Artificial lift operations using electric submersible pumps (ESPs) to recover hydrocarbons often utilize multistage centrifugal pumps. Each pump stage includes a spinning impeller and a stationary diffuser, most often made of metal. To limit leakage recirculation within a stage, a running seal between the impeller and the diffuser is incorporated into the design, by providing a close clearance between certain proximate features of these components. A running seal may be created by closely mating the outside-diameter surfaces of spinning impeller skirts to the stationary inside diameter bores of diffuser skirts, at both ends of the impeller, to form the running seals. Other similar features may also be closely mated instead, to form a running seal. Over time, these closely mated features are subject to abrasive wear, especially due to sand and other abrasive particles that occur in the well fluids being pumped. The abrasive wear leads to losses of head, flow, and efficiency due to increased leakage recirculation from the impeller back through the running seal to the suction input of the pump stage.
Conventionally, metal wear rings can be used to repair or replace the running seal faces in worn ESP stages. However, wear rings that are even harder than conventional metal wear rings have not been used to refurbish the running seals in ESPs, because the extreme conditions inside the ESP damage such unconventional wear rings. High-hardness wear rings have not been used to strengthen the running seals of ESPs because it is difficult to protect them within the harsh ESP environment.
An electric submersible pump provides wear resistance by including an impeller, a diffuser, and a high-hardness wear ring associated with a running clearance seal between the impeller and the diffuser, and possessing a hardness greater than the hardness of metals. In an implementation, an electric submersible pump has an impeller, diffuser, the high-hardness wear ring associated with a running clearance seal between the impeller and the diffuser, and one or both of an elastic mounting system for preventing stress or breakage of the high-hardness wear ring, and a low-stress drive system for powering the electric submersible pump while preventing stress or breakage to the high-hardness wear ring. An example method includes incorporating a high-hardness wear ring into a running clearance seal of an electric submersible pump, and providing an elastic mounting for the high-hardness wear ring to protect it from stress and breakage. This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein.
Overview
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
This disclosure describes example embodiments of wear rings for electric submersible pumps (ESPs). As shown in
An example ESP has one or more running clearance seals 106 reinforced with the high-hardness wear rings 100. Ceramics and carbides may provide the high hardness for the wear rings 100, but such substances are more brittle than metals and have different coefficients of thermal expansion than metals. For protection, each high-hardness wear ring 100 may be mounted with an elastic cushioning scheme. The elastic mounting preserves each wear ring 100 from shock, stress, and breakage from thermal expansion and contraction of an adjacent pump part. Each high-hardness wear ring 100 may also have a low-stress driving mechanism that cushions the rotational force imparted to the wear ring 100 when the ESP pump is being powered. In some implementations, the elastic mounting scheme may also serve as the low-stress driving mechanism for the high-hardness wear ring 100.
Example pump stage configurations described herein adapt high-hardness (or “hardened”) wear rings, for example wear rings 100 & 108, to the running seals and other wear areas of an ESP pump stage. The high-hardness wear rings 100 are either placed during manufacture to prevent and retard wear from the outset in an ESP pump stage, or placed later to restore the performance of a pump stage after it has already worn by fitting high-hardness wear rings 100 to an ESP pump stage not originally equipped with them, or by replacing existing wear rings 100 that have become worn with even harder wear rings 100.
High-hardness wear rings 100 can be brittle and vulnerable to some types of breakage despite their hardness and resistance to wear in their appointed function. This disclosure describes how to mount and how to rotationally drive the high-hardness wear rings 100 in the harsh environment of an ESP, in ways that protect the wear rings 100 from mechanical stress and from damage due to differences in thermal expansion.
In the case of thermal expansion, a wear ring 100 that is constructed of a high-hardness material, such as ceramic or carbide, or that has one or more high-hardness components, may have a different coefficient of thermal expansion than the adjacent metal of the impeller 102 or diffuser 104. A wear ring 100 may form a close interface with the other side of a running seal 106, and in addition is also in physical contact with its own mounting surface, which is conventionally the metal of the impeller 102 or diffuser 104 to which the wear ring 100 or 108 is fastened. If the wear ring 100 is not protected in some manner from differences in thermal expansion between the wear ring 100 and the metal of the adjacent impeller 102 or diffuser 104, then both the mounting scheme and the other side of the running seal 106 present opportunities for likely breakage.
In the case of driving the high-hardness wear rings 100 when fastened to a rotating part such as the impeller 102, conventional metals have at least some malleability, or have a metallic crystal structure that distributes stress, while a high-hardness wear ring 100 of ceramic or carbide, on the other hand, may be very brittle when subjected to stress applied at a single point on the wear ring 100.
Described below are embodiments for mounting high-hardness wear rings 100 and for driving or powering an ESP pump stage that uses the high-hardness wear rings 100. The two different aspects of protecting the high-hardness wear rings 100 as described above work together in synergy in example ESP stages to protect the high-hardness wear rings 100. The high-hardness wear rings 100 are mounted in a manner that protects them, and the ESP stage is rotationally driven or powered in a manner that protects the high-hardness wear rings 100, in synergy with the protective mounting. Thus, elastic mounting systems and low-stress drive systems work in concert to use and protect the high-hardness wear rings 100 in a multi-stage ESP.
The high-hardness wear rings 100 & 108 may be constructed of one or more materials that are harder and more resistant to wear than metals such as nickel (e.g., Ni-resist) cast iron, conventionally used to make the impeller 102 and diffuser 104 in ESPs. Ceramics and carbides are used herein as representative examples of high-hardness materials for wear rings 100. But the described embodiments for mounting and rotationally driving the wear rings 100 in a manner that protects them can also apply to wear rings 100 made of numerous other hard substances besides ceramics and carbide. For example, the described embodiments for mounting and rotationally driving a high-hardness wear ring 100 may apply to wear rings 100 made entirely of one substance, such as a hard metal, a nonmetal, an alloy, a ceramic, or a carbide, and may also apply to wear rings 100 that have a conventional part combined with and a high-hardness layer or coating that is brittle or that varies in its coefficient of thermal expansion from the material of the remainder of the wear ring 100 or the material of the adjacent impeller 102 or diffuser 104.
Example materials for making a high-hardness wear ring 100 include one or more of silicon carbide (SiC), ceramic Al2O3, hard forms of carbon (diamond, diamond-like carbon), tungsten carbide, and other materials known for hardness and resistance to wear. In an implementation, a first hard material may be composited with other hard materials, such as carbides, cubic boron nitride (CBN), wurtzite boron nitride (WBN), and so forth. SiC is one of the hardest materials for practical use, has high elastic modulus, and good thermal properties, such as heat conductivity and thermal resistance while undergoing limited thermal expansion. Different variants of diamond-like carbon (DLC) coatings can be applied as a coating to a metal wear ring 100 to make a hardened wear ring 100 with at least a high-hardness wear surface. No conventional metallic materials are known to be comparable to the hardness of SiC ceramics, and no conventional coatings are known to be as hard and effective as DLCs. While very hard, these conventional high-hardness wear materials tend to be brittle during use.
A variety of example drive systems prevent rotation and axial movement of an example high-hardness wear ring 100 relative to the mating stage component while minimizing stress raisers due to notch effects that encourage cracking of a ceramic, carbide, or other high-hardness wear ring 100. A stress raiser (or stress riser) is a location in an object where stress is concentrated. The lifespan of the wear ring 100 is preserved when force is evenly distributed over its area, so a reduction in the distributable area, for example caused by a discontinuous notch, hole, or crack, results in a localized increase in stress in that area.
Example mounting systems for the high-hardness wear rings 100 both cushion impacts between the wear ring 100 and the mating surface of the stage part (e.g., impeller 102) and accommodate relative thermal expansion and contraction of different adjacent components without exerting undue force on the wear ring 100 or on the other hand, allowing unwanted looseness. In some cases an example mounting system is also sufficiently tight to drive the wear ring 100, eliminating the need for a separate drive system for the wear ring 100.
Example ceramic or carbide high-hardness wear rings 100 have a significantly lower coefficient of thermal expansion than conventional Ni-resist cast iron used in ESP stages. Therefore, the example mounting systems for the high-hardness wear rings 100 may provide for differential thermal expansion and contraction as the temperatures to which the ESP are exposed can be either higher or lower than a standard shop temperature at which the wear rings 100 are fitted to the ESP pump stage.
Specifically, in an implementation, sufficient clearance is desirable between the inside-diameter (ID) surface of a diffuser skirt bore 104 and its mating wear ring 100 at room temperature manufacturing, in order to allow for loss of clearance during thermal changes that can break the wear ring 100 when there is less shrinkage of the wear ring 100 than of the diffuser skirt bore 104 at low temperatures, for example, as encountered in arctic shipment or storage. At these low temperatures, the diffuser skirt bore 104 tightens around the outside of the mating wear ring 100 by thermal shrinkage, and compresses the wear ring 100 until it breaks. When the same diffuser 104 encounters high temperature, e.g., in a steam well, then without one of the example mounting systems, the clearance between the wear ring 100 and the inside-diameter surface of the diffuser skirt bore 104 increases, resulting in unwanted looseness that increases the vibration and wear of the ESP pump stage.
Similarly, sufficient clearance is desirable between the outside-diameter (OD) surface of an impeller skirt 102 and its mating wear ring 108 at room temperature manufacturing to allow for loss of clearance at high temperature due to less expansion of the wear ring than the impeller skirt 102. On the other hand, when the impeller 102 encounters a low temperature operation, for example, in a seabed booster well, without one of the example mounting systems, the OD surface of the impeller skirt 102 contracts, increasing clearance with the mating wear ring 108, resulting in unwanted looseness.
To solve these issues and also in order to cushion impacts and prevent unwanted looseness, an elastic mounting system can be provided between the wear ring 100 or 108 and the mating surface of the stage part 102 or 104.
An example mounting system may take various forms. As shown in
Combination Systems
Example implementations of an ESP pump stage may combine the various example drive and mounting systems described above. The example combinations enumerated below are not meant to limit the possible combinations, but illustrate a variety of practical combinations.
A first example combination combines the first drive system 200 with the first example mounting system 600. A hollow spring pin 202 may be located between two mounting O-rings 604 & 604′, for example, so that a bore 206 through the pin 202 also serves as the equalization hole 606 to relieve fluid build-up from between the O-rings 604 & 604′.
A second example combination combines the second drive system 300 with the second mounting system 700. Axial rods 702 & 702′ & 702″ of strong elastomer may be fitted partially in grooves in the wear ring 100 and partially in grooves in the stage diameter surface 102 to serve as both drive keys 302 and as an elastic and shock-absorbing mounting system 700.
A third example combination combines the third drive system 400 with the third mounting system 800. The expandable foam spacers 802 & 802′ in the expandable foam mounting system 800 may also be applied between the drive notches 402 & 402′ and drive lugs 404 & 404′ to absorb shock.
At block 902, a high-hardness wear ring is incorporated into a pump or at least a pump stage.
At block 904, a protective mounting is incorporated into the pump to protect the high-hardness wear ring, which may be brittle, from breakage and stress. For example, stress and breakage may occur from differences in thermal expansion and contraction between the high-hardness wear ring and nearby mated diffuser or impeller parts. Or the stress and breakage may arise from stress points at members and connectors that attach the wear ring to the pump.
At block 1002, a high-hardness wear ring is incorporated into an ESP or at least an ESP pump stage.
At block 1004, a protective drive system is incorporated into the pump to power the impeller in a manner that does not break the high-hardness wear ring. A conventional metal wear ring, on the other hand, is more resistant to stresses and breakage forces because conventional metals are not as brittle as high-hardness materials, such as ceramics or carbides.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
This patent application claims the benefit of priority to U.S. Provisional Patent Application No. 61/876,025 to Watson et al., filed Sep. 10, 2013, and incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/054951 | 9/10/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/038616 | 3/19/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2785913 | Solari | Mar 1957 | A |
3975113 | Ogles | Aug 1976 | A |
4664595 | Tsuji | May 1987 | A |
4768923 | Baker | Sep 1988 | A |
4779876 | Novosad | Oct 1988 | A |
4913619 | Haentjens | Apr 1990 | A |
5133639 | Gay | Jul 1992 | A |
5209577 | Swatek | May 1993 | A |
7988411 | Lienau | Aug 2011 | B2 |
20060024174 | Welch | Feb 2006 | A1 |
20060198731 | Shaw et al. | Sep 2006 | A1 |
20070280823 | Kanemori | Dec 2007 | A1 |
20090285678 | Brunner | Nov 2009 | A1 |
20100166578 | Watson | Jul 2010 | A1 |
20120156012 | Ure Villoria | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2007517162 | Jun 2007 | JP |
Entry |
---|
Chemical Processing, “Pump Repair and Restoration Guidelines”, Dec. 18, 2005, [http://www.chemicalprocessing.com/industrynews/2005/092.html], Retrieved Jan. 29, 2018, 8 pages. |
Engineers Edge, “Centrifugal Pumps Wearing Ring Review”, [http://www.engineersedge.com/pumps/wearing_rings.htm], retrieved Jan. 29, 2018, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20160222976 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61876025 | Sep 2013 | US |