1. Field of the Invention
This invention relates generally to articles manufactured from sintered composite materials and methods for their manufacture. The sintered composite materials generally comprise, as the principal component, very hard powdered materials with high melting points, such as tungsten carbide, silicon carbide, aluminum oxide and ceramic materials, in combination with a much smaller amount of a softer binder metal, such as nickel, cobalt, palladium, platinum, ruthenium, iridium and gold, or alloys thereof, which has a lower melting point.
2. History of the Prior Art
For millennia, jewelry has been fabricated from soft metals, such as gold, silver and platinum, which are malleable, as well as castable and fusible at relatively low temperatures. Unfortunately, soft metals have very little resistance to abrasion. Thus, relief, detail and edges of soft metal jewelry tend to wear rapidly. This is particularly true if the jewelry is worn so that it comes in contact with hard objects and abrasive surfaces and particles.
Sintered, or cemented, composite materials comprising at least one metal carbide and a metallic binder have long been used for the manufacture of cutting tools as a result of their incredible hardness and durability. Such materials are made, using conventional well-known powder metallurgy, by bonding hard tungsten, tantalum, titanium, or chromium nitride particles with one or metals such as iron, cobalt, and nickel. The carbide particles, which are typically about 20-150 μm in size, generally comprise between 75 and 85 percent, by weight of the cemented material. Nitrides and carbonitrides of the same metals may also be used as hard particles in cemented materials. Cemented materials may also be formed using a combination of two or more types of hard particles and binder metals such as ruthenium, rhodium, palladium, platinum, silver and gold.
A composite material is manufactured, for example, by mixing tungsten carbide powder, tantalum carbide powder, cobalt powder and nickel powder according to a predertermined alloy composition, molding the material powder of mixed alloy composition by pressing the powder, and finally sintering the obtained molded pieces.
The major challenge of fabricating articles made of cemented metal carbides is that of finishing the raw sintered components. Because the molded pieces are formed using a high-pressure press, complex shapes may be impossible to fabricate and dimensional precision may be difficult or impossible to achieve directly. For example, products having shapes that can be formed in one axis direction only can be formed by die compaction. However, even if a cold isostatic press (CIP) technique is used to form three-dimensional shapes, high precision generally cannot be achieved because the items are molded inside rubber molds.
As a consequence of the need for more durable jewelry, jewelry manufacturers began fabricating watch cases and bands from cemented, or sintered, metal carbides, several decades ago. These early pieces were obtained using conventional processes, whereby relatively simple shapes formed by normal powder metallurgy methods were subjected to secondary machining, diamond grinding and electrical discharge operations to realize the complicated shapes required for watch cases and watch band pieces, which typically have curved surfaces, small holes and mirror-polished surfaces.
Accordingly, U.S. Pat. No. 5,403,374 discloses a process for manufacturing an exterior part for a watch having a three-dimensional curved surfaced and a small hole, without applying secondary machining operations.
The manufacturing of composite jewelry has expanded from watches to annular items. U.S. Pat. No. 6,062,045 discloses a finger ring having five facets having surface angles within a range of from 1 to 40 degrees. A related U.S. Pat. No. 6,553,667, discloses a system, apparatus and method for making composite jewelry items, such as finger rings, bracelets, earrings, body jewelry and the like. The focus of the patent is multiple methods of manufacture, the first of which includes the steps of preheating an annular substrate, contacting a depression in a surface of the substrate with a second material, heating the second material at a point contact with the substrate, causing the second material to liquify and flow into the depression, and moving the point of contact along the depression while continuously feeding the second material and heating the second material at the point contact with the substrate to cause it to substantially fill the depression. The second method includes the steps of providing an annular composite article having an annular groove therein, forming a seamless ring from a metal wire that slides over the annular composite article, placing the annular composite article on a mandrel, and forcing the ring into the groove with a collet. The methods covered by this patent are costly and not particularly adapted to mass production.
What is needed is a simplified process for manufacturing finger rings, bracelets, earrings, body jewelry and the like, which are more suited to high volume low-cost production.
The present invention includes a method for manufacturing finger rings, bracelets, annular earrings, annular body jewelry and the like, which have at least one curved surface, from sintered, or cemented, composite materials comprising at least one metal carbide and a metallic binder. The annular jewelry piece may be inlaid with a precious metal and/or it may be subjected to a physical vapor deposition (PVD), chemical vapor deposition (CVD), or plasma chemical vapor deposition (PCVD) process in order to deposit thereon either a metal compound, such as titanium nitride, or a diamond-like carbon compound.
For all rings which are the subject of the present invention, the ring blanks are placed in a spinning fixture and subjected to abrasion against at least one curved abrasive surface. For comfort rings, the inner surface is formed as a continuous curve.
For rings having inlaid malleable precious metal, the precious metal is inserted in either a straight-wall, dovetail, or notched groove. The precious metal is inlaid in the groove by one of several processes, which may include hammering, rolling, or pressing. For embodiments of the process involving hammering and rolling of the inlay into the groove, the inlaying process may include the laser welding of joints and removal of any excess inlaid metal above the level of the mouth of the groove with a cutting tool affixed to a lathe in which the ring has been rotatably chucked. As an alternative to laser welding of the joint, the may be tack welded, torch welded, or soldered, or the precious metal may be burnished and subsequently cut back with a cutting tool. If the precious metal is inlaid in a groove of either rectangular or dovetail cross section, a malleable precious metal wire of generally rectangular cross section may be used. For a dovetail or notched groove, it is necessary to deform the precious metal wire as it is hammered, rolled or pressed into the groove so that it expands to fill the slightly wider space below the mouth of the groove. For the straight-wall groove of rectangular cross section the wire may also be hammered, pressed or rolled in order to secure a tighter fit of the precious metal against the sidewalls of the groove.
The preferred method for inlaying a ductile metal in a groove involves the use of a press. The inlay band is formed as a ring either by laser welding the ends of a looped wire of rectangular cross section, or by stamping. The inlay ring is then pressed into the groove using a circular press. Any excess metal is then removed with a cutting tool in combination with a lathe.
The method for manufacturing finger rings, bracelets, annular earrings, annular body jewelry and the like from sintered, or cemented, composite materials comprising at least one metal carbide and a metallic binder will now be described in detail with reference to the attached drawing figures.
There are multiple aspects of the present invention. One involves forming at least one curved surface on the sintered composite material blank. Another involves the process of inlaying a precious metal in a groove in the sintered composite material blank using pressing, rolling or hammering. Still another involves subjecting the sintered composite material blank to a chemical vapor deposition process in order to deposit thereon a layer of nonallergenic material such as titanium nitride or diamond-like carbon. Yet another involves the grinding of notches in inlay grooves for improved anchoring of the precious metal inlay. These various aspects of the invention will now be described in detail with reference to the attaching drawing figures.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Prior to the metal inlay process, the ring may be subjected to a physical vapor deposition (PVD), chemical vapor deposition (CVD), or plasma chemical vapor deposition (PCVD) process in order to deposit thereon either a metal compound, such as titanium nitride, or a diamond-like carbon compound. Titanium nitride is a gold coloured ceramic coating having a face-centered cubic crystal structure that is applied, most typically, by physical vapor deposition (PVD). Titanium nitride is characterized by extreme density, non-porosity, extreme hardness (approximately 85 Rc) that is greater than that of carbide compounds, and a low coefficient of friction. As it is a highly inert compound, it has excellent chemical resistance and hypoallergenicity. It is typically applied in thicknesses ranging from about 3 to 12 microns. Deposited titanium nitride films can be subjected to temperatures of up to 600° C. without damage, are highly conformal (i.e., the deposited film follows the contour of the substrate), able to withstand high temperatures, and form an outstanding bond to the substrate that will not blister, flake, or chip.
Titanium nitride coatings may be applied by PVD, CVD or PCVD. Each of these processes will be briefly addressed. Physical Vapor Deposition, or PVD, involves the atom-by-atom, molecule-by-molecule, or ion deposition of various materials on solid substrates in vacuum systems. Two types of physical vapor deposition are currently used. Thermal evaporation uses the atomic cloud formed by the evaporation of the coating material in a vacuum environment to coat all the surfaces in the line of sight between the substrate and the target (source). Sputtering, on the other hand, applies high-technology coatings such as ceramics, metal alloys, organic and inorganic compounds by connecting the workpiece and the substance to a high-voltage DC power supply in an argon vacuum system (10-2-10-3 mmHg). A plasma is established between the substrate (workpiece) and the target (donor) and transposes the sputtered off-target atoms to the surface of the substrate. When the substrate is non-conductive, radio-frequency (RF) sputtering is used.
Chemical Vapor Deposition, or CVD, is capable of producing thick, dense, ductile, and good adhesive coatings on metals and non-metals such as glass and plastic. Contrasting to the PVD coating in the “line of sight”, the CVD can coat all surfaces of the substrate.
Plasma-Assisted Chemical Vapor Deposition, or PCVD, is a technique for producing hard wear-resistant surface coatings on tools and wear parts. The difference between Plasma-Assisted CVD and conventional CVD lies mainly in a process temperature of about 500° C., as opposed to the 1000-1100° C. temperatures of a conventional CVD process.
Diamond-like-carbon (DLC) is an amorphous coating with an extremely low coefficient of friction and extreme hardness. DLC coatings are typically applied by either CVD or PCVD processes. DLC CVD processes are generally limited to materials which will not soften at temperatures within a range of 700-750° C. Cemented carbides certainly fall in this category. The PCVD DLC coating process can be performed at lower temperature than the DLC CVD processes.
As the patent and technical literature is replete with processes for PVD, CVD and PCVD for titanium nitride coatings, as well as processes for CVD and PCVD for diamond-like carbon coatings, no attempt will be made to provide detailed coverage, as the processes themselves are considered prior art. The inventive aspect is the coating of the cemented carbide ring blanks with those coatings in order to enhance their appearance, provide a more wear resistant surface, and render them hypoallergenic.
Although only several embodiments of the present invention have been disclosed herein, it will be obvious to those having ordinary skill in the art that changes and modifications may be made thereto without departing from the scope and spirit of the invention as hereinafter claimed.