle size and chemical composition are varied across depth. In still other embodiments, the size, composition and/or concentration may range from a value A near the top of the layer to a value B near the bottom of the layer, or oppositely from the value B near the top of the layer to the value A near the bottom of the layer.





FIG. 3

illustrates a layer of material


48


disposed between the substrate material


43


and the wear alloy material layer


42


. Such an intermediate layer


48


may be used as a buffering layer to accommodate adverse effects of differences in coefficient of thermal expansion between the wear alloy layer


42


and the base metal


43


. The intermediate layer


48


may be, for example, an alloy of MCrAIY or MCrAIRe, where M is nickel, cobalt, iron or a mixture thereof. Particles of the same material may be used to form the intermediate layer


48


and the matrix material


46


.




As illustrated in

FIGS. 1 and 2

, the wear alloy material layer


14


,


36


may be applied directly to the substrate material


12


,


32


using a cold spray process with little or no dilution of the wear alloy material


14


,


36


. The melting of the underlying substrate material


12


,


32


and mixing with the melted coating material causes dilution. With a cold spray process there is little or no melting of the substrate


12


,


32


, and thus a wear alloy coating


14


,


36


can be achieved having properties that are improved over the same coating material applied by a prior art thermal process.




A cold spraying process will produce a wear alloy material coating that approaches 100% density and includes no linear interfaces. As a result, there is a reduced chance of spalling when highly alloyed coatings such as Group 4 or Group 5 hard facing materials are applied by cold spraying to a depth exceeding ¼ inch than there would be when such coatings are applied by a prior art thermal technique. This makes it possible to produce a component


10


having a high alloy coating


14


with a depth exceeding 0.25 inch, such as 0.375 or 0.5 inch.




Because a cold spray process imparts only a small amount of heat to the underlying substrate material


12


, it is possible to apply a wear alloy coating using a cold spray process in applications where it would not be possible using prior art thermal techniques. In one embodiment, a wear alloy coating material in particle form


16


is directed toward a target surface


18


of a substrate material


12


that is either a directionally solidified material or a single crystal metal material. The velocity of the particles is sufficiently high to cause the particles to deform and to adhere to the target surface


18


without recrystallization of the directionally solidified or single crystal metal substrate material


12


. In another embodiment, the component


10


may have a brazed joint, and the particles are directed to a target surface


18


proximate the brazed joint at a velocity sufficiently high to cause the particles


16


to deform and to adhere mechanically to the target surface


18


without metallurgical degrading the properties of the brazed joint. Furthermore, no heat-treating of the component is required after the coating deposition, unlike prior art thermal processes.




In one embodiment, a mixture of particles


16


is prepared to include 75-96 wt. % carbide particles


26


and the remainder particles


22


of cobalt, iron, nickel and/or alloys thereof. The particles are manufactured by processes known in the art such as spray drying or melt spinning processes. The size range of the particles may be controlled to be within any desired size range, for example from 2 microns to 50 microns. Because carbides have a significantly higher hardness than the matrix material, the carbide particles


26


will experience a reduced amount of deformation compared to the matrix material particles


22


upon Impact with the target surface


18


. The carbide particles


26


will adhere to the target surface


18


as they embed themselves upon impact and as they are surrounded by the deforming matrix material particles


26


. As a result, the size and quantity of the carbide particles


26


contained In a Group 5 hard face material coating


14


may be controlled more accurately by using a cold spray process than with prior art thermal techniques wherein the size of the carbide particles can vary significantly as a function of the rate of cooling/solidification of the material. A preferred size range and/or quantity of carbide particles may be predetermined for a particular application in order to optimize the performance of the coating under particular erosion wear or oxidation/corrosion conditions. When applied by a cold spray process, the average size of the carbide granules


22


distributed in a matrix


20


of metal such as nickel, cobalt or iron may be selectively less than or greater than the average size range that would be obtained by prior art casting techniques. Moreover, the size and distribution of carbide particles


22


may be made purposefully uniform (

FIG. 1

) or non-uniform (

FIG. 3

) throughout the coating if desired. Standard material wear tests may be used to determine an optimal particle size range and distribution for a particular application.





FIG. 4

illustrates a component


50


having a layer of a wear alloy material


52


deposited on a substrate material


54


by a cold spray process. The layer of hard facing material


52


includes a plurality of carbide particles


56


distributed within a metal matrix material


58


. The layer of wear alloy material


52


further includes particles of a lubricating material


60


added to promote lubrication of the wear alloy coating


52


. The lubricating material may be graphite, or molybdenum disulfide, for example. Particles of a lubricant material may be cold sprayed together with particles of any type of wear alloy coating material to reduce friction when the coating is contacted during operation of the underlying part. The quantity and size of the lubricant particles may be selected to achieve a desired degree of lubricity. Furthermore, varying the concentration of lubricant particles


60


as the coating layer is deposited may vary the degree of lubricity across the depth of the coating


52


.




Other combinations of particle types and sizes may be used to produce a wear alloy coating having particularly desired properties. Particles of a wear alloy material may be combined with particles of one or a plurality of other types of materials. In a further embodiment, particles


20


of a wear alloy material may be combined with particles


22


of a ceramic material to form a coating layer


14


having improved temperature capabilities resulting from the presence of the ceramic material. Alternatively, second material particles


22


may be a superalloy material such as nickel based superalloy IN738. A superalloy material may be used exclusively or in part as the matrix material.




The surface roughness of coating layer


14


may be affected by controlling the cold spray process parameters used to apply the coating


14


. In some applications it may be desired to impart a predetermined degree of roughness to the surface of a component


10


in order to promote turbulent air flow over the surface, such as to promote mixing and heat transfer across the surface. Generally a higher impact velocity of the particles


16


will result in a smoother coating surface. In one application the component


10


is a part of a gas turbine engine exposed to hot combustion gases, and the surface roughness of coating


14


impacts the heat transfer between the hot gases and the coating


14


and underlying substrate material


12


.




The process and coating described herein may be used in any application, and is especially useful for valves, steam turbine blades and vanes, combustion turbine z-notch shrouds, erosion shields and combustor basket spring clips. This process may further be used for mining applications, piston rings, cams, bushings, valves, thrust washers, cutting tool applications and other manufacturing applications for severe abrasion and wear conditions. For space applications, a thin coating of moly-disulfide material may be applied by cold spray to prevent localized cold welding under the low temperature, high local stress conditions of a spacecraft application. The coatings described herein may be applied in a factory or a field environment.




While the preferred embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those of skill in the art without departing from the Invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.



Claims
  • 1. A process for applying a wear alloy coating to a component, the process comprising:providing a predetermined mix of particles of a wear alloy material; cold spraying the particle mix toward a target surface of a substrate material at a velocity sufficiently high to cause the particles to adhere to the target surface; and changing a composition of the particle mix during the step of cold spraying to produce a coating having a varying property across its depth.
  • 2. The process of claim 1, further comprising providing the predetermined mix of particles to include particles of a carbide material having a predetermined size range.
  • 3. The process of claim 1, further comprising providing the predetermined mix of particles to include particles of a wear alloy material and particles of a second material.
  • 4. The process of claim 3, further comprising providing the particles of a second material to comprise a lubricant material.
  • 5. The process of claim 4, further comprising providing the particles of a second material to comprise graphite.
  • 6. The process of claim 5, further comprising providing the particles of a second material to comprise one of the group of graphite and molybdenum disulfide.
  • 7. The process of claim 3, further comprising providing the particles of a second material to comprise a ceramic material.
  • 8. The process of claim 1, wherein the predetermined mix of particles comprises a Group 4 or Group 5 hard facing material, and further comprising continuing the step of cold spraying to form a coating of hard facing material having a thickness in excess of 0.25 inch.
  • 9. A process for applying a wear alloy coating to a component, the process comprising:providing a predetermined mix of particles of a wear alloy material; selecting a substrate material to comprise one of a single crystal material and a directionally solidified material; and cold spraying the particle mix toward a target surface of the substrate material at a velocity sufficiently high to cause the particles to adhere to the target surface without recrystallization of the substrate material.
  • 10. A process for applying a wear alloy coating to a component, the process comprising:providing a predetermined mix of particles of a wear alloy material; and cold spraying the particle mix toward a target surface of a substrate material proximate a brazed joint in the substrate material at a velocity sufficiently high to cause particles to adhere to the target surface without degrading metallurgical properties of the brazed joint.
  • 11. A process for applying a wear alloy coating to a component, the process comprising;providing a predetermined mix of particles of a wear alloy material; cold spraying the particle mix toward a target surface of a substrate material at a velocity sufficiently high to cause the particles to adhere to the target surface; and changing a size range of the particle mix during the step of cold spraying to produce a coating having a varying property across its depth.
  • 12. A process for applying a wear alloy coating to a component, the process comprising;providing a predetermined mix of particles of a wear alloy material; cold spraying the particle mix toward a target surface of a substrate material at a velocity sufficiently high to cause the particles to adhere to the target surface; wherein the particle mix comprises carbide particles, and further comprising changing a size range of the carbide particles during the step of cold spraying to produce a coating having a varying property across its depth.
Parent Case Info

This application claims benefit of the Aug. 1, 2001, filing date of U.S. provisional patent application No. 60/309,451; and further the Dec. 5, 2001, filing date of U.S. provisional patent application 60/336,825; and further the Jan. 30, 2001, filing date of U.S. patent application Ser. No. 09/774,550; and further the Dec. 5, 2000, filing date of U.S. patent application Ser. No. 09/729,844.

US Referenced Citations (30)
Number Name Date Kind
3754976 Babecki Aug 1973 A
4382811 Lüscher May 1983 A
4416421 Browning Nov 1983 A
4430360 Bill Feb 1984 A
4552784 Chu Nov 1985 A
4576874 Spengler Mar 1986 A
4610698 Eaton Sep 1986 A
4639399 Aprigliano Jan 1987 A
4753094 Spears Jun 1988 A
4854196 Mehan Aug 1989 A
4880614 Strangman Nov 1989 A
5024884 Otfinoski Jun 1991 A
5059095 Kushner Oct 1991 A
5076897 Wride et al. Dec 1991 A
5180285 Lau Jan 1993 A
5210944 Monson May 1993 A
5302414 Alkhimov Apr 1994 A
5607561 Gruver et al. Mar 1997 A
5660320 Hoffmuller et al. Aug 1997 A
5665217 Gruver et al. Sep 1997 A
5702574 Foster Dec 1997 A
5704759 Draskovich Jan 1998 A
5912087 Jackson Jun 1999 A
5932356 Sileo et al. Aug 1999 A
5952110 Schell Sep 1999 A
5997248 Ghasripoor Dec 1999 A
6015586 Omori Jan 2000 A
6060174 Sabol et al. May 2000 A
6251494 Schreiber Jun 2001 B1
6365222 Wagner Apr 2002 B1
Foreign Referenced Citations (2)
Number Date Country
8-333671 Jun 1995 JP
2038411 Jun 1995 RU
Non-Patent Literature Citations (10)
Entry
The Cold-Gas Dynamic Spraying Method-A Method For Coatings Deposition Promises A New Generation of Technologies, by Anatoli N. Papyrin, Nov. 1998.*
Smith, M.F., et al. Cold Spray Direct Fabrication—High Rate, Solid State, Material Consolidation. To be published in the Proc. Of the Fall 1998 Meeting of the Materials Research Society, Boston, MA, Nov. 30-Dec. 4, 1998, 12 pages.
Gilmore,D.L., et al. Particle Velocity and Deposition Efficiency in the Cold Spray Process, Journal of Thermal Spray Technology vol. 8(4) Dec. 1999, pp576-582.
Kreye, H., et al., Cold Spraying—A Study of Process and Coating Characteristics, pp 419-422.
Dykhuizen, R.C., et al. Gas Dynamic Principles of Cold Spray. Journal of Thermal spray Technology vol. 7(2) Jun. 1998, pp. 205-212.
Dykhuizen, R.C., et al. Impact of High Velocity Cold Spray Particles. Journal of Thermal Spray Technology vol. 8(4) Dec. 1999, pp 559-564.
Smith, Mark F. Overview of Cold Spray. Sandia National Laboratories, 20 pages.
Smith, Mark F., et al. Thermal Spray at Sandia. Sandia National Laboratories MFS LMP 80428, 13 pages.
Sandia's Approach to Cold Spray Research. Sandia National Laboratories, 15 pages.
“Metals Handbook”, Ninth Edition, vol. 3, pp. 563-567 and 589-594 The American Society of Metals.
Provisional Applications (2)
Number Date Country
60/336825 Dec 2001 US
60/309451 Aug 2001 US