The present invention relates to wear-resistant coatings and, in particular, to wear-resistant nanocrystalline hard noble metal coatings for electrical contacts synthesized by physical vapor deposition.
Hard gold refers to a class of gold-rich alloys exhibiting relatively high hardness and wear resistance while retaining the chemical inertness and electrical conductivity of the parent material. Hard gold coatings are traditionally deposited in thin film form via electrodeposition and consist of an alloy of primarily gold (no less than 0.99 mass fraction of Au) and one or a combination of Co, Ni, and Fe, with minimum thicknesses ranging from 250 nm to 5 μm. See ASTM B488-11. The use of electroplated hard gold is widespread as a coating for switching and sliding electrical contacts and as a bonding and soldering material in a number of semiconductor manufacturing applications. As demonstrated by Lo et al., the principal role of codeposited species as a hardening agent is to mitigate recrystallization and thus achieve a relatively thermally stable fine grain microstructure (Hall-Petch strengthening) by grain boundary pinning. See C. C. Lo et al., J. Appl. Phys. 50, 6887 (1979).
A key limitation of hard gold coatings is the propensity for the non-noble alloying elements (e.g. Ni, Co) to diffuse to the surface and form non-conductive surface films (passivating oxides) adversely impacting the electrical contact behavior. Therefore, significant effort has been devoted to understand the relevant degradation mechanisms and kinetics. See H. G. Tompkins and M. R. Pinnel, J. Appl. Phys. 48, 3144 (1977); H. G. Tompkins and M. R. Pinnel, J. Appl. Phys. 47, 3804 (1976); H. G. Tompkins, J. Electrochem. Soc. 122, 983 (1975); and M. Antler, Plat. Surf. Finish. 85, 85 (1998). Further, conventional electrochemical deposition processes are limited to electrochemically compatible metal hardened gold-rich films (e.g. Au—Ni or Au—Co). Finally, traditional electroplating and electroless plating methods can have negative environmental impact associated with the use of toxic chemicals in plating baths and associated waste disposals.
Therefore, a need remains for alternative deposition techniques for wear resistant hard noble metal coatings.
The present invention is directed to a wear-resistant, chemically unreactive, high thermal stability, electrically conductive, nanocrystalline hard noble metal coating that can be synthesized via physical vapor deposition and, preferably, electron beam (e-beam) evaporation. The nanocrystalline coating comprises two (or more) codeposited species, wherein nominally pure noble metal is strengthened by reducing its average grain size to below 100 nm (nanocrystalline) by incorporating minute quantities of secondary ceramic phase(s). The secondary ceramic species that are insoluble in the noble metal preferentially reside at grain boundaries (GBs) and thereby produce a reduction in grain size and inhibition of crystallographic texturing by terminating grain growth during deposition and inhibiting grain boundary mobility. Grain size reduction, or Hall-Petch strengthening, is associated with increased hardness and wear resistance. For the purpose of applications requiring high electrical conductivity and wear resistance, the concentration of the secondary ceramic is preferably less than 5 vol. %, a threshold beyond which grain refinement becomes negligible. The tribological performance of nanocrystalline gold coatings, for example, is comparable or superior to electroplated metal-hardened gold coatings. A nominally stable nanocrystalline microstructure in gold may be achieved using a variety of ceramic species, e.g. ZnO, SnO2, In2O3 or TiN. Additionally, these nanocrystalline hard gold coatings retain a gold-hue over a wide range of compositions. Therefore, the coatings are ideally suited where any combination of the following properties are required: (1) wear-resistance, (2) low friction in dry/unlubricated conditions, (3) high thermal stability, (4) high chemical stability, and (5) the need for a gold hue in a hard coating. The wear-resistant, electrically conductive nanocrystalline coatings are especially attractive for electrical contact applications (e.g. AC or DC switches, low current communication slip-rings, and high current transfer systems).
The invention is further directed to a method for synthesizing wear-resistant noble metal coatings, comprised primarily of a noble metal species and a codeposited GB-segregated ceramic species, for example via simultaneous physical vapor deposition of a noble metal and a ceramic from separate sources onto a substrate. The use of e-beam evaporation, a physical vapor deposition (PVD) technique, increases the range of materials beyond those achievable via traditional electrodeposition routes. Synthesis via PVD also circumvents the need for use and disposal of toxic chemicals inherent in electrodeposition of hard gold, and also enables synthesis of codeposited structures using a wide variety of hardener types that are impractical to achieve via electrodeposition.
The detailed description will refer to the following drawings, wherein like elements are referred to by like numbers.
The present invention is directed to wear-resistant, chemically unreactive, electrically conductive, nanocrystalline hard noble metal films synthesized via physical vapor deposition (PVD) and, preferably, electron beam (e-beam) evaporation. The material comprises two or more codeposited species, wherein a nominally pure noble metal is strengthened by reducing its grain size by the addition of a codeposited ceramic species. The electrically conductive noble metal preferably comprises Au, but can alternatively comprise other noble metals, such as Pd, Ag, or Pt. The secondary species comprises a ceramic deposited in its thermodynamically stable form, and provides a nanocrystalline material that will not undergo phase transitions up to 600K (or at temperatures below about one third of the melting point of the base noble metal). An example of such a nanocrystalline material is e-beam codeposited Au—ZnO. Alternative ceramic materials include other metal oxides and nitrides, such as ZnO, Al2O3, In2O3, or TiN. The ceramic species is insoluble with the base metal species, and serves the purpose of inhibiting grain boundary mobility and recrystallization.
The high hardness and high wear resistance exhibited by this class of nanocrystalline noble metal films relies on Hall-Petch strengthening via grain refinement as the principal hardening mechanism, directly correlated to high wear resistance. The addition of a primarily GB segregated ceramic phase(s) in a base metal film synthesized via PVD can be used to achieve finer grain size, increased hardness, higher wear resistance, and high thermal stability.
Electron beam (e-beam) evaporation, a form of physical vapor deposition, is conducted in a high vacuum environment in which a pure material source can be vaporized (thermally) and then deposited by condensation on a substrate to provide a pure thin film of the parent material. The codeposition of two or more material sources simultaneously results in a composite or alloy, depending on the constituents.
An additional benefit to the use of e-beam evaporation for synthesizing the class of materials described herein is the ability to perform in situ cleaning of the substrate or part to be coated inside the deposition chamber, without the need to expose the part to air (oxidation) and contaminants (such as adventitious carbon) prior to coating the part, as is the case with electrodeposited parts. Techniques such as plasma or ion beam cleaning or sputter etching can be easily incorporated in the deposition process, enabling removal of oxide layers and contaminants (organics and other foreign matter). The degree of cleanliness that can be achieved with in situ cleaning is impractical with electroplating processes. Added cleanliness prior to deposition improves adhesion of the coating to the part or substrate material. The practical thickness of an e-beam evaporated film can exceed 10 μm, and is only limited by the availability of target material and time. For electrical contact applications, the thickness of a noble metal (e.g. hard gold) coating is typically less than 2 μm.
As an example of the present invention, a room temperature e-beam codeposited nanocrystalline Au—ZnO film was investigated. The friction, wear, and electrical contact resistance (electrical-tribological) behaviors of e-beam codeposited Au—ZnO films were investigated in detail for compositions in the range 0 to 100 vol. % of ZnO.
Surface electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis on film surfaces of varying composition were used to quantify the reduction in average grain size with increasing concentration of ZnO.
The friction, wear, and electrical contact resistance (ECR) of 2 and 28 vol. % ZnO films sliding against commercially available hardened Au riders (nominally 17 k gold, with composition of 72Au-14Cu-8Pt-5Ag by weight, and hardness of 255 HK) were investigated.
An additional experiment comparing the wear characteristics of a 5 vol. % ZnO film and a commercially acquired electroplated type I Ni-hardened gold film, both with a film thickness of 2 μm and deposited on conductive (50/50 by vol. % Fe—Ni) substrates, was performed against a relatively harder 3.175 mm diameter sapphire ball in nominally unlubricated conditions.
Investigations of the thermal stability of these materials were performed by heating an Au-2 vol. % ZnO film to 250° C. for 5 days. Grain size was evaluated directly via microscopy (electron diffraction) and did not reveal a noticeable change in the grain size of the films. Similarly, electrical resistivity measurements did not indicate a significant decrease in the bulk (sheet) electrical resistivity of the films due to the anneal, confirming that there was no significant change in the grain size. While it is possible to reduce the grain size in PVD films through process control, by reducing the deposition temperature and rate, the absence of a stabilizing grain boundary segregated dispersed secondary species would negatively impact the thermal stability of the film; in the absence of the stabilizing species the spontaneous and rapid recrystallization of the gold would occur even at room temperature during frictional contact.
The present invention has been described as wear-resistant, electrically conductive ceramic phase dispersion strengthened noble metal nanocrystalline coatings. It will be understood that the above description is merely illustrative of the applications of the principles of the present invention, the scope of which is to be determined by the claims viewed in light of the specification. Other variants and modifications of the invention will be apparent to those of skill in the art.
This application claims the benefit of U.S. Provisional Application No. 61/815,635, filed Apr. 24, 2013, which is incorporated herein by reference.
This invention was made with Government support under contract no. DE-AC04-94AL85000 awarded by the U. S. Department of Energy to Sandia Corporation. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61815635 | Apr 2013 | US |