This application claims the benefit of UK application GB0724705.9 filed Dec. 19, 2007 and U.S. Ser. No. 61/014,800 filed Dec. 19, 2007, both of which applications are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to magnetic loop antennas, and more particularly to the integration of loop antennas at or within a wearer's clothing.
2. Description of the Related Art
Magnetic loop antennas have a number of applications, including incorporation as part of transmitting systems, and are particularly applicable to methods of communication underwater using electromagnetic and/or magneto-inductive means. Because water, especially seawater, is partially conductive, relatively low signal frequencies are commonly employed in communication systems underwater in order to reduce signal attenuation. To this end, antennas in many applications are generally formed of conducting loops.
Such magnetic loops generate an alternating magnetic field whose strength is commonly defined by the well-understood term, magnetic moment. For signal detection at greatest distance, the largest achievable magnetic moment is desirable. The magnetic moment is directly proportional to each of the three parameters: loop area, loop current, and number of loop turns. Equivalently, it may be stated that the magnetic moment is proportional to both the ampere-turn product of the loop and to the enclosed area of the loop.
The number of loop turns and current are restricted in practice by the driving circuit and the available power supply. It is beneficial to maximise the area enclosed by the loop but a physically large structure will severely impede a wearer's movement. This limitation has been one of the factors restricting the adoption of low frequency radio communications by wearers.
Accordingly, an object of the present invention is to provide for the integration of one or more loop antennas with a wearer's clothing.
Another object of the present invention is to provide a loop antenna system as an independent item of a wearer's attire.
Yet another object of the present invention is to provide a wearable item, including but not limited to an item of clothing, including at least one loop antenna for transmitting and/or receiving electromagnetic signals, with the antenna being operable underwater, water or underground.
These and other objects of the present invention are provided in a wearable article configured to be worn by a person underwater or underground; An antenna. with at least one loop, is coupled to the wearable item. The antenna provides transmission or receipt of electromagnetic signals and has a size and geometry that maximizes antenna transmission area while minimizing a restriction on movement by the person wearing the wearable article. The antenna carries an alternating current that provides conductive attenuation and has three different field components. Each field component has a different geometric loss when moving a distance r from the antenna. R is a propagating distance from the antenna.
In one embodiment, the present invention provides a system of magnetic and/or magneto-inductive loop antennas for use by a person underwater or underground, including but not limited to a mobile wearer. The total loop area of the antenna can be maximised while the practical motion restriction imposed on the person due to body movement is reduced and or minimized by integrating the loop antennas within the wearer's clothing. This provides a mechanism of communication that has minimal dependence on orientation of the person under water or under ground. In various embodiments, geometries of the antennas can make use of crossed loop structures to achieve a more uniform antenna field pattern as more fully described hereafter.
The wearer's freedom of movement is an important operational requirement for several reasons: safety; need to minimise the chance of snagging on external structures which could trap the wearer below the water or underground; the ability to carry out intended tasks without restricting movement and speed of movement through the water or underground; ability of the wearer to move freely such as swim freely. For these reasons it is preferable to construct an antenna system which is conformal to a the wearer's body and flexible enough to allow free movement. The antenna systems of the present invention are close to the wearer's body and implemented as an independent item of attire or integrated into clothing items, which serve a dual function, for example a dry suit or wet suit construction.
As illustrated in
The item of clothing of
Referring now to
As illustrated in
Combining multiple antennas improves tolerance to failure compared to a single continuous multi-turn solenoid winding of the equivalent number of turns, which will fail if the single wire breaks at any point along its length. While the transmitter and receiver systems are illustrated separately, in practice common antennas may be used that are switched between transmit and receive functions.
One beneficial property of submerged radio communications is the signal's ability to cross the water to air boundary. The antenna system of the present invention can be operational in air to provide communication by a wearer on the surface to submerged team members.
Integrated wearable loop antennas of the present invention are particularly advantageous for use in low frequency radio communications. Radio signals are attenuated by transmission through water due to its partially conductive nature and attenuation increases as a function of frequency. Radio transmissions through the ground are also attenuated by the partial conductivity of the geological materials and low frequency radio signal are also beneficial for underground applications. The wearable antenna structures described herein are suitable for underground and underwater deployments.
A skilled person will appreciate that variations in implementation and application of the disclosed example arrangements are possible without departing from the essence of this invention, and variations may still derive full or partial advantage from it. For example, each of the individual loops illustrated may be constructed from a single turn of electrically conducting cable or alternatively may be formed from many turns. Also, whilst
While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, the positioning of the LCD screen for the human interface may be varied so as to provide the best location for ergonomic use. The human interface may be a voice system that uses words to describe status or alarms related to device usage. Expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.
Number | Date | Country | Kind |
---|---|---|---|
0724705.9 | Dec 2007 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2070112 | Bowles | Feb 1937 | A |
2299058 | Mitchell | Oct 1942 | A |
3112447 | Davis | Nov 1963 | A |
4879755 | Stolarczyk et al. | Nov 1989 | A |
5459451 | Crossfield et al. | Oct 1995 | A |
7002526 | Adams et al. | Feb 2006 | B1 |
Number | Date | Country |
---|---|---|
20318343 | Nov 2003 | DE |
202006006921 | Apr 2006 | DE |
0292950 | Nov 1988 | EP |
1393643 | Mar 2004 | EP |
2126845 | Mar 1984 | GB |
2009041497 | Apr 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20090160716 A1 | Jun 2009 | US |