Efficient degradation of materials is important to a variety of industries including the asphalt, mining, and excavation industries. In the asphalt industry, pavement may be degraded using attack tools, and in the mining industry, attack tools may be used to break minerals and rocks. Attack tools may be used when excavating large amounts of hard materials. In the asphalt recycling industry, often, a drum with an array of attack tools attached to it may be rotated and moved so that the attack tools engage a paved surface to be degraded. Because attack tools engage materials that may be abrasive, the attack tools may be susceptible to wear. One development disclosed in the patent art for reducing wear of the attack tool, is to add a polycrystalline diamond layer to the tip of the tool.
U.S. Pat. No. 6,733,087 to Hall et al., which is herein incorporated by reference for all that it contains, discloses an attack tool for working natural and man-made materials that is made up of one or more segments, including a steel alloy base segment, an intermediate carbide wear protector segment, and a penetrator segment comprising a carbide substrate that is coated with a superhard material. The segments are joined at continuously curved interfacial surfaces that may be interrupted by grooves, ridges, protrusions, and posts. At least a portion of the curved surfaces vary from one another at about their apex in order to accommodate ease of manufacturing and to concentrate the bonding material in the region of greatest variance.
In one aspect of the invention, a wear-resistant tool comprises first and second cemented metal carbide segments chemically bonded together at an interface. The first segment comprises a first coefficient of thermal expansion (CTE) at least at its interfacial surface and the second segment comprises a second CTE at least at its interfacial surface, the second CTE being less than the CTE of the first segment. The first segment further comprises a cross-sectional thickness greater than a cross-sectional thickness of the second segment at the interface. In another aspect of the invention, the interface may be held under compression by a material comprising a higher CTE than the CTE of the second segment.
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of embodiments of the methods of the present invention, as represented in the Figures is not intended to limit the scope of the invention, as claimed, but is merely representative of various selected embodiments of the invention.
The illustrated embodiments of the invention will best be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. Those of ordinary skill in the art will, of course, appreciate that various modifications to the methods described herein may easily be made without departing from the essential characteristics of the invention, as described in connection with the Figures. Thus, the following description of the Figures is intended only by way of example, and simply illustrates certain selected embodiments consistent with the invention as claimed herein.
The first segment 302 may comprise a first coefficient of thermal expansion (CTE) at least at its interfacial surface and the second segment 303 may comprise a second CTE at least at its interfacial surface, the second CTE being less than the CTE of the first segment 302. The first segment 302 may further comprise a cross-sectional thickness substantially equal to or greater than a cross-sectional thickness of the second segment 303 at the interface 304. In some embodiments, the first segment 302 comprises a greater outer diameter than the second segment 303. If the first segment's CTE is higher than the second segment's CTE, then the first segment's expansion proximate the interface may be greater than the second segment's expansion when brazing the two segments 302, 303 together. This also means that the first segment 302 may shrink more than the second segment 303 when cooling. It is believed that if the first segment's cross-sectional thickness and/or the cross-sectional area at the interface is less than the second segment's, the first segment 302 may put tension on a portion of the second segment 303. If, on the other hand, the first segment's cross-sectional thickness at the interface is greater than the second segment's, the first segment 302 may put the second segment 303 into compression at the interface. It is believed that compression may be more desirable than tension when bonding cemented metal carbide segments together.
A preferred method of controlling the CTE of both segments 302, 303 may be controlling the binder concentration in the cemented metal carbide segments 302, 303. The binder may often be cobalt or nickel. Preferably a higher concentration of cobalt is used to achieve a higher CTE. The first segment 302 may comprise a cobalt concentration of 6 to 35 weight percent and the second segment 303 may comprise a cobalt concentration of 4 to 30 weight percent. In a preferred embodiment, the first segment comprises 11 to 14 weight percent while the second segment comprises 4 to 7 weight percent.
The first or second segment may also comprise a region bonded to a superhard material 305 selected from the group consisting of diamond, natural diamond, polycrystalline diamond, cubic boron nitride, or combinations thereof. The superhard material 305 may be bonded by sintering, chemical vapor deposition, physical vapor deposition, or combinations thereof. The superhard material may reduce wear on the tool 101, which may increase the life of the tool 101.
An overhang 351 formed by the first segment having a greater cross-sectional thickness, may be filled with extruded braze material, which may help put the interface into compression, if the braze material has a higher CTE than the carbide segments. The larger diameter first segment 302 may also allow for a wider superhard material 305 which may reduce the impact felt by the second segment 303. A first segment 302 that has a substantially similar or greater diameter than the second segment 303 may reduce the wear felt by second segment 303.
In embodiments where the first segment comprises a cross sectional thickness substantially equal to a cross sectional thickness of the second embodiment, there may be no overhang. In such embodiments, it is believed that the first segment may still protect the second segment from wear.
In such a configuration, surfaces of the tool 101 may be susceptible to high wear. Such a surface may be an edge 306 of the tool or it may be on the base segment 301 near the attachment 203. A durable coating (not shown) may cover surfaces susceptible to high wear. The durable coating may comprise diamond, polycrystalline diamond, cubic boron nitride, diamond grit, polycrystalline diamond grit, cubic boron nitride grit, or combinations thereof. The durable coating may be deposited by chemical vapor deposition; physical vapor deposition; blasting diamond grit, polycrystalline diamond grit, cubic boron nitride grit, or combinations thereof; sintering; or combinations thereof.
The sleeve 803 may be brazed around the interface 304. Because the sleeve 803 may comprise the higher CTE it will expand more when brazed to the interface 304, then shrink putting the interface 304 into compression. In some embodiment, the sleeve 803 may be thermally expanded before being placed around the interface 304, then allowed to cool. In such an embodiment, the sleeve may not need to be brazed to the tool 101. The sleeve 803 may comprise tungsten, silicon, niobium, titanium, nickel, cobalt, carbide, or combinations thereof.
Each geometry may change the tool's 101 cutting properties. A pointed geometry may allow for more aggressive cutting. While a rounded geometry may reduce wear by distributing stresses and make cutting less aggressive.
The first segment 302 may comprise a region proximate the interfacial surface 901 comprising a higher concentration of binder than a distal region 902 of the first segment 302. The metal may be a binder, such as cobalt and/or nickel, which increases the segment's CTE. In such a segment 302, heat from brazing may more easily expand the segment in the region proximate the interfacial surface 901 than in the distal region 902 which would be proximate the superhard material. This may be beneficial in reducing the stresses on the superhard material 305 during brazing in that the carbide segment proximate the superhard material 305 may expand less and leave less residual stress between the carbide and the superhard material.
Number | Name | Date | Kind |
---|---|---|---|
2004315 | Fean | Jun 1935 | A |
2124438 | Struk | Jul 1938 | A |
3254392 | Novkov | Jun 1966 | A |
3746396 | Radd | Jul 1973 | A |
3807804 | Kniff | Apr 1974 | A |
3932952 | Helton | Jan 1976 | A |
3945681 | White | Mar 1976 | A |
4005914 | Newman | Feb 1977 | A |
4006936 | Crabiel | Feb 1977 | A |
4098362 | Bonnice | Jul 1978 | A |
4109737 | Bovenkerk | Aug 1978 | A |
4156329 | Daniels | May 1979 | A |
4199035 | Thompson | Apr 1980 | A |
4201421 | Den Besten | May 1980 | A |
4277106 | Sahley | Jul 1981 | A |
4439250 | Acharya | Mar 1984 | A |
4465221 | Schmidt | Aug 1984 | A |
4484644 | Cook | Nov 1984 | A |
4489986 | Dziak | Dec 1984 | A |
4678237 | Collin | Jul 1987 | A |
4682987 | Brady | Jul 1987 | A |
4688856 | Elfgen | Aug 1987 | A |
4702525 | Sollami et al. | Oct 1987 | A |
4725098 | Beach | Feb 1988 | A |
4729603 | Elfgen | Mar 1988 | A |
4765686 | Adams | Aug 1988 | A |
4765687 | Parrott | Aug 1988 | A |
4776862 | Wiand | Oct 1988 | A |
4880154 | Tank | Nov 1989 | A |
4940288 | Stiffler | Jul 1990 | A |
4944559 | Sionnet | Jul 1990 | A |
4951762 | Lundell | Aug 1990 | A |
5011515 | Frushour | Apr 1991 | A |
5112165 | Hedlund | May 1992 | A |
5141289 | Stiffler | Aug 1992 | A |
5154245 | Waldenstrom | Oct 1992 | A |
5186892 | Pope | Feb 1993 | A |
5251964 | Ojanen | Oct 1993 | A |
5332348 | Lemelson | Jul 1994 | A |
5417475 | Graham | May 1995 | A |
5447208 | Lund | Sep 1995 | A |
5535839 | Brady | Jul 1996 | A |
5542993 | Rabinkin | Aug 1996 | A |
5653300 | Lund | Aug 1997 | A |
5738698 | Kapoor | Apr 1998 | A |
5823632 | Burkett | Oct 1998 | A |
5837071 | Andersson | Nov 1998 | A |
5845547 | Sollami | Dec 1998 | A |
5875862 | Jurewicz | Mar 1999 | A |
5934542 | Nakamura | Aug 1999 | A |
5935718 | Demo | Aug 1999 | A |
5944129 | Jensen | Aug 1999 | A |
5967250 | Lund | Oct 1999 | A |
5992405 | Sollami | Nov 1999 | A |
6006846 | Tibbitts | Dec 1999 | A |
6019434 | Emmerich | Feb 2000 | A |
6044920 | Massa et al. | Apr 2000 | A |
6051079 | Andersson | Apr 2000 | A |
6056911 | Griffin | May 2000 | A |
6065552 | Scott | May 2000 | A |
6113195 | Mercier | Sep 2000 | A |
6170917 | Heinrich | Jan 2001 | B1 |
6193770 | Sung | Feb 2001 | B1 |
6196636 | Mills | Mar 2001 | B1 |
6196910 | Johnson | Mar 2001 | B1 |
6199956 | Kammerer | Mar 2001 | B1 |
6216805 | Lays | Apr 2001 | B1 |
6270165 | Peay | Aug 2001 | B1 |
6341823 | Sollami | Jan 2002 | B1 |
6354771 | Bauschulte | Mar 2002 | B1 |
6364420 | Sollami | Apr 2002 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6375272 | Ojanen | Apr 2002 | B1 |
6419278 | Cunningham | Jul 2002 | B1 |
6478383 | Ojanen | Nov 2002 | B1 |
6499547 | Scott | Dec 2002 | B2 |
6517902 | Drake | Feb 2003 | B2 |
6585326 | Sollami | Jul 2003 | B2 |
6685273 | Sollami | Feb 2004 | B1 |
6709065 | Peay | Mar 2004 | B2 |
6719074 | Tsuda | Apr 2004 | B2 |
6733087 | Hall | May 2004 | B2 |
6739327 | Sollami | May 2004 | B2 |
6758530 | Sollami | Jul 2004 | B2 |
6824225 | Stiffler | Nov 2004 | B2 |
6861137 | Hughes | Mar 2005 | B2 |
6889890 | Yamazaki | May 2005 | B2 |
6966611 | Sollami | Nov 2005 | B1 |
6994404 | Sollami | Feb 2006 | B1 |
7204560 | Mercier | Apr 2007 | B2 |
20010008190 | Scott et al. | Jul 2001 | A1 |
20030051924 | Tsuda et al. | Mar 2003 | A1 |
20030140350 | Noro | Jul 2003 | A1 |
20030209366 | McAlvain | Nov 2003 | A1 |
20030234280 | Cadden | Dec 2003 | A1 |
20040026983 | McAlvain | Feb 2004 | A1 |
20040065484 | McAlvain | Apr 2004 | A1 |
20050159840 | Lin | Jul 2005 | A1 |
20060237236 | Sreshta et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
3431888 | Mar 1985 | DE |
412287 | Feb 1991 | EP |
08100589 | Apr 1996 | JP |
2896749 | May 1999 | JP |
2263212 | Oct 2005 | RU |
WO 9728353 | Aug 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20070290546 A1 | Dec 2007 | US |