WEAR BAND FOR DOWNHOLE TOOLS

Information

  • Patent Application
  • 20150361733
  • Publication Number
    20150361733
  • Date Filed
    May 20, 2015
    9 years ago
  • Date Published
    December 17, 2015
    8 years ago
Abstract
Herein disclosed is a downhole tool comprising a 360-degree wear band placed circumferentially around a portion of the largest outer diameter (OD) of the tool. In some embodiments, the wear band comprises fiber, resin, and a hard mineral. In some embodiments, the hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof. In some embodiments, the wear band has a thickness of from about 0.001 inch to about 0.5 inch or wherein the wear band has a width of from about 0.01 inch to about 1.0 inch or wherein the wear band is flush with the largest OD of the tool. In some embodiments, the portion of the largest outer diameter of the tool is a part of a mule shoe, or a gage ring, or a bottom sub. Methods of making such a wear band is also disclosed.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.


BACKGROUND

1. Field of the Invention


This invention generally relates to downhole well tools, and in particular, to a tool having a wear band that covers a portion of the largest outer diameter of the tool circumferentially in a 360 degree manner.


2. Background of the Invention


A multilateral well, also known as a multi-branch well, is a well having one or more lateral boreholes branching off a single primary wellbore. The primary wellbore may be vertical, horizontal, or deviated. The lateral boreholes may branch off the primary wellbore in any number of directions to allow production from several target reservoirs or formations through the primary wellbore. Multilateral wells are advantageous in comparison to single wells in that their lateral boreholes can be brought into close contact with several target reservoirs, thereby allowing production from the reservoirs to be maximized.


The horizontal lengths of newer wells are becoming longer and longer. When a frac or bridge plug is pumped down hole, the plug tends to wear on one side because it is not being rotated on a drill string. It is possible to use ceramic buttons to help reduce this wear. However, unless these buttons are placed every half inch around the diameter, there is still the possibility that the plug will be wearing in between the buttons.


Accordingly, there is continuing need and interest to develop better wear-resistant downhole tools.


SUMMARY

Herein disclosed is a downhole tool comprising a 360-degree wear band placed circumferentially around a portion of the largest outer diameter (OD) of the tool. In some embodiments, the wear band comprises fiber, resin, and a hard mineral. In some embodiments, the hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof. In some embodiments, the wear band has a thickness of from about 0.001 inch to about 0.5 inch or wherein the wear band has a width of from about 0.01 inch to about 1.0 inch or wherein the wear band is flush with the largest OD of the tool. In some embodiments, the portion of the largest outer diameter of the tool is a part of a mule shoe, or a gage ring, or a bottom sub. In some embodiments, the downhole tool comprises more than one wear bands.


Herein also disclosed is a method of making a downhole tool comprising creating a 360-degree groove around a portion of the largest outer diameter of the tool circumferentially; filling the groove with fiber, resin, and a hard mineral to form a wear band; and curing the part. In some embodiments, more than one wear bands are formed on the downhole tool. In some embodiments, the portion of the largest outer diameter of the tool is a part of a mule shoe, or a gage ring, or a bottom sub. In some embodiments, the groove has a depth of from about 0.001 inch to about 0.5 inch or a width of from about 0.01 inch to about 1.0 inch or both. In some embodiments, the groove is filled while the tool is rotated along its longitudinal axis. In some embodiments, the groove is filled until a wear band is formed being flush with the largest OD of the tool. In some embodiments, the hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof. In some embodiments, the tool is cured at a temperature in the range of from 150° F. to 450° F. In some embodiments, the wear band protects the tool from wear and damage.


Further disclosed herein is a method of making a downhole tool comprising creating a 360-degree groove around a portion of the largest outer diameter of the tool circumferentially; wrapping the groove with a pre-preg material; layering a hard mineral on top of the pre-preg material; and curing the part. In some embodiments, the portion of the largest outer diameter of the tool is a part of a mule shoe, or a gage ring, or a bottom sub. In some embodiments, the groove is about 0.01-1.0 inch wide or 0.001-0.5 inch deep or both. In some embodiments, the hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof. In some embodiments, the pre-preg material and the hard mineral form a wear band after curing. In some embodiments, more than one wear bands are formed on the downhole tool. In some embodiments, the wear band is flush with the largest OD of the tool. In some embodiments, the wear band protects the tool from wear and damage.


The present invention comprises a combination of features and advantages which enable it to overcome various problems of prior devices. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description of the preferred embodiments of the invention, and by referring to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more detailed description of the preferred embodiment of the present invention, reference will now be made to the accompanying drawings, wherein:



FIG. 1 illustrates a 360-degree wear band placed circumferentially over a portion of the largest outer diameter of a downhole tool, according to an embodiment of this disclosure.



FIGS. 2A and 2B schematically illustrate a groove for a wear band to be placed circumferentially over the outer diameter of a tool, according to an embodiment of this disclosure. FIG. 2A is the isometric projection view. FIG. 2B shows a groove on the tool for the placement of the wear band.



FIG. 3 is a cross section view, illustrating two wear bands placed circumferentially over the outer diameter of a tool, according to an embodiment of this disclosure.





DETAILED DESCRIPTION
Overview

In order to protect the downhole tool from wear, a wear band is placed over a portion of the tool to cover 360 degrees of the circumference of the tool outer diameter (OD), wherein said portion has the largest OD of the tool, as illustrated in FIG. 1. This way no matter how the plug lays in the casing, the wear band will protect it from wear and damage. In various embodiments, the wear band is placed over a mule shoe, or a gage ring, or a bottom sub, which protects the rest of the tool from wear and damage. In various embodiments, the wear band is applied to a downhole tool such as bridge plug, frac plug, or a wireline tool, e.g., measuring while drilling (MWD) and logging while drilling (LWD) tools. In some embodiments, one than more wear bands are placed over the tool. The location(s)/position(s) of the wear band(s) is determined by the specific tool and its use.


In an embodiment, referring to FIG. 2A, a groove 10 is shown to cover 360 degrees of a portion of the largest OD of the tool. A wear band will be made using groove 10. As shown in FIG. 2B, the wear band will be placed in the groove 10. In some cases, the groove is about 0.01-1.0 inch wide and 0.001-0.5 inch deep, running circumferentially for 360 degrees. The wear band is flush with the largest OD of the tool so that it protects the tool and do not hinder the use of the tool when it is run down hole.


In some embodiments, the groove (10 in FIGS. 2A and 2B) is filled with fiber reinforcement, resin, and a hard mineral. The hard mineral may be any suitable material as known to one skilled in the art, such as alumina oxide, carbide, poly crystalline diamond (PCD), or combinations thereof.


In some embodiments, as shown in FIG. 3, more than one wear band (10) is placed over the tool. Any number of wear bands may be used at various locations as needed/desired.


Method of Making Wear Band.

In an embodiment, groove 10 as shown in FIGS. 2A and 2B is wrapped with fiber reinforcement. Resin and a hard mineral is added as the tool is rotated/turned around its longitudinal axis. This process builds up thickness while adding hardness. The tool/part is then cured according to best practices. For example, the part is cured at a temperature in the range of from 150° F. to 450° F. A stepped cure may also be specified depending on the combination of materials chosen or used. The amount of time varies depending on the materials chosen, for example, from 1 to 24 hours. When completed, the wear band is flush with the largest OD of the tool so that it protects the tool and does not hinder the use of the tool when it is run down hole.


In another embodiment, a pre-preg material is used to make the wear band. The pre-preg material is wrapped around the largest OD of the tool and a hard mineral is sprinkled on top. This process continues until a desired thickness is built up. The thickness can be anywhere from 0.001 inch to 0.5 inch. The tool/part is then cured according to best practices. When finished, the wear band is flush with the largest OD of the tool so that it protects the tool and do not hinder the use of the tool when it is run down hole.


It should be understood that mule shoe has other names as known to one skilled in the art and all such equivalents are considered to be within the scope of this disclosure. Furthermore, any kind of fiber, hard mineral, and resin may be used to make the wear band.


While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit or teaching of this invention. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the system and apparatus are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims which follow, the scope of which shall include all equivalents of the subject matter of the claims.

Claims
  • 1. A downhole tool comprising a 360-degree wear band placed circumferentially around a portion of the largest outer diameter (OD) of said tool.
  • 2. The downhole tool of claim 1, wherein said wear band comprises fiber, resin, and a hard mineral.
  • 3. The downhole tool of claim 2, wherein said hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof.
  • 4. The downhole tool of claim 1, wherein said wear band has a thickness of from about 0.001 inch to about 0.5 inch or wherein said wear band has a width of from about 0.01 inch to about 1.0 inch or wherein said wear band is flush with the largest OD of the tool.
  • 5. The downhole tool of claim 1 comprising more than one 360-degree wear bands.
  • 6. A method of making a downhole tool comprising creating a 360-degree groove around a portion of the largest outer diameter (OD) of said tool circumferentially;filling the groove with fiber, resin, and a hard mineral to form a wear band; andcuring the part.
  • 7. The method of claim 6, wherein more than one wear bands are formed on said downhole tool.
  • 8. The method of claim 6, wherein the groove has a depth of from about 0.001 inch to about 0.5 inch or a width of from about 0.01 inch to about 1.0 inch or both.
  • 9. The method of claim 6, wherein the groove is filled while the tool is rotated along its longitudinal axis.
  • 10. The method of claim 6, wherein the groove is filled until a wear band is formed being flush with the largest OD of the tool.
  • 11. The method of claim 6, wherein said hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof.
  • 12. The method of claim 6, wherein the tool is cured at a temperature in the range of from 150° F. to 450° F.
  • 13. The method of claim 6, wherein the wear band protects the tool from wear and damage.
  • 14. A method of making a downhole tool comprising creating a 360-degree groove around a portion of the largest outer diameter (OD) of said tool circumferentially;wrapping the groove with a pre-preg material;layering a hard mineral on top of the pre-preg material; andcuring the part.
  • 15. The method of claim 14, wherein the pre-preg material and the hard mineral form a wear band after curing.
  • 16. The method of claim 15, wherein more than one wear bands are formed on said downhole tool.
  • 17. The method of claim 14, wherein the groove is about 0.01-1.0 inch wide or 0.001-0.5 inch deep or both.
  • 18. The method of claim 14, wherein said hard mineral comprises alumina oxide, carbide, poly crystalline diamond, or combinations thereof.
  • 19. The method of claim 18, wherein the wear band is flush with the largest OD of the tool.
  • 20. The method of claim 18, wherein the wear band protects the tool from wear and damage.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 62/011,324, filed Jun. 12, 2014, the disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.

Provisional Applications (1)
Number Date Country
62011324 Jun 2014 US