The present disclosure relates generally to human machine interface and in particular to augmented reality for wearable devices and methods of object detection and tracking.
The subject matter discussed in this section should not be assumed to be prior art merely as a result of its mention in this section. Similarly, a problem mentioned in this section or associated with the subject matter provided as background should not be assumed to have been previously recognized in the prior art. The subject matter in this section merely represents different approaches, which in and of themselves may also correspond to implementations of the claimed technology.
Conventional motion capture approaches rely on markers or sensors worn by the subject while executing activities and/or on the strategic placement of numerous bulky and/or complex equipment in specialized and rigid environments to capture subject movements. Unfortunately, such systems tend to be expensive to construct. In addition, markers or sensors worn by the subject can be cumbersome and interfere with the subject's natural movement. Further, systems involving large numbers of cameras tend not to operate in real time, due to the volume of data that needs to be analyzed and correlated. Such considerations have limited the deployment and use of motion capture technology.
Consequently, there is a need for providing the ability to view and/or interact with the real world when using virtual reality capable devices (e.g., wearable or otherwise having greater portability) by capturing the motion of objects in real time without fixed or difficult to configure sensors or markers.
Implementations of the technology disclosed address these and other problems by providing methods and systems of providing capabilities to view and/or interact with the real world to the user of a wearable (or portable) virtual reality capable device using a sensor configured to capture motion and/or determining the path of an object based on imaging, acoustic or vibrational waves. Implementations can enable improved user experience, greater safety, greater functionality to users of virtual reality for machine control and/or machine communications applications using wearable (or portable) devices, e.g., head mounted devices (HMDs), wearable goggles, watch computers, smartphones, and so forth, or mobile devices, e.g., autonomous and semi-autonomous robots, factory floor material handling systems, autonomous mass-transit vehicles, automobiles (human or machine driven), and so forth, equipped with suitable sensors and processors employing optical, audio or vibrational detection.
In one implementation, a wearable sensor system includes capabilities to provide presentation output to a user of a virtual reality device. For example, a video stream including a sequence of images of a scene in the real world is captured using one or more cameras on a head mounted device (HMD) having a set of RGB pixels and a set of IR pixels. Information from the IR sensitive pixels is separated out for processing to recognize gestures. Information from the RGB sensitive pixels is provided to a presentation interface of the wearable device as a live video feed to a presentation output. The presentation output is displayed to a user of the wearable sensor system. One or more virtual objects can be integrated with the video stream images to form the presentation output. Accordingly, the device is enabled to provide at least one or all or an combination of the following:
In one implementation, a method is described of smoothly transitioning between an immersive virtual environment and a convergent physical real environment during an augmented hybrid experience. The method comprises using at least one camera to capture a sequence of images of a physical real environment in convergence with an immersive virtual environment during an augmented hybrid experience. It also includes automatically interrupting the immersive virtual environment and substituting a live feed (video and/or audio information) of the physical real environment in the augmented hybrid experience in response to a command input.
Convergence between a real environment and an immersive virtual environment can be for example temporal, spatial, or temporal and spatial. For example, a spatial convergence can include display of real and virtual objects related to the space in which the viewer is casting their gaze, such as a virtual “application” and a real cola can made available for interaction with an otherwise real desk within the field of view of the viewer. Temporal convergence can include display of something going on in another space (e.g., behind the viewer, or in another room) at the same time using a window or panel (e.g., a virtual rear view mirror) embedded within the visual field of view of the viewer.” An example of a convergence that is spatial but not temporal would be a ghost story application that plays scenes from a haunted house's past depending upon the room that the viewer is in. Other examples consistent with these and other forms of convergence are also contemplated in other implementations.
In one implementation, the command input is automatically triggered in response to a free-form gesture. In another implementation, the command input is automatically triggered in response to an audio signal. In yet another implementation, the command input is automatically triggered in response to a vibrational signal. In a further implementation, the command input is automatically triggered in response to an optical signal.
The method further includes simultaneously, manipulating in responsive a command input at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment during the augmented hybrid experience.
In some implementations, the method includes the camera being mounted on a head mounted device (HMD), which provides the augmented hybrid experience.
The method includes, at a first time t0, using a sensor attached to the HMD, sensing a first position of at least one physical object in a first reference frame of the physical real environment, including tracking portions of the physical object. It also includes causing display of a first virtual representation of the physical object at the first position, wherein the first virtual representation is rendered in the immersive virtual environment of the HMD. The method further includes, at a second time t1, sensing, in the physical real environment, a second position of the physical object and at least some of the portions different from the first position responsive to repositioning of the physical real environment and the attached sensor due to body movement of a user wearing the HMD, wherein the physical object has not moved in the physical real environment between t0 and t1. It also includes causing display of a second virtual representation of the physical object at an actual second position.
In some implementations, causing display of a second virtual representation of the physical object at an actual second position further includes sensing motion of the attached sensor and calculating a second reference frame that accounts for repositioning of the attached sensor, calculating a transformation that renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame, and transforming the first and second positions of the physical object into the common reference frame, wherein the common reference frame has a fixed point of reference and an initial orientation of axes, whereby the sensed second position is transformed to the actual second position.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, transforming the first and second positions of the physical object into the common reference frame further includes applying an affine transformation.
In other implementations, the method further includes determining the orientation of the physical object at the first position with respect to the first reference frame and causing the display of the physical object accordingly.
In yet other implementations, the method also includes determining the orientation of the physical object at the second position with respect to the second reference frame and causing the display of the physical object accordingly.
In yet another implementation, a method is described of smoothly transitioning between an immersive virtual environment and a convergent mixed reality environment during an augmented hybrid experience. The mixed reality environment includes at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment.
The method comprises using at least one camera to capture a sequence of images of a physical real environment in convergence with an immersive virtual environment during an augmented hybrid experience. It also includes, responsive to a command input, automatically, interrupting the immersive virtual environment and superimposing at least one virtual object of the immersive virtual environment in the physical real environment to generate data representing a mixed reality environment during the augmented hybrid experience.
In one implementation, the command input is automatically triggered in response to a free-form gesture. In another implementation, the command input is automatically triggered in response to an audio signal. In yet another implementation, the command input is automatically triggered in response to a vibrational signal. In a further implementation, the command input is automatically triggered in response to an optical signal.
The method further includes simultaneously, manipulating in responsive a command input at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment during the augmented hybrid experience.
In some implementations, the method includes the camera being mounted on a head mounted device (HMD), which provides the augmented hybrid experience.
The method includes, at a first time t0, using a sensor attached to the HMD, sensing a first position of at least one physical object in a first reference frame of the physical real environment, including tracking portions of the physical object. It also includes causing display of a first virtual representation of the physical object at the first position, wherein the first virtual representation is rendered in the immersive virtual environment of the HMD. The method further includes, at a second time t1, sensing, in the physical real environment, a second position of the physical object and at least some of the portions different from the first position responsive to repositioning of the physical real environment and the attached sensor due to body movement of a user wearing the HMD, wherein the physical object has not moved in the physical real environment between t0 and t1. It also includes causing display of a second virtual representation of the physical object at an actual second position.
In some implementations, causing display of a second virtual representation of the physical object at an actual second position further includes sensing motion of the attached sensor and calculating a second reference frame that accounts for repositioning of the attached sensor, calculating a transformation that renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame, and transforming the first and second positions of the physical object into the common reference frame, wherein the common reference frame has a fixed point of reference and an initial orientation of axes, whereby the sensed second position is transformed to the actual second position.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, transforming the first and second positions of the physical object into the common reference frame further includes applying an affine transformation.
In other implementations, the method further includes determining the orientation of the physical object at the first position with respect to the first reference frame and causing the display of the physical object accordingly.
In yet other implementations, the method also includes determining the orientation of the physical object at the second position with respect to the second reference frame and causing the display of the physical object accordingly.
In yet further implementation, a method is described of smoothly transitioning between an immersive virtual environment and a convergent physical real environment during an augmented hybrid experience generated by a head mounted device (HMD). The method comprises using at least one camera mounted to a head mounted device (HMD) to capture a sequence of images of a physical real environment in convergence with an immersive virtual environment during an augmented hybrid experience generated by the HMD. It also includes automatically triggering a pass through mode of the HMD in response to a command input, wherein the pass through mode interrupts the immersive virtual environment and substitutes a live feed (video and/or audio information) of the physical real environment in the augmented hybrid experience.
The method includes, at a first time t0, using a sensor attached to the HMD, sensing a first position of at least one physical object in a first reference frame of the physical real environment, including tracking portions of the physical object. It also includes causing display of a first virtual representation of the physical object at the first position, wherein the first virtual representation is rendered in the immersive virtual environment of the HMD. The method further includes, at a second time t1, sensing, in the physical real environment, a second position of the physical object and at least some of the portions different from the first position responsive to repositioning of the physical real environment and the attached sensor due to body movement of a user wearing the HMD, wherein the physical object has not moved in the physical real environment between t0 and t1. It also includes causing display of a second virtual representation of the physical object at an actual second position.
In some implementations, causing display of a second virtual representation of the physical object at an actual second position further includes sensing motion of the attached sensor and calculating a second reference frame that accounts for repositioning of the attached sensor, calculating a transformation that renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame, and transforming the first and second positions of the physical object into the common reference frame, wherein the common reference frame has a fixed point of reference and an initial orientation of axes, whereby the sensed second position is transformed to the actual second position.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, transforming the first and second positions of the physical object into the common reference frame further includes applying an affine transformation.
In other implementation, the method further includes determining the orientation of the physical object at the first position with respect to the first reference frame and causing the display of the physical object accordingly.
In yet other implementations, the method also includes determining the orientation of the physical object at the second position with respect to the second reference frame and causing the display of the physical object accordingly.
In one implementation, a wearable sensor system includes capabilities to provide presentation output to a user. For example, in one implementation, the device captures a video stream including a sequence of images of a scene in the real world. The video stream images are integrated with virtual object(s) to form a presentation output. The presentation output is displayed to a user of the wearable sensor system. For example, video can be captured with one or more cameras on a head mounted device (HMD) having a set of RGB pixels and a set of IR pixels.
In one implementation, the ambient lighting conditions are determined and can be used to adjust display of output. For example, information from the set of RGB pixels is displayed in normal lighting conditions and information from the set of IR pixels in dark lighting conditions. Alternatively, or additionally, information from the set of IR pixels can be used to enhance the information from the set of RGB pixels for low-light conditions, or vice versa. Some implementations can receive from a user a selection indicating a preferred display chosen from one of color imagery from the RGB pixels and IR imagery from the IR pixels, or combinations thereof. Alternatively, or additionally, the device itself may dynamically switch between video information captured using RGB sensitive pixels and video information captured using IR sensitive pixels for display depending upon ambient conditions, user preferences, situational awareness, other factors, or combinations thereof.
In one implementation, information from the IR sensitive pixels is separated out for processing to recognize gestures; while the information from the RGB sensitive pixels is provided to an output as a live video feed; thereby enabling conserving bandwidth to the gesture recognition processing. In gesture processing, features in the images corresponding to objects in the real world can be detected. The features of the objects are correlated across multiple images to determine change, which can be correlated to gesture motions. The gesture motions can be used to determine command information to a machine under control, application resident thereon or combinations thereof.
In one implementation, motion sensors and/or other types of sensors are coupled to a motion-capture system to monitor motion of at least the sensor of the motion-capture system resulting from, for example, users' touch. Information from the motion sensors can be used to determine first and second positional information of the sensor with respect to a fixed point at first and second times. Difference information between the first and second positional information is determined. Movement information for the sensor with respect to the fixed point is computed based upon the difference information. The movement information for the sensor is applied to apparent environment information sensed by the sensor to remove motion of the sensor therefrom to yield actual environment information; which can be communicated. Control information can be communicated to a system configured to provide a virtual reality or augmented reality experience via a portable device and/or to systems controlling machinery or the like based upon motion capture information for an object moving in space derived from the sensor and adjusted to remove motion of the sensor itself. In some applications, a virtual device experience can be augmented by the addition of haptic, audio and/or visual projectors.
In an implementation, apparent environmental information is captured from positional information of an object portion at the first time and the second time using a sensor of the motion-capture system. Object portion movement information relative to the fixed point at the first time and the second time is computed based upon the difference information and the movement information for the sensor.
In further implementations, a path of the object is calculated by repeatedly determining movement information for the sensor, using the motion sensors, and the object portion, using the sensor, at successive times and analyzing a sequence of movement information to determine a path of the object portion with respect to the fixed point. Paths can be compared to templates to identify trajectories. Trajectories of body parts can be identified as gestures. Gestures can indicate command information to be communicated to a system. Some gestures communicate commands to change operational modes of a system (e.g., zoom in, zoom out, pan, show more detail, next display page, and so forth).
Advantageously, some implementations can enable improved user experience, greater safety and improved functionality for users of virtual reality wearable devices. Some implementations further provide gesture capability allowing the user to execute intuitive gestures involving virtualized contact with a virtual object. For example, a device can be provided a capability to distinguish motion of objects from motions of the device itself in order to facilitate proper gesture recognition. Some implementations can provide improved interfacing with a variety of portable or wearable machines (e.g., smart telephones, portable computing systems, including laptop, tablet computing devices, personal data assistants, special purpose visualization computing machinery, including heads up displays (HUDs) for use in aircraft or automobiles for example, wearable virtual and/or augmented reality systems, including Google Glass, and others, graphics processors, embedded microcontrollers, gaming consoles, or the like; wired or wirelessly coupled networks of one or more of the foregoing, and/or combinations thereof), obviating or reducing the need for contact-based input devices such as a mouse, joystick, touch pad, or touch screen. Some implementations can provide for improved interface with computing and/or other machinery than would be possible with heretofore known techniques. In some implementations, a richer human—machine interface experience can be provided.
Other aspects and advantages of the present technology can be seen on review of the drawings, the detailed description and the claims, which follow.
In the drawings, like reference characters generally refer to like parts throughout the different views. Also, the drawings are not necessarily to scale, with an emphasis instead generally being placed upon illustrating the principles of the disclosed technology. In the following description, various implementations of the technology disclosed are described with reference to the following drawings, in which:
Among other aspects, the technology described herein with reference to example implementations can provide capabilities to view and/or interact with the real world to the user of a wearable (or portable) device using a sensor or sensors configured to capture motion and/or determining the path of an object based on imaging, acoustic or vibrational waves. Implementations can enable improved user experience, greater safety, greater functionality to users of virtual reality for machine control and/or machine communications applications using wearable (or portable) devices, e.g., head mounted devices (HMDs), wearable goggles, watch computers, smartphones, and so forth, or mobile devices, e.g., autonomous and semi-autonomous robots, factory floor material handling systems, autonomous mass-transit vehicles, automobiles (human or machine driven), and so forth, equipped with suitable sensors and processors employing optical, audio or vibrational detection. In some implementations, projection techniques can supplement the sensory based tracking with presentation of virtual (or virtualized real) objects (visual, audio, haptic, and so forth) created by applications loadable to, or in cooperative implementation with, the HMD or other device to provide a user of the device with a personal virtual experience (e.g., a functional equivalent to a real experience).
Implementations include providing a “pass-through” in which live video is provided to the user of the virtual reality device, either alone or in conjunction with display of one or more virtual objects, enabling the user to perceive the real world directly. Accordingly, the user is enabled to see an actual desk environment as well as virtual applications or objects intermingled therewith. Gesture recognition and sensing enables implementations to provide the user with the ability to grasp or interact with real objects (e.g., the user's coke can) alongside the virtual (e.g., a virtual document floating above the surface of the user's actual desk. In some implementations, information from differing spectral sources is selectively used to drive one or another aspect of the experience. For example, information from IR sensitive sensors can be used to detect the user's hand motions and recognize gestures. While information from the visible light region can be used to drive the pass through video presentation, creating a real world presentation of real and virtual objects. In a further example, combinations of image information from multiple sources can be used; the system—or the user—selecting between IR imagery and visible light imagery based upon situational, conditional, environmental or other factors or combinations thereof. For example, the device can switch from visible light imaging to IR imaging when the ambient light conditions warrant. The user can have the ability to control the imaging source as well. In yet further examples, information from one type of sensor can be used to augment, correct, or corroborate information from another type of sensor. Information from IR sensors can be used to correct the display of imaging conducted from visible light sensitive sensors, and vice versa. In low-light or other situations not conducive to optical imaging, where free-form gestures cannot be recognized optically with a sufficient degree of reliability, audio signals or vibrational waves can be detected and used to supply the direction and location of the object as further described herein.
Referring first to
Cameras 102, 104 are preferably capable of capturing video images (i.e., successive image frames at a constant rate of at least 15 frames per second), although no particular frame rate is required. The capabilities of cameras 102, 104 are not critical to the technology disclosed, and the cameras can vary as to frame rate, image resolution (e.g., pixels per image), color or intensity resolution (e.g., number of bits of intensity data per pixel), focal length of lenses, depth of field, etc. In general, for a particular application, any cameras capable of focusing on objects within a spatial volume of interest can be used. For instance, to capture motion of the hand of an otherwise stationary person, the volume of interest might be defined as a cube approximately one meter on a side.
As shown, cameras 102, 104 can be oriented toward portions of a region of interest 112 by motion of the device 101, in order to view a virtually rendered or virtually augmented view of the region of interest 112 that can include a variety of virtual objects 116 as well as contain an object of interest 114 (in this example, one or more hands) moves within the region of interest 112. One or more sensors 108, 110 capture motions of the device 101. In some implementations, one or more light sources 115, 117 are arranged to illuminate the region of interest 112. In some implementations, one or more of the cameras 102, 104 are disposed opposite the motion to be detected, e.g., where the hand 114 is expected to move. This is an optimal location because the amount of information recorded about the hand is proportional to the number of pixels it occupies in the camera images, and the hand will occupy more pixels when the camera's angle with respect to the hand's “pointing direction” is as close to perpendicular as possible. Sensory processing system 106, which can be, e.g., a computer system, can control the operation of cameras 102, 104 to capture images of the region of interest 112 and sensors 108, 110 to capture motions of the device 101. Information from sensors 108, 110 can be applied to models of images taken by cameras 102, 104 to cancel out the effects of motions of the device 101, providing greater accuracy to the virtual experience rendered by device 101. Based on the captured images and motions of the device 101, sensory processing system 106 determines the position and/or motion of object 114.
For example, as an action in determining the motion of object 114, sensory processing system 106 can determine which pixels of various images captured by cameras 102, 104 contain portions of object 114. In some implementations, any pixel in an image can be classified as an “object” pixel or a “background” pixel depending on whether that pixel contains a portion of object 114 or not. Object pixels can thus be readily distinguished from background pixels based on brightness. Further, edges of the object can also be readily detected based on differences in brightness between adjacent pixels, allowing the position of the object within each image to be determined. In some implementations, the silhouettes of an object are extracted from one or more images of the object that reveal information about the object as seen from different vantage points. While silhouettes can be obtained using a number of different techniques, in some implementations, the silhouettes are obtained by using cameras to capture images of the object and analyzing the images to detect object edges. Correlating object positions between images from cameras 102, 104 and cancelling out captured motions of the device 101 from sensors 108, 110 allows sensory processing system 106 to determine the location in 3D space of object 114, and analyzing sequences of images allows sensory processing system 106 to reconstruct 3D motion of object 114 using conventional motion algorithms or other techniques. See, e.g., U.S. patent application Ser. No. 13/414,485 (LEAP 1006-7/LPM-1006-7), filed on Mar. 7, 2012 and Ser. No. 13/742,953 (LEAP 1006-8/LPM-001CP2), filed on Jan. 16, 2013, and U.S. Provisional Patent Application No. 61/724,091, filed on Nov. 8, 2012, which are hereby incorporated herein by reference in their entirety.
Presentation interface 120 employs projection techniques in conjunction with the sensory based tracking in order to present virtual (or virtualized real) objects (visual, audio, haptic, and so forth) created by applications loadable to, or in cooperative implementation with, the device 101 to provide a user of the device with a personal virtual experience. Projection can include an image or other visual representation of an object.
One implementation uses motion sensors and/or other types of sensors coupled to a motion-capture system to monitor motions within a real environment. A virtual object integrated into an augmented rendering of a real environment can be projected to a user of a portable device 101. Motion information of a user body portion can be determined based at least in part upon sensory information received from imaging devices (e.g. cameras 102, 104) or acoustic or other sensory devices. Control information is communicated to a system based in part on a combination of the motion of the portable device 101 and the detected motion of the user determined from the sensory information received from imaging devices (e.g. cameras 102, 104) or acoustic or other sensory devices. The virtual device experience can be augmented in some implementations by the addition of haptic, audio and/or other sensory information projectors. For example, with reference to
A plurality of sensors 108, 110 coupled to the sensory processing system 106 to capture motions of the device 101. Sensors 108, 110 can be any type of sensor useful for obtaining signals from various parameters of motion (acceleration, velocity, angular acceleration, angular velocity, position/locations); more generally, the term “motion detector” herein refers to any device (or combination of devices) capable of converting mechanical motion into an electrical signal. Such devices can include, alone or in various combinations, accelerometers, gyroscopes, and magnetometers, and are designed to sense motions through changes in orientation, magnetism or gravity. Many types of motion sensors exist and implementation alternatives vary widely.
The illustrated system 100 can include any of various other sensors not shown in
It will be appreciated that the figures shown in
Refer now to
The computing environment may also include other removable/non-removable, volatile/nonvolatile computer storage media. For example, a hard disk drive may read or write to non-removable, nonvolatile magnetic media. A magnetic disk drive may read from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive may read from or write to a removable, nonvolatile optical disk such as a CD-ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The storage media are typically connected to the system bus through a removable or non-removable memory interface.
Processor 202 may be a general-purpose microprocessor, but depending on implementation can alternatively be a microcontroller, peripheral integrated circuit element, a CSIC (customer-specific integrated circuit), an ASIC (application-specific integrated circuit), a logic circuit, a digital signal processor, a programmable logic device such as an FPGA (field-programmable gate array), a PLD (programmable logic device), a PLA (programmable logic array), an RFID processor, smart chip, or any other device or arrangement of devices that is capable of implementing the actions of the processes of the technology disclosed.
Motion detector and camera interface 206 can include hardware and/or software that enables communication between computer system 200 and cameras 102, 104, as well as sensors 108, 110 (see
Instructions defining mocap program 214 are stored in memory 204, and these instructions, when executed, perform motion-capture analysis on images supplied from cameras and audio signals from sensors connected to motion detector and camera interface 206. In one implementation, mocap program 214 includes various modules, such as an object analysis module 222 and a path analysis module 224. Object analysis module 222 can analyze images (e.g., images captured via interface 206) to detect edges of an object therein and/or other information about the object's location. In some implementations, object analysis module 222 can also analyze audio signals (e.g., audio signals captured via interface 206) to localize the object by, for example, time distance of arrival, multilateration or the like. (“Multilateration is a navigation technique based on the measurement of the difference in distance to two or more stations at known locations that broadcast signals at known times. See Wikipedia, at http://en.wikipedia.org/w/index.php?title=Multilateration&oldid=523281858, on Nov. 16, 2012, 06:07 UTC). Path analysis module 224 can track and predict object movements in 3D based on information obtained via the cameras. Some implementations will include a Virtual Reality/Augmented Reality environment manager 226 provides integration of virtual objects reflecting real objects (e.g., hand 114) as well as synthesized objects 116 for presentation to user of device 101 via presentation interface 120 to provide a personal virtual experience. One or more applications 230 can be loaded into memory 204 (or otherwise made available to processor 202) to augment or customize functioning of device 101 thereby enabling the system 200 to function as a platform. Successive camera images are analyzed at the pixel level to extract object movements and velocities. Audio signals place the object on a known surface, and the strength and variation of the signals can be used to detect object's presence. If both audio and image information is simultaneously available, both types of information can be analyzed and reconciled to produce a more detailed and/or accurate path analysis. A video feed integrator 228 provides integration of live video feed from the cameras 102, 104 and one or more virtual objects (e.g., 801 of
Presentation interface 120, speakers 209, microphones 210, and wireless network interface 211 can be used to facilitate user interaction via device 101 with computer system 200. These components can be of generally conventional design or modified as desired to provide any type of user interaction. In some implementations, results of motion capture using motion detector and camera interface 206 and mocap program 214 can be interpreted as user input. For example, a user can perform hand gestures or motions across a surface that are analyzed using mocap program 214, and the results of this analysis can be interpreted as an instruction to some other program executing on processor 200 (e.g., a web browser, word processor, or other application). Thus, by way of illustration, a user might use upward or downward swiping gestures to “scroll” a webpage currently displayed to the user of device 101 via presentation interface 120, to use rotating gestures to increase or decrease the volume of audio output from speakers 209, and so on. Path analysis module 224 may represent the detected path as a vector and extrapolate to predict the path, e.g., to improve rendering of action on device 101 by presentation interface 120 by anticipating movement.
It will be appreciated that computer system 200 is illustrative and that variations and modifications are possible. Computer systems can be implemented in a variety of form factors, including server systems, desktop systems, laptop systems, tablets, smart phones or personal digital assistants, and so on. A particular implementation may include other functionality not described herein, e.g., wired and/or wireless network interfaces, media playing and/or recording capability, etc. In some implementations, one or more cameras and two or more microphones may be built into the computer rather than being supplied as separate components. Further, an image or audio analyzer can be implemented using only a subset of computer system components (e.g., as a processor executing program code, an ASIC, or a fixed-function digital signal processor, with suitable I/O interfaces to receive image data and output analysis results).
While computer system 200 is described herein with reference to particular blocks, it is to be understood that the blocks are defined for convenience of description and are not intended to imply a particular physical arrangement of component parts. Further, the blocks need not correspond to physically distinct components. To the extent that physically distinct components are used, connections between components (e.g., for data communication) can be wired and/or wireless as desired. Thus, for example, execution of object detection module 222 by processor 202 can cause processor 202 to operate motion detector and camera interface 206 to capture images and/or audio signals of an object traveling across and in contact with a surface to detect its entrance by analyzing the image and/or audio data.
Now with reference to
In an implementation, a transformation R is determined that moves dashed line reference frame 120a to dotted line reference frame 120b, without intermediate conversion to an absolute or world frame of reference. Applying the reverse transformation RT makes the dotted line reference frame 120b lie on top of dashed line reference frame 120a. Then the tracked object 114 will be in the right place from the point of view of dashed line reference frame 120a. (It is noteworthy that RT is equivalent to R−1 for our purposes.) In determining the motion of object 114, sensory processing system 106 can determine its location and direction by computationally analyzing images captured by cameras 102, 104 and motion information captured by sensors 108, 110. For example, an apparent position of any point on the object (in 3D space) at time
can be converted to a real position of the point on the object at time
using an affine transform
from the frame of reference of the device. We refer to the combination of a rotation and translation, which are not generally commutative, as the affine transformation.
The correct location at time t=t1 of a point on the tracked object with respect to device reference frame 120a is given by an inverse affine transformation, e.g.,
as provided for in equation (1):
Where:
One conventional approach to obtaining the Affine transform R (from axis unit vector u=(ux, uy, uz), rotation angle θ) method. Wikipedia, at http://en.wikipedia.org/wiki/Rotation_matrix, Rotation matrix from axis and angle, on Jan. 30, 2014, 20:12 UTC, upon which the computations equation (2) are at least in part inspired:
is a vector representing a translation of the object with respect to origin of the coordinate system of the translated frame,
In another example, an apparent orientation and position of the object at time t=t0: vector pair
can be converted to a real orientation and position of the object at time
using an affine transform
The correct orientation and position of the tracked object with respect to device reference frame at time t=t0 (120a) is given by an inverse affine transformation, e.g.,
as provided for in equation (3):
Where:
In a yet further example, an apparent orientation and position of the object at time t=t0: affine transform
can be converted to a real orientation and position of the object at time
using an affine transform
Furthermore, the position and orientation of the initial reference frame with respect to a (typically) fixed reference point in space can be determined using an affine transform
The correct orientation and position of the tracked object with respect to device reference frame at time t=t0 (120a) is given by an inverse affine transformation, e.g.,
as provided for in equation (4):
Where:
In some implementations, the technology disclosed can build a world model with an absolute or world frame of reference. The world model can include representations of object portions (e.g. objects, edges of objects, prominent vortices) and potentially depth information when available from a depth sensor, depth camera or the like, within the viewpoint of the virtual or augmented reality head mounted sensor. The system can build the world model from image information captured by the cameras of the sensor. Points in 3D space can be determined from the stereo-image information are analyzed to obtain object portions. These points are not limited to a hand or other control object in a foreground; the points in 3D space can include stationary background points, especially edges. The model is populated with the object portions.
When the sensor moves (e.g., the wearer of a wearable headset turns her head) successive stereo-image information is analyzed for points in 3D space. Correspondences are made between two sets of points in 3D space chosen from the current view of the scene and the points in the world model to determine a relative motion of the object portions. The relative motion of the object portions reflects actual motion of the sensor.
Differences in points are used to determine an inverse
between model position and new position of object portions. In this affine transform, RT describes the rotational portions of motions between camera and object coordinate systems, and T describes the translational portions thereof.
The system then applies an inverse transformation of the object corresponding to the actual transformation of the device (since the sensor, not the background object moves) to determine the translation and rotation of the camera. Of course, this method is most effective when background objects are not moving relative to the world frame (i.e., in free space).
The model can be updated whenever we detect new points not previously seen in the model. The new points are added to the model so that it continually grows.
Of course, embodiments can be created in which (1) device cameras are considered stationary and the world model is considered to move; or (2) the device cameras are considered to be moving and the world model is considered stationary.
The use of a world model described above does not require any gyroscopic, accelerometer or magnetometer sensors, since the same cameras in a single unit (even the same cameras) can sense both the background objects and the control object. In any view where the system can recognize elements of the model, it can re-localize its position and orientation relative to the model and without drifting from sensor data. In some embodiments, motion sensors can be used to seed the frame to frame transformation and therefore bring correspondences between the rendered virtual or augmented reality scenery closer to the sensed control object, making the result less ambiguous (i.e., the system would have an easier time determining what motion of the head had occurred to result in the change in view from that of the model). In a yet further embodiment, sensor data could be used to filter the solution above so that the motions appear to be smoother from frame to frame, while still remaining impervious to drift caused by relying upon motion sensors alone.
At action 610, a first positional information of a portable or movable sensor is determined with respect to a fixed point at a first time. In one implementation, first positional information with respect to a fixed point at a first time t=t0 is determined from one or motion sensors integrated with, or coupled to, a device including the portable or movable sensor. For example, an accelerometer can be affixed to device 101 of
At action 620, a second positional information of the sensor is determined with respect to the fixed point at a second time t=t1.
At action 630, difference information between the first positional information and the second positional information is determined.
At action 640, movement information for the sensor with respect to the fixed point is computed based upon the difference information. Movement information for the sensor with respect to the fixed point is can be determined using techniques such as discussed above with reference to equations (2).
At action 650, movement information for the sensor is applied to apparent environment information sensed by the sensor to remove motion of the sensor therefrom to yield actual environment information. Motion of the sensor can be removed using techniques such as discussed above with reference to
At action 660, actual environment information is communicated.
At action 710, positional information of an object portion at the first time and the second time are captured.
At action 720, object portion movement information relative to the fixed point at the first time and the second time is computed based upon the difference information and the movement information for the sensor.
At action 730, object portion movement information is communicated to a system.
Some implementations will be applied to virtual reality or augmented reality applications. For example, and with reference to
At action 910, a virtual device is projected to a user. Projection can include an image or other visual representation of an object. For example, visual projection mechanism 120 of
At action 920, using an accelerometer, moving reference frame information of a head mounted device (or hand-held mobile device) relative to a fixed point on a human body is determined.
At action 930, body portion movement information is captured. Motion of the body portion can be detected via sensors 108, 110 using techniques such as discussed above with reference to
At action 940, control information is extracted based partly on the body portion movement information with respect to the moving reference frame information. For example, repeatedly determining movement information for the sensor and the object portion at successive times and analyzing a sequence of movement information can be used to determine a path of the object portion with respect to the fixed point. For example, a 3D model of the object portion can be constructed from image sensor output and used to track movement of the object over a region of space. The path can be compared to a plurality of path templates and identifying a template that best matches the path. The template that best matches the path control information to a system can be used to provide the control information to the system. For example, paths recognized from an image sequence (or audio signal, or both) can indicate a trajectory of the object portion such as a gesture of a body portion.
At action 950, control information can be communicated to a system. For example, a control information such as a command to turn the page of a virtual book can be sent based upon detecting a swipe along the desk surface of the reader's finger. Many other physical or electronic objects, impressions, feelings, sensations and so forth can be projected onto surface 116 (or in proximity thereto) to augment the virtual device experience and applications are limited only by the imagination of the user.
At action 1010, using an accelerometer, moving reference frame information of a head mounted device (or hand-held mobile device) relative to a fixed point on a human body is determined.
At action 1020, body portion movement information is captured.
At action 1030, control information is extracted based partly on the body portion movement information with respect to the moving reference frame information.
At action 1040, the control information is communicated to a system.
At action 1110, a video stream including a sequence of images of a scene in the real world is captured using e.g., capturing video with one or more cameras on a head mounted device (HMD) having a set of RGB pixels and a set of IR pixels. In one implementation, a camera or cameras having pixels sensitive to visible light and IR light are used.
At action 1120, the video stream images can be integrated with at least one virtual object to form a presentation output. In one implementation, ambient lighting conditions are determined and information from the set of RGB pixels is displayed in normal lighting conditions and information from the set of IR pixels is displayed in dark lighting conditions. In one implementation, the device 101 dynamically switches between input from a first set of cameras having pixels sensitive to visible light and a second set of cameras having pixels sensitive to IR light based on ambient light conditions. In one implementation, information from the set of IR pixels is used to enhance the information from the set of RGB pixels for low-light conditions.
In one implementation, information from the IR sensitive pixels is separated out for processing to recognize gestures; while the information from the RGB sensitive pixels is provided to presentation I/F 120 as a live video feed; thereby enabling conserving bandwidth to the gesture recognition processing.
At action 1130, the presentation output is displayed to a user of the wearable sensor system. In one implementation, a pass-through of live video is provided to the presentation I/F 120 for display to the user. In one implementation, the user can selectively switch between video information captured using RGB sensitive pixels, video information captured using IR sensitive pixels, or combinations of both types of information for display.
At action-1210 a video stream including a sequence of images of a scene in the real world is captured using one or more cameras on a head mounted device (HMD) having a set of RGB pixels and a set of IR pixels.
At action 1220, information from the IR sensitive pixels is separated out for processing to recognize gestures. The images can be correlated to construct a 3-D model(s) of real world object(s), including position and shape. A succession of images can be analyzed to model motion(s) and/or position(s) of object(s) surrounding the user.
At action 1230, information from the RGB sensitive pixels is provided as a live video feed to a presentation output across multiple images.
At action 1240, the presentation output is displayed to a user of the wearable sensor system. In one implementation, a virtual object or objects can be integrated with the video stream images to form the presentation output.
At action 1310, a sensor attached to the head mounted device is used to sense a first position of at least one hand, at a first time, in a first reference frame of a three-dimensional (3D) sensory space. In one implementation, tracking the hand includes tracking fingers of the hand.
At action 1320, a second position of the hand and at least some of the fingers is sensed at a second time.
At action 1330, responsive to repositioning of the head mounted device and the attached sensor due to body movement, motion of the attached sensor is sensed and a second reference frame that accounts for repositioning of the attached sensor is calculated.
At action 1340, a transformation is calculated, which renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame.
At action 1350, the first and second positions of the hand are transformed into the common reference frame. In one implementation, the common reference frame has a fixed point of reference and an initial orientation of axes.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, the attached sensor is integrated into a unit with the virtual reality head mounted device. In other implementations, the transforming the first and second positions of the hand into the common reference frame further includes applying at least one affine transformation.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed. In the interest of conciseness, the combinations of features disclosed in this application are not individually enumerated and are not repeated with each base set of features. The reader will understand how features identified in this section can readily be combined with sets of base features identified as implementations in sections of this application.
Other implementations can include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation can include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
At action 1410, at least one camera is used to capture a sequence of images of a physical real environment in convergence with an immersive virtual environment during an augmented hybrid experience. In some implementations, the camera is mounted on a head mounted device (HMD), which provides the augmented hybrid experience.
Convergence between a real environment and an immersive virtual environment can be for example temporal, spatial, or temporal and spatial. For example, a spatial convergence can include display of real and virtual objects related to the space in which the viewer is casting their gaze, such as a virtual “application” and a real cola can made available for interaction with an otherwise real desk within the field of view of the viewer. Temporal convergence can include display of something going on in another space (e.g., behind the viewer, or in another room) at the same time using a window or panel (e.g., a virtual rear view mirror) embedded within the visual field of view of the viewer.” An example of a convergence that is spatial but not temporal would be a ghost story application that plays scenes from a haunted house's past depending upon the room that the viewer is in. Other examples consistent with these and other forms of convergence are also contemplated in other implementations.
At action 1420, the immersive virtual environment is automatically interrupted and a live feed (video and/or audio information) of the physical real environment is automatically substituted in the augmented hybrid experience in response to a command input. In one implementation, the command input is automatically triggered in response to a free-form gesture. In another implementation, the command input is automatically triggered in response to an audio signal. In yet another implementation, the command input is automatically triggered in response to a vibrational signal. In a further implementation, the command input is automatically triggered in response to an optical signal.
At action 1430, at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment are simultaneously manipulated during the augmented hybrid experience in response to a command input.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed. In the interest of conciseness, the combinations of features disclosed in this application are not individually enumerated and are not repeated with each base set of features. The reader will understand how features identified in this section can readily be combined with sets of base features identified as implementations in sections of this application.
The method also includes, at a first time t0, using a sensor attached to the HMD, sensing a first position of at least one physical object in a first reference frame of the physical real environment, including tracking portions of the physical object. It also includes causing display of a first virtual representation of the physical object at the first position, wherein the first virtual representation is rendered in the immersive virtual environment of the HMD. The method further includes, at a second time t1, sensing, in the physical real environment, a second position of the physical object and at least some of the portions different from the first position responsive to repositioning of the physical real environment and the attached sensor due to body movement of a user wearing the HMD, wherein the physical object has not moved in the physical real environment between t0 and t1. It also includes causing display of a second virtual representation of the physical object at an actual second position.
In some implementations, causing display of a second virtual representation of the physical object at an actual second position further includes sensing motion of the attached sensor and calculating a second reference frame that accounts for repositioning of the attached sensor, calculating a transformation that renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame, and transforming the first and second positions of the physical object into the common reference frame, wherein the common reference frame has a fixed point of reference and an initial orientation of axes, whereby the sensed second position is transformed to the actual second position.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, transforming the first and second positions of the physical object into the common reference frame further includes applying an affine transformation.
In other implementations, the method further includes determining the orientation of the physical object at the first position with respect to the first reference frame and causing the display of the physical object accordingly.
In yet other implementations, the method also includes determining the orientation of the physical object at the second position with respect to the second reference frame and causing the display of the physical object accordingly.
Other implementations can include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation can include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
At action 1510, at least one camera is used to capture a sequence of images of a physical real environment in convergence with an immersive virtual environment during an augmented hybrid experience. In some implementations, the camera is mounted on a head mounted device (HMD), which provides the augmented hybrid experience.
Convergence between a real environment and an immersive virtual environment can be for example temporal, spatial, or temporal and spatial. For example, a spatial convergence can include display of real and virtual objects related to the space in which the viewer is casting their gaze, such as a virtual “application” and a real cola can made available for interaction with an otherwise real desk within the field of view of the viewer. Temporal convergence can include display of something going on in another space (e.g., behind the viewer, or in another room) at the same time using a window or panel (e.g., a virtual rear view mirror) embedded within the visual field of view of the viewer.” An example of a convergence that is spatial but not temporal would be a ghost story application that plays scenes from a haunted house's past depending upon the room that the viewer is in. Other examples consistent with these and other forms of convergence are also contemplated in other implementations.
At action 1520, in response to a command input, the immersive virtual environment is automatically interrupted and at least one virtual object of the immersive virtual environment is automatically superimposed in the physical real environment to generate data representing a mixed reality environment during the augmented hybrid experience. The mixed reality environment includes at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment.
In one implementation, the command input is automatically triggered in response to a free-form gesture. In another implementation, the command input is automatically triggered in response to an audio signal. In yet another implementation, the command input is automatically triggered in response to a vibrational signal. In a further implementation, the command input is automatically triggered in response to an optical signal.
At action 1530, at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment are simultaneously manipulated during the augmented hybrid experience in response to a command input.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed.
The method also includes, at a first time t0, using a sensor attached to the HMD, sensing a first position of at least one physical object in a first reference frame of the physical real environment, including tracking portions of the physical object. It also includes causing display of a first virtual representation of the physical object at the first position, wherein the first virtual representation is rendered in the immersive virtual environment of the HMD. The method further includes, at a second time t1, sensing, in the physical real environment, a second position of the physical object and at least some of the portions different from the first position responsive to repositioning of the physical real environment and the attached sensor due to body movement of a user wearing the HMD, wherein the physical object has not moved in the physical real environment between t0 and t1. It also includes causing display of a second virtual representation of the physical object at an actual second position.
In some implementations, causing display of a second virtual representation of the physical object at an actual second position further includes sensing motion of the attached sensor and calculating a second reference frame that accounts for repositioning of the attached sensor, calculating a transformation that renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame, and transforming the first and second positions of the physical object into the common reference frame, wherein the common reference frame has a fixed point of reference and an initial orientation of axes, whereby the sensed second position is transformed to the actual second position.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, transforming the first and second positions of the physical object into the common reference frame further includes applying an affine transformation.
In other implementations, the method further includes determining the orientation of the physical object at the first position with respect to the first reference frame and causing the display of the physical object accordingly.
In yet other implementations, the method also includes determining the orientation of the physical object at the second position with respect to the second reference frame and causing the display of the physical object accordingly.
Other implementations can include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation can include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
At action 1610, at least one camera mounted to a head mounted device (HMD) is used to capture a sequence of images of a physical real environment in convergence with an immersive virtual environment during an augmented hybrid experience generated by the HMD.
Convergence between a real environment and an immersive virtual environment can be for example temporal, spatial, or temporal and spatial. For example, a spatial convergence can include display of real and virtual objects related to the space in which the viewer is casting their gaze, such as a virtual “application” and a real cola can made available for interaction with an otherwise real desk within the field of view of the viewer. Temporal convergence can include display of something going on in another space (e.g., behind the viewer, or in another room) at the same time using a window or panel (e.g., a virtual rear view mirror) embedded within the visual field of view of the viewer.” An example of a convergence that is spatial but not temporal would be a ghost story application that plays scenes from a haunted house's past depending upon the room that the viewer is in. Other examples consistent with these and other forms of convergence are also contemplated in other implementations.
At action 1620, a pass through mode of the HMD is automatically triggered in response to a command input. The pass through mode interrupts the immersive virtual environment and substitutes a live feed (video and/or audio information) of the physical real environment in the augmented hybrid experience.
At action 1630, at least one virtual object of the immersive virtual environment and at least one physical object of the physical real environment are simultaneously manipulated during the augmented hybrid experience in response to a command input.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed.
The method also includes, at a first time t0, using a sensor attached to the HMD, sensing a first position of at least one physical object in a first reference frame of the physical real environment, including tracking portions of the physical object. It also includes causing display of a first virtual representation of the physical object at the first position, wherein the first virtual representation is rendered in the immersive virtual environment of the HMD. The method further includes, at a second time t1, sensing, in the physical real environment, a second position of the physical object and at least some of the portions different from the first position responsive to repositioning of the physical real environment and the attached sensor due to body movement of a user wearing the HMD, wherein the physical object has not moved in the physical real environment between t0 and t1. It also includes causing display of a second virtual representation of the physical object at an actual second position.
In some implementations, causing display of a second virtual representation of the physical object at an actual second position further includes sensing motion of the attached sensor and calculating a second reference frame that accounts for repositioning of the attached sensor, calculating a transformation that renders the first position in the first reference frame and the second position in the second reference frame into a common reference frame, and transforming the first and second positions of the physical object into the common reference frame, wherein the common reference frame has a fixed point of reference and an initial orientation of axes, whereby the sensed second position is transformed to the actual second position.
In one implementation, the common reference frame is a world reference frame that does not change as the attached sensor is repositioned. In another implementation, the common reference frame is the second reference frame.
In some implementations, transforming the first and second positions of the physical object into the common reference frame further includes applying an affine transformation.
In other implementations, the method further includes determining the orientation of the physical object at the first position with respect to the first reference frame and causing the display of the physical object accordingly.
In yet other implementations, the method also includes determining the orientation of the physical object at the second position with respect to the second reference frame and causing the display of the physical object accordingly.
Other implementations can include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation can include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
This digital immersion results in a situational awareness loss, which can cause the user 1704 to accidently collide with refrigerator 1706. The technology disclosed solves the technical problem of situational awareness loss in an immersive virtual environment (like 1708) by allowing user 1704 to seamlessly switch from an immersive virtual environment (like 1708) to a physical real environment (like 1702).
In some implementations, motion capture is achieved using an optical motion-capture system. In some implementations, object position tracking is supplemented by measuring a time difference of arrival (TDOA) of audio signals at the contact vibrational sensors and mapping surface locations that satisfy the TDOA, analyzing at least one image, captured by a camera of the optical motion-capture system, of the object in contact with the surface, and using the image analysis to select among the mapped TDOA surface locations as a surface location of the contact.
Reference may be had to the following sources, incorporated herein by reference, for further information regarding computational techniques:
While the disclosed technology has been described with respect to specific implementations, one skilled in the art will recognize that numerous modifications are possible. The number, types and arrangement of cameras and sensors can be varied. The cameras' capabilities, including frame rate, spatial resolution, and intensity resolution, can also be varied as desired. The sensors' capabilities, including sensitively levels and calibration, can also be varied as desired. Light sources are optional and can be operated in continuous or pulsed mode. The systems described herein provide images and audio signals to facilitate tracking movement of an object, and this information can be used for numerous purposes, of which position and/or motion detection is just one among many possibilities.
Threshold cutoffs and other specific criteria for distinguishing object from background can be adapted for particular hardware and particular environments. Frequency filters and other specific criteria for distinguishing visual or audio signals from background noise can be adapted for particular cameras or sensors and particular devices. In some implementations, the system can be calibrated for a particular environment or application, e.g., by adjusting frequency filters, threshold criteria, and so on.
Any type of object can be the subject of motion capture using these techniques, and various aspects of the implementation can be optimized for a particular object. For example, the type and positions of cameras and/or other sensors can be selected based on the size of the object whose motion is to be captured, the space in which motion is to be captured, and/or the medium of the surface through which audio signals propagate. Analysis techniques in accordance with implementations of the technology disclosed can be implemented as algorithms in any suitable computer language and executed on programmable processors. Alternatively, some or all of the algorithms can be implemented in fixed-function logic circuits, and such circuits can be designed and fabricated using conventional or other tools.
Computer programs incorporating various features of the technology disclosed may be encoded on various computer readable storage media; suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or DVD (digital versatile disk), flash memory, and any other non-transitory medium capable of holding data in a computer-readable form. Computer-readable storage media encoded with the program code may be packaged with a compatible device or provided separately from other devices. In addition program code may be encoded and transmitted via wired optical, and/or wireless networks conforming to a variety of protocols, including the Internet, thereby allowing distribution, e.g., via Internet download.
Thus, although the disclosed technology has been described with respect to specific implementations, it will be appreciated that the disclosed technology is intended to cover all modifications and equivalents within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 17/384,699, entitled “WEARABLE AUGMENTED REALITY DEVICES WITH OBJECT DETECTION AND TRACKING”, filed Jul. 23, 2021, which is a continuation of U.S. patent application Ser. No. 16/823,294, entitled, “WEARABLE AUGMENTED REALITY DEVICES WITH OBJECT DETECTION AND TRACKING”, filed Mar. 18, 2020, which is a continuation of U.S. patent application Ser. No. 15/681,251, entitled, “WEARABLE AUGMENTED REALITY DEVICES WITH OBJECT DETECTION AND TRACKING”, filed Aug. 18, 2017, which is a continuation of U.S. patent application Ser. No. 14/718,002, entitled, “WEARABLE AUGMENTED REALITY DEVICES WITH OBJECT DETECTION AND TRACKING”, filed May 20, 2015, which claims the benefit of U.S. Provisional Patent Application No. 62/001,044, entitled, “WEARABLE AUGMENTED REALITY DEVICES WITH OBJECT DETECTION AND TRACKING,” filed on May 20, 2014. The non-provisional and provisional applications are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2665041 | Maffucci | Jan 1954 | A |
4175862 | DiMatteo et al. | Nov 1979 | A |
4521831 | Thayer | Jun 1985 | A |
4734939 | Copp | Apr 1988 | A |
4876455 | Sanderson et al. | Oct 1989 | A |
4879659 | Bowlin et al. | Nov 1989 | A |
4893223 | Arnold | Jan 1990 | A |
5038258 | Koch et al. | Aug 1991 | A |
5134661 | Reinsch | Jul 1992 | A |
5282067 | Liu | Jan 1994 | A |
5434617 | Bianchi | Jul 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5574511 | Yang et al. | Nov 1996 | A |
5581276 | Cipolla et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5659475 | Brown | Aug 1997 | A |
5691737 | Ito et al. | Nov 1997 | A |
5742263 | Wang et al. | Apr 1998 | A |
5900849 | Gallery | May 1999 | A |
5900863 | Numazaki | May 1999 | A |
5940538 | Spiegel et al. | Aug 1999 | A |
6002808 | Freeman | Dec 1999 | A |
6031161 | Baltenberger | Feb 2000 | A |
6031661 | Tanaami | Feb 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6075895 | Qiao et al. | Jun 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6154558 | Hsieh | Nov 2000 | A |
6181343 | Lyons | Jan 2001 | B1 |
6184326 | Razavi et al. | Feb 2001 | B1 |
6184926 | Khosravi et al. | Feb 2001 | B1 |
6195104 | Lyons | Feb 2001 | B1 |
6204852 | Kumar et al. | Mar 2001 | B1 |
6252598 | Segen | Jun 2001 | B1 |
6263091 | Jain et al. | Jul 2001 | B1 |
6346933 | Lin | Feb 2002 | B1 |
6417970 | Travers et al. | Jul 2002 | B1 |
6421453 | Kanevsky et al. | Jul 2002 | B1 |
6463402 | Bennett et al. | Oct 2002 | B1 |
6492986 | Metaxas et al. | Dec 2002 | B1 |
6493041 | Hanko et al. | Dec 2002 | B1 |
6498628 | Iwamura | Dec 2002 | B2 |
6578203 | Anderson, Jr. et al. | Jun 2003 | B1 |
6603867 | Sugino et al. | Aug 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6674877 | Jojic et al. | Jan 2004 | B1 |
6702494 | Dumler et al. | Mar 2004 | B2 |
6734911 | Lyons | May 2004 | B1 |
6738424 | Allmen et al. | May 2004 | B1 |
6771294 | Pulli et al. | Aug 2004 | B1 |
6798628 | Macbeth | Sep 2004 | B1 |
6804654 | Kobylevsky et al. | Oct 2004 | B2 |
6804656 | Rosenfeld et al. | Oct 2004 | B1 |
6814656 | Rodriguez | Nov 2004 | B2 |
6819796 | Hong et al. | Nov 2004 | B2 |
6901170 | Terada et al. | May 2005 | B1 |
6919880 | Morrison et al. | Jul 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
6993157 | Oue et al. | Jan 2006 | B1 |
7050606 | Paul et al. | May 2006 | B2 |
7152024 | Marschner et al. | Dec 2006 | B2 |
7213707 | Hubbs et al. | May 2007 | B2 |
7215828 | Luo | May 2007 | B2 |
7236611 | Roberts et al. | Jun 2007 | B2 |
7244233 | Krantz et al. | Jul 2007 | B2 |
7257237 | Luck et al. | Aug 2007 | B1 |
7259873 | Sikora et al. | Aug 2007 | B2 |
D552152 | Almond | Oct 2007 | S |
7289645 | Yamamoto et al. | Oct 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7483049 | Aman et al. | Jan 2009 | B2 |
7519223 | Dehlin et al. | Apr 2009 | B2 |
7532206 | Morrison et al. | May 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7542586 | Johnson | Jun 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7606417 | Steinberg et al. | Oct 2009 | B2 |
7646372 | Marks et al. | Jan 2010 | B2 |
7656372 | Sato et al. | Feb 2010 | B2 |
7665041 | Wilson et al. | Feb 2010 | B2 |
7692625 | Morrison et al. | Apr 2010 | B2 |
7743348 | Robbins et al. | Jun 2010 | B2 |
D620514 | Kim et al. | Jul 2010 | S |
D627815 | Oba | Nov 2010 | S |
7831932 | Josephsoon et al. | Nov 2010 | B2 |
7840031 | Albertson et al. | Nov 2010 | B2 |
7861188 | Josephsoon et al. | Dec 2010 | B2 |
7940885 | Stanton et al. | May 2011 | B2 |
7948493 | Klefenz et al. | May 2011 | B2 |
7961174 | Markovic et al. | Jun 2011 | B1 |
7961934 | Thrun et al. | Jun 2011 | B2 |
7971156 | Albertson et al. | Jun 2011 | B2 |
7980885 | Gattwinkel et al. | Jul 2011 | B2 |
8023698 | Niwa et al. | Sep 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8045825 | Shimoyama et al. | Oct 2011 | B2 |
8064704 | Kim et al. | Nov 2011 | B2 |
8085339 | Marks | Dec 2011 | B2 |
8086971 | Radivojevic et al. | Dec 2011 | B2 |
8111239 | Pryor et al. | Feb 2012 | B2 |
8112719 | Hsu et al. | Feb 2012 | B2 |
8126985 | Kandekar et al. | Feb 2012 | B1 |
D656175 | Fong | Mar 2012 | S |
8144233 | Fukuyama | Mar 2012 | B2 |
8185176 | Mangat et al. | May 2012 | B2 |
8213707 | Li et al. | Jul 2012 | B2 |
8218858 | Gu | Jul 2012 | B2 |
8229134 | Duraiswami et al. | Jul 2012 | B2 |
8235529 | Raffle et al. | Aug 2012 | B1 |
8244233 | Chang et al. | Aug 2012 | B2 |
8249345 | Wu et al. | Aug 2012 | B2 |
8270669 | Aichi et al. | Sep 2012 | B2 |
8289162 | Mooring et al. | Oct 2012 | B2 |
8290208 | Kurtz et al. | Oct 2012 | B2 |
8304727 | Lee et al. | Nov 2012 | B2 |
8319832 | Nagata et al. | Nov 2012 | B2 |
8363010 | Nagata | Jan 2013 | B2 |
8375473 | Celona et al. | Feb 2013 | B2 |
8395600 | Kawashima et al. | Mar 2013 | B2 |
8396252 | El Dokor | Mar 2013 | B2 |
8432377 | Newton | Apr 2013 | B2 |
8471848 | Tschesnok | Jun 2013 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
D689539 | Zaletel et al. | Sep 2013 | S |
8542320 | Berestov et al. | Sep 2013 | B2 |
8553037 | Smith et al. | Oct 2013 | B2 |
8582809 | Halimeh et al. | Nov 2013 | B2 |
8593417 | Kawashima et al. | Nov 2013 | B2 |
8605202 | Muijs et al. | Dec 2013 | B2 |
8631355 | Murillo et al. | Jan 2014 | B2 |
8638989 | Holz | Jan 2014 | B2 |
8659594 | Kim et al. | Feb 2014 | B2 |
8659658 | Vassigh et al. | Feb 2014 | B2 |
8661571 | Teetzel et al. | Mar 2014 | B1 |
8693731 | Holz et al. | Apr 2014 | B2 |
8738523 | Sanchez et al. | May 2014 | B1 |
8744122 | Salgian et al. | Jun 2014 | B2 |
8744645 | Vaghefinazari et al. | Jun 2014 | B1 |
8751979 | Socha | Jun 2014 | B1 |
8768022 | Miga et al. | Jul 2014 | B2 |
8773512 | Rafii | Jul 2014 | B1 |
8781171 | King et al. | Jul 2014 | B2 |
8781234 | Zhang et al. | Jul 2014 | B2 |
8817087 | Weng et al. | Aug 2014 | B2 |
8824749 | Leyvand et al. | Sep 2014 | B2 |
8842084 | Andersson et al. | Sep 2014 | B2 |
8843857 | Berkes et al. | Sep 2014 | B2 |
8872914 | Gobush | Oct 2014 | B2 |
D717361 | Nikaido | Nov 2014 | S |
8878749 | Wu et al. | Nov 2014 | B1 |
8891868 | Ivanchenko | Nov 2014 | B1 |
8907982 | Zontrop et al. | Dec 2014 | B2 |
8922590 | Luckett, Jr. et al. | Dec 2014 | B1 |
8929609 | Padovani et al. | Jan 2015 | B2 |
8930852 | Chen et al. | Jan 2015 | B2 |
8942881 | Hobbs et al. | Jan 2015 | B2 |
8954340 | Sanchez et al. | Feb 2015 | B2 |
8957857 | Lee et al. | Feb 2015 | B2 |
9014414 | Katano et al. | Apr 2015 | B2 |
9056396 | Linnell | Jun 2015 | B1 |
9070019 | Holz | Jun 2015 | B2 |
9119670 | Yang et al. | Sep 2015 | B2 |
9122354 | Sharma | Sep 2015 | B2 |
9124778 | Crabtree | Sep 2015 | B1 |
9170674 | Forutanpour et al. | Oct 2015 | B2 |
9213185 | Starner et al. | Dec 2015 | B1 |
9274742 | Phillips | Mar 2016 | B2 |
D756443 | Ju et al. | May 2016 | S |
9459697 | Bedikian et al. | Oct 2016 | B2 |
9600935 | Cohen | Mar 2017 | B2 |
9741169 | Holz | Aug 2017 | B1 |
9754167 | Holz et al. | Sep 2017 | B1 |
9766855 | Lapidot et al. | Sep 2017 | B2 |
9868449 | Holz et al. | Jan 2018 | B1 |
10043320 | Holz et al. | Aug 2018 | B2 |
10318100 | Abercrombie et al. | Jun 2019 | B2 |
10475249 | Holz et al. | Nov 2019 | B2 |
10600248 | Holz | Mar 2020 | B2 |
11080937 | Holz | Aug 2021 | B2 |
11538224 | Holz et al. | Dec 2022 | B2 |
11561519 | Gordon et al. | Jan 2023 | B2 |
11676349 | Holz | Jun 2023 | B2 |
20010044858 | Rekimoto | Nov 2001 | A1 |
20010052985 | Ono | Dec 2001 | A1 |
20020008139 | Albertelli | Jan 2002 | A1 |
20020008211 | Kask | Jan 2002 | A1 |
20020041327 | Hildreth et al. | Apr 2002 | A1 |
20020080094 | Biocca et al. | Jun 2002 | A1 |
20020105484 | Navab et al. | Aug 2002 | A1 |
20020107637 | Okamura et al. | Aug 2002 | A1 |
20030053658 | Pavlidis | Mar 2003 | A1 |
20030053659 | Pavlidis et al. | Mar 2003 | A1 |
20030076996 | Neumann et al. | Apr 2003 | A1 |
20030081141 | Mazzapica | May 2003 | A1 |
20030123703 | Pavlidis et al. | Jul 2003 | A1 |
20030152289 | Luo | Aug 2003 | A1 |
20030202697 | Simard et al. | Oct 2003 | A1 |
20040103111 | Miller et al. | May 2004 | A1 |
20040125228 | Dougherty | Jul 2004 | A1 |
20040125984 | Ito et al. | Jul 2004 | A1 |
20040145809 | Brenner | Jul 2004 | A1 |
20040155877 | Hong et al. | Aug 2004 | A1 |
20040212725 | Raskar | Oct 2004 | A1 |
20050007673 | Chaoulov et al. | Jan 2005 | A1 |
20050063564 | Yamamoto et al. | Mar 2005 | A1 |
20050068518 | Baney et al. | Mar 2005 | A1 |
20050094019 | Grosvenor et al. | May 2005 | A1 |
20050131607 | Breed | Jun 2005 | A1 |
20050156888 | Xie et al. | Jul 2005 | A1 |
20050168578 | Gobush | Aug 2005 | A1 |
20050210105 | Hirata et al. | Sep 2005 | A1 |
20050236558 | Nabeshima et al. | Oct 2005 | A1 |
20050238201 | Shamaie | Oct 2005 | A1 |
20060006235 | Kurzweil et al. | Jan 2006 | A1 |
20060017807 | Lee et al. | Jan 2006 | A1 |
20060028656 | Venkatesh et al. | Feb 2006 | A1 |
20060029296 | King et al. | Feb 2006 | A1 |
20060034545 | Mattes et al. | Feb 2006 | A1 |
20060050979 | Kawahara | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060072105 | Wagner | Apr 2006 | A1 |
20060098899 | King et al. | May 2006 | A1 |
20060204040 | Freeman et al. | Sep 2006 | A1 |
20060210112 | Cohen et al. | Sep 2006 | A1 |
20060262421 | Matsumoto et al. | Nov 2006 | A1 |
20060273984 | Wanda et al. | Dec 2006 | A1 |
20060290950 | Platt et al. | Dec 2006 | A1 |
20070014466 | Baldwin | Jan 2007 | A1 |
20070042346 | Weller | Feb 2007 | A1 |
20070057764 | Sato et al. | Mar 2007 | A1 |
20070086621 | Aggarwal et al. | Apr 2007 | A1 |
20070130547 | Boillot | Jun 2007 | A1 |
20070203904 | Ren et al. | Aug 2007 | A1 |
20070206719 | Suryanarayanan et al. | Sep 2007 | A1 |
20070230929 | Niwa et al. | Oct 2007 | A1 |
20070238956 | Haras et al. | Oct 2007 | A1 |
20080002860 | Super et al. | Jan 2008 | A1 |
20080013826 | Hillis et al. | Jan 2008 | A1 |
20080019576 | Senftner et al. | Jan 2008 | A1 |
20080019589 | Yoon et al. | Jan 2008 | A1 |
20080030429 | Hailpern et al. | Feb 2008 | A1 |
20080031492 | Lanz | Feb 2008 | A1 |
20080056752 | Denton et al. | Mar 2008 | A1 |
20080064954 | Adams et al. | Mar 2008 | A1 |
20080106637 | Nakao et al. | May 2008 | A1 |
20080106746 | Shpunt et al. | May 2008 | A1 |
20080110994 | Knowles et al. | May 2008 | A1 |
20080118091 | Serfaty et al. | May 2008 | A1 |
20080126937 | Pachet | May 2008 | A1 |
20080170776 | Albertson et al. | Jul 2008 | A1 |
20080187175 | Kim et al. | Aug 2008 | A1 |
20080244468 | Nishihara et al. | Oct 2008 | A1 |
20080246759 | Summers | Oct 2008 | A1 |
20080273764 | Scholl | Nov 2008 | A1 |
20080278589 | Thorn | Nov 2008 | A1 |
20080291160 | Rabin | Nov 2008 | A1 |
20080304740 | Sun et al. | Dec 2008 | A1 |
20080317292 | Baker et al. | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090002489 | Yang et al. | Jan 2009 | A1 |
20090038056 | Bobbin et al. | Feb 2009 | A1 |
20090093307 | Miyaki | Apr 2009 | A1 |
20090102840 | Li | Apr 2009 | A1 |
20090103780 | Nishihara et al. | Apr 2009 | A1 |
20090116742 | Nishihara | May 2009 | A1 |
20090122146 | Zalewski et al. | May 2009 | A1 |
20090153655 | Ike et al. | Jun 2009 | A1 |
20090203993 | Mangat et al. | Aug 2009 | A1 |
20090203994 | Mangat et al. | Aug 2009 | A1 |
20090217211 | Hildreth et al. | Aug 2009 | A1 |
20090239587 | Negron et al. | Sep 2009 | A1 |
20090257623 | Tang et al. | Oct 2009 | A1 |
20090274339 | Cohen et al. | Nov 2009 | A9 |
20090278915 | Kramer et al. | Nov 2009 | A1 |
20090309710 | Kakinami | Dec 2009 | A1 |
20090315837 | Geiger | Dec 2009 | A1 |
20090323121 | Valkenburg et al. | Dec 2009 | A1 |
20100013832 | Xiao et al. | Jan 2010 | A1 |
20100020078 | Shpunt | Jan 2010 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100026963 | Faulstich | Feb 2010 | A1 |
20100027845 | Kim et al. | Feb 2010 | A1 |
20100046842 | Conwell | Feb 2010 | A1 |
20100053164 | Imai et al. | Mar 2010 | A1 |
20100053209 | Rauch et al. | Mar 2010 | A1 |
20100053612 | Ou-Yang et al. | Mar 2010 | A1 |
20100058252 | Ko | Mar 2010 | A1 |
20100066737 | Liu | Mar 2010 | A1 |
20100066975 | Rehnstrom | Mar 2010 | A1 |
20100091110 | Hildreth | Apr 2010 | A1 |
20100118123 | Freedman et al. | May 2010 | A1 |
20100121189 | Ma et al. | May 2010 | A1 |
20100125815 | Wang et al. | May 2010 | A1 |
20100127995 | Rigazio et al. | May 2010 | A1 |
20100141762 | Siann et al. | Jun 2010 | A1 |
20100153457 | Grant | Jun 2010 | A1 |
20100158372 | Kim et al. | Jun 2010 | A1 |
20100175172 | Dempsey et al. | Jul 2010 | A1 |
20100177929 | Kurtz et al. | Jul 2010 | A1 |
20100194863 | Lopes et al. | Aug 2010 | A1 |
20100199229 | Kipman et al. | Aug 2010 | A1 |
20100199230 | Latta et al. | Aug 2010 | A1 |
20100199232 | Mistry et al. | Aug 2010 | A1 |
20100201880 | Iwamura | Aug 2010 | A1 |
20100208942 | Porter et al. | Aug 2010 | A1 |
20100219934 | Matsumoto | Sep 2010 | A1 |
20100222102 | Rodriguez | Sep 2010 | A1 |
20100264833 | Van Endert et al. | Oct 2010 | A1 |
20100277411 | Yee et al. | Nov 2010 | A1 |
20100296698 | Lien et al. | Nov 2010 | A1 |
20100302015 | Kipman et al. | Dec 2010 | A1 |
20100302357 | Hsu et al. | Dec 2010 | A1 |
20100303298 | Marks et al. | Dec 2010 | A1 |
20100306712 | Snook et al. | Dec 2010 | A1 |
20100309097 | Raviv et al. | Dec 2010 | A1 |
20110007072 | Khan et al. | Jan 2011 | A1 |
20110025818 | Gallmeier et al. | Feb 2011 | A1 |
20110026765 | Ivanich et al. | Feb 2011 | A1 |
20110043806 | Guetta et al. | Feb 2011 | A1 |
20110057875 | Shigeta et al. | Mar 2011 | A1 |
20110066984 | Li | Mar 2011 | A1 |
20110080470 | Kuno et al. | Apr 2011 | A1 |
20110080490 | Clarkson et al. | Apr 2011 | A1 |
20110090252 | Yoon et al. | Apr 2011 | A1 |
20110090407 | Friedman | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110107216 | Bi | May 2011 | A1 |
20110115486 | Frohlich et al. | May 2011 | A1 |
20110116684 | Coffman et al. | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110134112 | Koh et al. | Jun 2011 | A1 |
20110145981 | Teetzel et al. | Jun 2011 | A1 |
20110148875 | Kim et al. | Jun 2011 | A1 |
20110169726 | Holmdahl et al. | Jul 2011 | A1 |
20110173574 | Clavin et al. | Jul 2011 | A1 |
20110176146 | Alvarez Diez et al. | Jul 2011 | A1 |
20110181509 | Rautiainen et al. | Jul 2011 | A1 |
20110193778 | Lee et al. | Aug 2011 | A1 |
20110205151 | Newton et al. | Aug 2011 | A1 |
20110213664 | Osterhout et al. | Sep 2011 | A1 |
20110221672 | Osterhout et al. | Sep 2011 | A1 |
20110228978 | Chen et al. | Sep 2011 | A1 |
20110234631 | Kim et al. | Sep 2011 | A1 |
20110234840 | Klefenz et al. | Sep 2011 | A1 |
20110239354 | Celona et al. | Oct 2011 | A1 |
20110243451 | Oyaizu | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110261178 | Lo et al. | Oct 2011 | A1 |
20110267259 | Tidemand et al. | Nov 2011 | A1 |
20110279397 | Rimon et al. | Nov 2011 | A1 |
20110286676 | El Dokor | Nov 2011 | A1 |
20110289455 | Reville et al. | Nov 2011 | A1 |
20110289456 | Reville et al. | Nov 2011 | A1 |
20110291925 | Israel et al. | Dec 2011 | A1 |
20110291988 | Bamji et al. | Dec 2011 | A1 |
20110296353 | Ahmed et al. | Dec 2011 | A1 |
20110299737 | Wang et al. | Dec 2011 | A1 |
20110304600 | Yoshida | Dec 2011 | A1 |
20110304650 | Campillo et al. | Dec 2011 | A1 |
20110310007 | Margolis et al. | Dec 2011 | A1 |
20110310220 | McEldowney | Dec 2011 | A1 |
20110314427 | Sundararajan | Dec 2011 | A1 |
20120030637 | Dey et al. | Feb 2012 | A1 |
20120038637 | Marks | Feb 2012 | A1 |
20120050143 | Border et al. | Mar 2012 | A1 |
20120050157 | Latta et al. | Mar 2012 | A1 |
20120062444 | Cok et al. | Mar 2012 | A1 |
20120065499 | Chono | Mar 2012 | A1 |
20120068914 | Jacobsen et al. | Mar 2012 | A1 |
20120079420 | Arriola | Mar 2012 | A1 |
20120086624 | Thompson et al. | Apr 2012 | A1 |
20120086728 | Mcardle et al. | Apr 2012 | A1 |
20120113316 | Ueta et al. | May 2012 | A1 |
20120132682 | Mongan et al. | May 2012 | A1 |
20120143361 | Kurabayashi et al. | Jun 2012 | A1 |
20120159380 | Kocienda et al. | Jun 2012 | A1 |
20120163675 | Joo et al. | Jun 2012 | A1 |
20120170800 | da Silva Frazao et al. | Jul 2012 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120194517 | Izadi et al. | Aug 2012 | A1 |
20120204133 | Guendelman et al. | Aug 2012 | A1 |
20120223959 | Lengeling | Sep 2012 | A1 |
20120236288 | Stanley | Sep 2012 | A1 |
20120250936 | Holmgren | Oct 2012 | A1 |
20120257797 | Leyvand et al. | Oct 2012 | A1 |
20120270654 | Padovani et al. | Oct 2012 | A1 |
20120274781 | Shet et al. | Nov 2012 | A1 |
20120281873 | Brown et al. | Nov 2012 | A1 |
20120281884 | Whillock et al. | Nov 2012 | A1 |
20120293667 | Baba et al. | Nov 2012 | A1 |
20120314030 | Datta et al. | Dec 2012 | A1 |
20120320080 | Giese et al. | Dec 2012 | A1 |
20130002649 | Wu et al. | Jan 2013 | A1 |
20130014052 | Frey et al. | Jan 2013 | A1 |
20130019204 | Kotler et al. | Jan 2013 | A1 |
20130038694 | Nichani et al. | Feb 2013 | A1 |
20130044951 | Cherng et al. | Feb 2013 | A1 |
20130050425 | Im et al. | Feb 2013 | A1 |
20130080898 | Lavian et al. | Mar 2013 | A1 |
20130086531 | Sugita et al. | Apr 2013 | A1 |
20130097566 | Berglund | Apr 2013 | A1 |
20130120319 | Givon | May 2013 | A1 |
20130127980 | Haddick et al. | May 2013 | A1 |
20130148852 | Partis et al. | Jun 2013 | A1 |
20130156296 | El Dokor | Jun 2013 | A1 |
20130182079 | Holz | Jul 2013 | A1 |
20130182897 | Holz | Jul 2013 | A1 |
20130187952 | Berkovich et al. | Jul 2013 | A1 |
20130191911 | Dellinger et al. | Jul 2013 | A1 |
20130204457 | King et al. | Aug 2013 | A1 |
20130208948 | Berkovich et al. | Aug 2013 | A1 |
20130222308 | Ma et al. | Aug 2013 | A1 |
20130222640 | Baek et al. | Aug 2013 | A1 |
20130239059 | Chen et al. | Sep 2013 | A1 |
20130241832 | Rimon et al. | Sep 2013 | A1 |
20130249787 | Morimoto | Sep 2013 | A1 |
20130252691 | Alexopoulos | Sep 2013 | A1 |
20130257736 | Hou et al. | Oct 2013 | A1 |
20130258140 | Lipson et al. | Oct 2013 | A1 |
20130261871 | Hobbs et al. | Oct 2013 | A1 |
20130271370 | Wang et al. | Oct 2013 | A1 |
20130271397 | MacDougall et al. | Oct 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130293688 | Benson et al. | Nov 2013 | A1 |
20130293723 | Benson et al. | Nov 2013 | A1 |
20130300637 | Smits et al. | Nov 2013 | A1 |
20130300831 | Mavromatis et al. | Nov 2013 | A1 |
20130307856 | Keane et al. | Nov 2013 | A1 |
20130307935 | Rappel et al. | Nov 2013 | A1 |
20130321261 | Nakasu et al. | Dec 2013 | A1 |
20130321265 | Bychkov et al. | Dec 2013 | A1 |
20130328867 | Jung et al. | Dec 2013 | A1 |
20130328928 | Yamagishi et al. | Dec 2013 | A1 |
20130335301 | Wong et al. | Dec 2013 | A1 |
20130335573 | Forutanpour et al. | Dec 2013 | A1 |
20140002365 | Ackley et al. | Jan 2014 | A1 |
20140010441 | Shamaie | Jan 2014 | A1 |
20140023247 | Kuwahara et al. | Jan 2014 | A1 |
20140064566 | Shreve et al. | Mar 2014 | A1 |
20140081521 | Frojdh et al. | Mar 2014 | A1 |
20140085203 | Kobayashi | Mar 2014 | A1 |
20140099019 | El Dokor | Apr 2014 | A1 |
20140125775 | Holz | May 2014 | A1 |
20140125813 | Holz | May 2014 | A1 |
20140132738 | Ogura et al. | May 2014 | A1 |
20140134733 | Wu et al. | May 2014 | A1 |
20140139425 | Sakai | May 2014 | A1 |
20140139641 | Holz | May 2014 | A1 |
20140152809 | Jarvis | Jun 2014 | A1 |
20140157135 | Lee et al. | Jun 2014 | A1 |
20140161311 | Kim | Jun 2014 | A1 |
20140168062 | Katz et al. | Jun 2014 | A1 |
20140176310 | Kotlicki | Jun 2014 | A1 |
20140176420 | Zhou et al. | Jun 2014 | A1 |
20140177913 | Holz | Jun 2014 | A1 |
20140189579 | Rimon et al. | Jul 2014 | A1 |
20140189938 | Redpath et al. | Jul 2014 | A1 |
20140192024 | Holz | Jul 2014 | A1 |
20140195988 | Kramer et al. | Jul 2014 | A1 |
20140201666 | Bedikian et al. | Jul 2014 | A1 |
20140201689 | Bedikian et al. | Jul 2014 | A1 |
20140210793 | Eriksson et al. | Jul 2014 | A1 |
20140222385 | Muenster et al. | Aug 2014 | A1 |
20140223385 | Ton et al. | Aug 2014 | A1 |
20140225826 | Juni | Aug 2014 | A1 |
20140225918 | Mittal et al. | Aug 2014 | A1 |
20140240215 | Tremblay et al. | Aug 2014 | A1 |
20140240225 | Eilat | Aug 2014 | A1 |
20140248950 | Tosas Bautista | Sep 2014 | A1 |
20140253512 | Narikawa et al. | Sep 2014 | A1 |
20140253711 | Balch et al. | Sep 2014 | A1 |
20140253785 | Chan et al. | Sep 2014 | A1 |
20140267098 | Na et al. | Sep 2014 | A1 |
20140282282 | Holz | Sep 2014 | A1 |
20140285403 | Kobayashi | Sep 2014 | A1 |
20140306874 | Finocchio et al. | Oct 2014 | A1 |
20140306891 | Latta et al. | Oct 2014 | A1 |
20140307920 | Holz | Oct 2014 | A1 |
20140320274 | De Schepper et al. | Oct 2014 | A1 |
20140344762 | Grasset et al. | Nov 2014 | A1 |
20140361976 | Osman et al. | Dec 2014 | A1 |
20140364209 | Perry | Dec 2014 | A1 |
20140364212 | Osman et al. | Dec 2014 | A1 |
20140369558 | Holz | Dec 2014 | A1 |
20140375547 | Katz et al. | Dec 2014 | A1 |
20140375947 | Park et al. | Dec 2014 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009149 | Gharib et al. | Jan 2015 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150022447 | Hare et al. | Jan 2015 | A1 |
20150024368 | King, Jr. | Jan 2015 | A1 |
20150029091 | Nakashima et al. | Jan 2015 | A1 |
20150040297 | Vermillion | Feb 2015 | A1 |
20150054729 | Minnen et al. | Feb 2015 | A1 |
20150084864 | Geiss et al. | Mar 2015 | A1 |
20150092015 | Stafford | Apr 2015 | A1 |
20150094142 | Stafford | Apr 2015 | A1 |
20150097772 | Starner | Apr 2015 | A1 |
20150115802 | Kuti et al. | Apr 2015 | A1 |
20150116214 | Grunnet-Jepsen et al. | Apr 2015 | A1 |
20150122855 | Parsons et al. | May 2015 | A1 |
20150131859 | Kim et al. | May 2015 | A1 |
20150138070 | Iwatsu | May 2015 | A1 |
20150172539 | Neglur | Jun 2015 | A1 |
20150193669 | Gu et al. | Jul 2015 | A1 |
20150205358 | Lyren | Jul 2015 | A1 |
20150205400 | Hwang et al. | Jul 2015 | A1 |
20150206321 | Scavezze et al. | Jul 2015 | A1 |
20150227795 | Starner et al. | Aug 2015 | A1 |
20150234569 | Hess | Aug 2015 | A1 |
20150253428 | Holz | Sep 2015 | A1 |
20150258432 | Stafford et al. | Sep 2015 | A1 |
20150261291 | Mikhailov et al. | Sep 2015 | A1 |
20150304593 | Sakai | Oct 2015 | A1 |
20150317831 | Ebstyne et al. | Nov 2015 | A1 |
20150320189 | Ju et al. | Nov 2015 | A1 |
20150323785 | Fukata et al. | Nov 2015 | A1 |
20150323795 | Alto et al. | Nov 2015 | A1 |
20150326762 | Ju et al. | Nov 2015 | A1 |
20150351482 | Gendron et al. | Dec 2015 | A1 |
20150366284 | Dowling et al. | Dec 2015 | A1 |
20160025978 | Mallinson | Jan 2016 | A1 |
20160044298 | Holz et al. | Feb 2016 | A1 |
20160062573 | Dascola et al. | Mar 2016 | A1 |
20160086046 | Holz et al. | Mar 2016 | A1 |
20160093105 | Rimon et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1984236 | Jun 2007 | CN |
101124534 | Feb 2008 | CN |
201332447 | Oct 2009 | CN |
101729808 | Jun 2010 | CN |
101930610 | Dec 2010 | CN |
101951474 | Jan 2011 | CN |
102053702 | May 2011 | CN |
201859393 | Jun 2011 | CN |
102184014 | Sep 2011 | CN |
102201121 | Sep 2011 | CN |
102236412 | Nov 2011 | CN |
102696057 | Sep 2012 | CN |
103090862 | May 2013 | CN |
4201934 | Jul 1993 | DE |
10326035 | Jan 2005 | DE |
102007015495 | Oct 2007 | DE |
102007015497 | Jan 2014 | DE |
0999542 | May 2000 | EP |
1477924 | Nov 2004 | EP |
1837665 | Sep 2007 | EP |
2369443 | Sep 2011 | EP |
2419433 | Apr 2006 | GB |
2480140 | Nov 2011 | GB |
2519418 | Apr 2015 | GB |
H02236407 | Sep 1990 | JP |
H08261721 | Oct 1996 | JP |
H09259278 | Oct 1997 | JP |
2000023038 | Jan 2000 | JP |
2002133400 | May 2002 | JP |
2003256814 | Sep 2003 | JP |
2004246252 | Sep 2004 | JP |
2006019526 | Jan 2006 | JP |
2006259829 | Sep 2006 | JP |
2007272596 | Oct 2007 | JP |
2008227569 | Sep 2008 | JP |
2009031939 | Feb 2009 | JP |
2009037594 | Feb 2009 | JP |
2010060548 | Mar 2010 | JP |
2011010258 | Jan 2011 | JP |
2011065652 | Mar 2011 | JP |
2011107681 | Jun 2011 | JP |
4906960 | Mar 2012 | JP |
2012527145 | Nov 2012 | JP |
101092909 | Dec 2011 | KR |
20130079841 | Jul 2013 | KR |
2422878 | Jun 2011 | RU |
200844871 | Nov 2008 | TW |
9426057 | Nov 1994 | WO |
2004114220 | Dec 2004 | WO |
2006020846 | Feb 2006 | WO |
2006090197 | Aug 2006 | WO |
2007137093 | Nov 2007 | WO |
20090142797 | Nov 2009 | WO |
2010007662 | Jan 2010 | WO |
2010032268 | Mar 2010 | WO |
2010076622 | Jul 2010 | WO |
2010088035 | Aug 2010 | WO |
2010138741 | Dec 2010 | WO |
2011024193 | Mar 2011 | WO |
2011036618 | Mar 2011 | WO |
2011044680 | Apr 2011 | WO |
2011045789 | Apr 2011 | WO |
2011119154 | Sep 2011 | WO |
2012027422 | Mar 2012 | WO |
2013109608 | Jul 2013 | WO |
2013109609 | Jul 2013 | WO |
2014208087 | Dec 2014 | WO |
2015026707 | Feb 2015 | WO |
2015172118 | Nov 2015 | WO |
Entry |
---|
U.S. Appl. No. 14/718,002, filed May 20, 2015, U.S. Pat. No. 9,741,169, Aug. 22, 2017, Issued. |
U.S. Appl. No. 15/681,251, filed Aug. 18, 2017, U.S. Pat. No. 10,600,248, Mar. 24, 2020, Issued. |
U.S. Appl. No. 16/823,294, filed Mar. 18, 2020, U.S. Pat. No. 11,080,937, Aug. 3, 2021, Issued. |
U.S. Appl. No. 17/384,699, filed Jul. 23, 2021, U.S. Pat. No. 11,676,349, Jun. 13, 2023, Issued. |
U.S. Appl. No. 14/997,454, filed Jan. 15, 2016, U.S. Pat. No. 10,656,720, May 19, 2020, Issued. |
U.S. Appl. No. 16/877,231, filed May 18, 2020, U.S. Pat. No. 11/036,304, Jun. 15, 2021, Issued. |
U.S. Appl. No. 17/345,919, filed Jun. 11, 2021, US-2021-0303079-A1, Sep. 30, 2021, Published. |
U.S. Appl. No. 14/718,002—Office Action dated Dec. 29, 2016, 10 pages. |
U.S. Appl. No. 14/997,454—Office Action dated Dec. 1, 2016, 13 pages. |
U.S. Appl. No. 14/718,002—Response to Office Action dated Dec. 29, 2016 filed Mar. 29, 2017, 10 pages. |
U.S. Appl. No. 14/718,002—Notice of Allowance dated Apr. 18, 2017, 17 pages. |
U.S. Appl. No. 15/681,251—Office Action dated Jan. 14, 2019, 14 pages. |
U.S. Appl. No. 15/681,251—Response to Office Action dated Jan. 14, 2019 filed May 14, 2019, 19 pages. |
U.S. Appl. No. 15/681,251—Office Action dated Jun. 10, 2019, 13 pages. |
U.S. Appl. No. 14/997,454—Response to Office Action dated Dec. 1, 2016 filed on Mar. 30, 2017, 10 pages. |
U.S. Appl. No. 14/997,454—Final Office Action dated Jun. 12, 2017, 25 pages. |
U.S. Appl. No. 14/997,454—Response to Final Office Action dated Jun. 12, 2017 filed Sep. 12, 2017, 10 pages. |
U.S. Appl. No. 14/997,454—Supplemental Response to Final Office Action dated Jun. 12, 2017 filed Oct. 9, 2017, 11 pages. |
U.S. Appl. No. 14/997,454—Office Action dated Oct. 20, 2017, 22 pages. |
U.S. Appl. No. 14/997,454—Response to Office Action dated Oct. 20, 2017, filed Mar. 22, 2018, 22 pages. |
U.S. Appl. No. 14/997,454—Office Action dated May 18, 2018, 18 pages. |
U.S. Appl. No. 14/997,454—Response to Office Action dated May 18, 2018, filed Oct. 30, 2018, 14 pages. |
U.S. Appl. No. 14/997,454—Office Action dated Mar. 28, 2019, 26 pages. |
U.S. Appl. No. 15/681,251—Response to Office Action dated Jun. 10, 2019, filed Sep. 10, 2019, 9 pages. |
U.S. Appl. No. 15/681,251—Notice of Allowance dated Nov. 14, 2019, 11 pages. |
U.S. Appl. No. 16/823,294—Office Action dated Dec. 8, 2020, 15 pages. |
U.S. Appl. No. 16/823,294—Notice of Allowance Apr. 1, 2021, 23 pages. |
U.S. Appl. No. 16/823,294—Response to Office Action dated Dec. 8, 2020 filed Mar. 9, 2021, 29 pages. |
U.S. Appl. No. 14/997,454—Response to Office Action dated Mar. 28, 2019, filed Jun. 26, 2019, 12 pages. |
U.S. Appl. No. 14/997,454—Office Action dated Sep. 12, 2019, 30 pages. |
U.S. Appl. No. 14/997,454—Response to Office Action dated Sep. 12, 2019, filed Dec. 12, 2019, 12 pages. |
U.S. Appl. No. 14/997,454—Notice of Allowance dated Jan. 14, 2020, 9 pages. |
U.S. Appl. No. 16/877,231—Office Action dated Oct. 29, 2020, 16 pages. |
U.S. Appl. No. 16/877,231—Response to Office Action dated Oct. 29, 2020, filed 9 pages. |
U.S. Appl. No. 16/877,231—Notice of Allowance dated Feb. 10, 2021, 16 pages. |
U.S. Appl. No. 17/345,919—Office Action dated Oct. 26, 2022, 32 pages. |
“Hessian Matrix of the Image,” Matlab—Hessian Matrix of the Image—Stack Overflow, last edited Mar. 13, 2014, retrieved from the internet: <http://stackoverflow.com/questions/22378360/hessian-matrix-of-the-image> on Mar. 10, 2015, 3 pages. |
“How Hessian Feature Detector Works?” Signal Processing Stack Exchange, last edited Oct. 2013, retrieved from the internet: <http://dsp.stackexchange.com/questions/10579/how0hessian-feature-detector-works> on Mar. 10, 2015, 3 pages. |
Arthington, et al., “Cross-section Reconstruction During Uniaxial Loading,” Measurement Science and Technology, vol. 20, No. 7, Jun. 10, 2009, Retrieved from the Internet: http:iopscience.iop.org/0957-0233/20/7/075701, pp. 1-9. |
Ballan et al., “Lecture Notes Computer Science: 12th European Conference on Computer Vision: Motion Capture of Hands in Action Using Discriminative Salient Points”, Oct. 7-13, 2012 [retrieved Jul. 14, 2016], Springer Berlin Heidelberg, vol. 7577, pp. 640-653. Retrieved from the Internet: <http://link.springer.com/chapter/10.1007/978-3-642-33783-3 46>. |
Barat et al., “Feature Correspondences From Multiple Views of Coplanar Ellipses”, 2nd International Symposium on Visual Computing, Author Manuscript, 2006, 10 pages. |
Bardinet, et al., “Fitting of iso-Surfaces Using Superquadrics and Free-Form Deformations” [on-line], Jun. 24-25, 1994 [retrieved Jan. 9, 2014], 1994 Proceedings of IEEE Workshop on Biomedical Image Analysis, Retrieved from the Internet: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=315882&tag=1, pp. 184-193. |
Bhutami, R., “What are the Ways of Calculating 2x2 Hessian Matrix for 2D Image of Pixel at (x,y) Position?,” Quora, last updated May 2013, retrieved from the internet: <http://www.quora.com/What-are-the-ways-of-calculating-2-x-2-hessian-m-atrix-for-2d-image-of-pixel-at-x-y-position> on Mar. 10, 2015, 4 pages. |
Butail, S., et al., “Three-Dimensional Reconstruction of the Fast-Start Swimming Kinematics of Densely Schooling Fish,” Journal of the Royal Society Interface, Jun. 3, 2011, retrieved from the Internet <http://www.ncbi.nlm.nih.gov/pubmed/21642367>, pp. 0, 1-12. |
Cheikh et al., “Multipeople Tracking Across Multiple Cameras”, International Journal on New Computer Architectures and Their Applications (IJNCAA), vol. 2, No. 1, 2012, pp. 23-33. |
Choras, M., et al., “Contactless Palmprint and Knuckle Biometrics for Mobile Devices”, Springerlink, Dec. 8, 2009, 13 pages. |
Chung, et al., “Recovering LSHGCs and SHGCs from Stereo,” International Journal of Computer Vision, vol. 20, No. 1/2, Oct. 1996, pp. 43-58. |
CN 2013800122765—Office Action dated Nov. 2, 2015, 17 pages. |
CN 2013800122765—Response to First Office Action dated Nov. 2, 2015 filed May 14, 2016, 14 pages. |
CN 2013800122765—Response to Second Office Action dated Jul. 27, 2016 filed Oct. 11, 2016, 3 pages. |
CN 2013800122765—Second Office Action dated Jul. 27, 2016, 6 pages. |
CN 201580041594.3—First Office Action dated Feb. 3, 2019, 29 pages. |
Cui et al., “Applications of Evolutionary Computing: Vision-Based Hand Motion Capture Using Genetic Algorithm”, 2004 [retrieved Jul. 15, 2016], Springer Berlin Heidelberg, vol. 3005 of LNCS, pp. 289-300. Retrieved from the Internet: <http://link.springer.com/chapter/10.1007/978-3-540-24653-4_30>. |
Cumani, A., et al., “Recovering the 3D Structure of Tubular Objects from Stereo Silhouettes,” Pattern Recognition, Elsevier, GB, vol. 30, No. 7, Jul. 1, 1997, 9 pages. |
Davis et al., “Toward 3-D Gesture Recognition”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 13, No. 03, 1999, pp. 381-393. |
DE 11 2013 000 590.5—First Office Action dated Nov. 5, 2014, 7 pages. |
DE 11 2013 000 590.5—Notice of Allowance dated Jan. 18, 2016, 8 pages. |
DE 11 2013 000 590.5—Response to First Office Action dated Nov. 5, 2014 filed Apr. 24, 2015, 1 page. |
DE 11 2013 000 590.5—Response to Second Office Action dated Apr. 29, 2015 filed Sep. 16, 2015, 11 pages. |
DE 11 2013 000 590.5—Response to Third Office Action dated Sep. 28, 2015 filed Dec. 14, 2015, 64 pages. |
DE 11 2013 000 590.5—Second Office Action dated Apr. 29, 2015, 7 pages. |
DE 11 2013 000 590.5—Third Office Action dated Sep. 28, 2015, 4 pages. |
Delamarre et al., “Finding Pose of Hand in Video Images: A Stereo-based Approach”, Apr. 14-16, 1998 [retrieved Jul. 15, 2016], Third IEEE Intern Conf on Auto Face and Gesture Recog, pp. 585-590. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=671011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D671011>. |
Di Zenzo, S., et al., “Advances in Image Segmentation,” Image and Vision Computing, Elsevier, Guildford, GBN, vol. 1, No. 1, Copyright Butterworth & Co Ltd., Nov. 1, 1983, pp. 196-210. |
Dombeck, D., et al., “Optical Recording of Action Potentials with Second-Harmonic Generation Microscopy,” The Journal of Neuroscience, Jan. 28, 2004, vol. 24(4): pp. 999-1003. |
Forbes, K., et al., “Using Silhouette Consistency Constraints to Build 3D Models,” University of Cape Town, Copyright De Beers 2003, Retrieved from the internet: <http://www.dip.ee.uct.ac.za/˜kforbes/Publications/Forbes2003Prasa.pdf> on Jun. 17, 2013, 6 pages. |
Franco, Michael. “Wave Your Hand to Control Smart Devices—Even if it's Out of Sight.” Cnet (Feb. 28, 2014). |
Fukui et al. “Multiple Object Tracking System with Three Level Continuous Processes” IEEE, 1992, pp. 19-27. |
Genovese, Angelo, Contactless and less Constrained Palmprint Recognition, Mar. 18, 2014, 48 pages. |
De La Gorce et al., “Model-Based 3D Hand Pose Estimation from Monocular Video”, Feb. 24, 2011 [retrieved Jul. 15, 2016], IEEE Transac Pattern Analysis and Machine Intell, vol. 33, Issue: 9, pp. 1793-1805, Retri Internet: <http://ieeexplore. ieee.org/xpl/logi n .jsp ?tp=&arnu mber=571 9617 &u rl=http%3A %2 F%2 Fieeexplore. ieee.org%2Fxpls% 2 Fabs all.jsp%3Farnumber%3D5719617>. |
Grauman, K., et al., “Chapter 3—Local Features: Detection and Description,” Visual Object Recognition: Synthesis Lectures on Artificial Intelligence and Machine Learning, Apr. 2011, retrieved from the internet :<www.morganclaypool.com/doi/abs/10.2200/S00332Ed1V01Y201103A- M011> on Mar. 12, 2015, pp. 1, 23-39. |
Guo et al., Featured Wand for 3D Interaction, Jul. 2-5, 2007 [retrieved Jul. 15, 2016], 2007 IEEE International Conference on Multimedia and Expo, pp. 2230-2233. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4285129&tag=1&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4285129%26tag%3D1>. |
Heikkila, J., “Accurate Camera Calibration and Feature Based 3-D Reconstruction from Monocular Image Sequences”, Infotech Oulu and Department of Electrical Engineering, University of Oulu, 1997, 126 pages. |
Hladuvka, J., et al., “Exploiting Eigenvalues of the Hessian Matrix for Volume Decimation,” CiteSeerx, Copyright 2001, retrieved from the internet: <http://citeseerx.isf.psu.edu/viewdoc/summary?doi=10.1.1.67.-565> on Mar. 12, 2015, fromVienna University of Technology, 7 pages. |
Interactive Gaming Smart Vending Machine. Silikron Smart Vending, URL: https:///www.youtube.com/watch?v=tK17sXvzLtU, Dec. 12, 2013. |
Jin et al., Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method, Hindawi, dated Jun. 28, 2013, 8 pages. |
JP 2014-552391—First Office Action dated Dec. 9, 2014, 6 pages. |
JP 2014-552391—Response to First Office Action dated Dec. 9, 2014 filed Jun. 8, 2016, 9 pages. |
JP 2014-552391—Response to Second Office Action dated Jul. 7, 2015 filed Dec. 25, 2015, 4 pages. |
JP 2014-552391—Second Office Action dated Jul. 7, 2015, 7 pages. |
JP 2014-552391—Third Office Action dated Jan. 26, 2016, 5 pages. |
Kanhangad, V., et al., “Combining 2D and 3D Hand Geometry Features for Biometric Verification”, IEEE 2009, 6 pages. |
Kanhangad, V., et al., “A Unified Framework for Contactless Hand Verification,” IEEE Transactions on Information Forensics and Security, IEEE, Piscataway, NJ, US , vol. 6, No. 3, Sep. 1, 2011, pp. 1014-1027. |
Kellogg, Bryce, Vamsi Talia, and Shyamnath Gollakota. “Bringing Gesture Recognition to All Devices,” NSDI'14: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, (Apr. 2, 2014), pp. 303-316. (Year: 2014). |
Kim, et al., “Development of an Orthogonal Double-Image Processing Algorithm to Measure Bubble,” Department of Nuclear Engineering and Technology, Seoul National University Korea, vol. 39 No. 4, Published Jul. 6, 2007, pp. 313-326. |
Kulesza, et al., “Arrangement of a Multi Stereo Visual Sensor System for a Human Activities Space,” Source: Stereo Vision, Book edited by: Dr. Asim Bhatti, ISBN 978-953-7619-22-0, Copyright Nov. 2008, I-Tech, Vienna, Austria, www.intechopen.com, pp. 153-173. |
Matsuyama et al. “Real-Time Dynamic 3-D Object Shape Reconstruction and High-Fidelity Texture Mapping for 3-D Video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 3, Mar. 2004, pp. 357-369. |
May, S., et al., “Robust 3D-Mapping with Time-of-Flight Cameras,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA, Oct. 10, 2009, pp. 1673-1678. |
Melax et al., “Dynamics Based 3D Skeletal Hand Tracking”, May 29, 2013 [retrieved Jul. 14, 2016], Proceedings of Graphics Interface, 2013, pp. 63-70. Retrived from the Internet: <http://dl.acm.org/citation.cfm?id=2532141>. |
Mendez, et al., “Importance Masks for Revealing Occluded Objects in Augmented Reality,” Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, 2 pages, ACM, 2009. |
Oka et al., “Real-Time Fingertip Tracking and Gesture Recognition”, Nov./Dec. 2002 [retrieved Jul. 15, 2016], IEEE Computer Graphics and Applications, vol. 22, Issue: 6, pp. 64-71. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1046630&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabsall.jsp%3Farnumber%3D1046630>. |
Olsson, K., et al., “Shape from Silhouette Scanner—Creating a Digital 3D Model of a Real Object by Analyzing Photos From Multiple Views,” University of Linkoping, Sweden, Copyright VCG 2001, Retrieved from the Internet: <http://liu.diva-portal.org/smash/get/diva2:18671/FULLTEXT01> on Jun. 17, 2013, 52 pages. |
PCT/JP2008/062732, WO English Abstract with Japanese Publication of WO 2010/007662 A1, “Heat-Resistant Cushion material for Forming Press,” Jan. 21, 2010, Ichikawa Co Ltd, 35 pages. |
PCT/US2013/021709—International Preliminary Report on Patentability dated Jul. 22, 2014, 22 pages. |
PCT/US2013/021709—International Search Report and Written Opinion dated Sep. 12, 2013, 22 pages. |
PCT/US2013/021709, International Preliminary Report on Patentability and Written Opinion, Sep. 12, 2013, 22 pages (WO 2013/109608). |
PCT/US2013/021713—International Preliminary Report on Patentability dated Jul. 22, 2014, 13 pages, (WO 2013/109609). |
PCT/US2013/021713—International Search Report and Written Opinion dated Sep. 11, 2013, 7 pages. |
PCT/US2013/069231—International Preliminary Report with Written Opinion dated May 12, 2015, 8 pages. |
PCT/US2013/069231—International Search Report and Written Opinion mailed Mar. 13, 2014, 7 pages. |
PCT/US2014/013012—International Search Report and Written Opinion dated May 14, 2014, published as WO 2014116991, 12 pages. |
PCT/US2014/028265, International Search Report and Written Opinion, Jan. 7, 2015, 15 pages. |
PCT/US2015/032705—International Preliminary Report on Patentability dated Nov. 29, 2016, 11 pages. |
PCT/US2015/032705—International Search Report dated Sep. 15, 2015, 3 page. |
PCT/US2015/032705—Written Opinion of the ISA, mailed Sep. 15, 2015, 10 pages. |
Pedersini, et al., Accurate Surface Reconstruction from Apparent Contours, Sep. 5-8, 2000 European Signal Processing Conference EUSIPCO 2000, vol. 4, Retrieved from the Internet: http://home.deib.polimi.it/sarti/CV_and_publications.html, pp. 1-4. |
Pointgrab Ltd. “New Line of Acer All-in-One Devices Among the First Products to Feature PointGrab's Windows 8 Hand Gesture Control Solution,” Business Wire (English), (Nov. 13, 2012). |
Rasmussen, Matihew K., “An Analytical Framework for the Preparation and Animation of a Virtual Mannequin forthe Purpose of Mannequin-Clothing Interaction Modeling”, A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree in Civil and Environmental Engineering in the Graduate College of the University of Iowa, Dec. 2008, 98 pages. |
Rudzki, M., “Vessel Detection Method Based on Eigenvalues of Hessian Matrix and its Applicability to Airway Tree Segmentation,” XI International PhD Workshop, OWD 2009, Silesian University of Technology, Oct. 17-20, 2009, 6 pages. |
Schaar, R., VCNL4020 Vishay Semiconductors. Application Note [online]. Extended Detection Range with VCNL Family of Proximity Sensor Vishay Intertechnology, Inc, Doc No. 84225, Revised Oct. 25, 2013 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 4 pages. |
Schlattmann et al., “Markerless 4 gestures 6 DOF real-time visual tracking of the human hand with automatic initialization”, 2007 [retrieved Jul. 15, 2016], Eurographics 2007, vol. 26, No. 3, 10 pages, Retrieved from the Internet: <http://cg.cs.uni-bonn.de/aigaion2root/attachments/schlattmann-2007-markerless.pdf>. |
Shinodalab, “Visuo-Tactile Projector,” YouTube Video, published on May 14, 2013, retrieved from the internet: <http://www.youtube.com/watch?v=Bb0hNMxxewg> on Mar. 12, 2015, 2 pages. |
Shlens, J., “A Tutorial on Principal Component Analysis,” Derivation, Discussion and Singular Value Decomposition, Version 1, Mar. 25, 2013, UCSD.edu, pp. 1-16. |
Solanki, Utpal V. and Nilesh H. Desai. “Hand Gesture Based Remote Control for Home Appliances: Handmote,” 2011 World Congress on Information and Communication Technologies, Mumbai, (2011), p. 419-423. |
Texas Instruments, “4-Channel, 12-Bit, 80-MSPS ADC,” VSP5324, Revised Nov. 2012, Texas Instruments Incorporated, 55 pages. |
Texas Instruments, “QVGA 3D Time-of-Flight Sensor,” Product Overview: OPT 8140, Dec. 2013, Texas Instruments Incorporated, 10 pages. |
Texas Instruments, “Time-of-Flight Controller (TFC),” Product Overview; OPT9220, Jan. 2014, Texas Instruments Incorporated, 43 pages. |
VCNL4020 Vishay Semiconductors. Datasheet [online]. Vishay Intertechnology, Inc, Doc No. 83476, Rev. 1.3, Oct. 29, 2013 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 16 pages. |
Wang et al., “Tracking of Deformable Hand in Real Time as Continuous Input for Gesture-based Interaction”, Jan. 28, 2007 [retrieved Jul. 15, 2016], Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 235-242. Retrieved fromthe Internet: <http://dl.acm.org/citation.cfm?id=1216338>. |
Wikipedia, “Affine Transmation,” Wikipedia—the Free Encyclopedia, last modified Mar. 5, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Affine.sub.--transformation- &oldid=650023248> on Mar. 12, 2015, 8 pages. |
Wikipedia, “Axis-angle Representation,” Wikipedia—the Free Encyclopedia, last modified Dec. 30, 2014, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Axis-angle_representation&oldid=640273193> on Mar. 12, 2015, 5 pages. |
Wikipedia, “Euclidean Group,” Wikipedia—the Free Encyclopedia, last modified Feb. 24, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Euclidean_group&oldid=648705193> on Mar. 12, 2015, 7 pages. |
Wikipedia, “Multilateration,” Wikipedia—the Free Encyclopedia, Nov. 16, 2012, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Multilateration&oldid=523281858> on Mar. 12, 2015, 10 pages. |
Wikipedia, “Rotation Group SO(3),” Wikipedia—the Free Encyclopedia, last modified Feb. 20, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Rotation_group_SO(3)&oldid=648012313> on Mar. 13, 2015, 17 pages. |
Wikipedia, “Rotation Matrix,” Wikipedia—the Free Encyclopedia, last modified Mar. 11, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Rotation.sub.--matrix&oldid- = 650875954> on Mar. 12, 2015, 21 pages. |
Wikipedia, “Transformation Matrix,” Wikipedia—the Free Encyclopedia, last modified Mar. 5, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Transformation.sub.--matrix- &oldid=649936175> on Mar. 12, 2015, 8 pages. |
Wong, Kie Yih Edward, et al., “Palmprint Identification Using Sobel Operator,” 10th International Conference on Control, automation, Robotics and Vision, Dec. 17-20, 2008, 4 pages. |
Zhao et al., “Combining Marker-Based Mocap and RGB-D Camera for Acquiring High-Fidelity Hand Motion Data”, Jul. 29, 2012 [retrieved Jul. 15, 2016], Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation, pp. 33-42, Retrieved from the Internet: <http://dl.acm.org/citation.cfm?id=2422363>. |
Berman et al., “Sensors for Gesture Recognition Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, No. 3, May 2012, pp. 277-290. |
PCT/US2015/030040—International Search Report dated Aug. 13, 2015, 3 pages. |
PCT/US2015/030040—Written Opinion of the International Searching Authority dated Aug. 13, 2015, 7 pages. |
CN 2014204535364—Office Action dated Nov. 5, 2014, 1 page. |
CN 2014204535364—Response to Nov. 5 Office Action filed Feb. 26, 2015, 8 pages. |
CN 2014204535364—Notice of Allowance dated Apr. 17, 2015, 3 pages. |
Rolland, et al., “A comparison of optical and video see-through head-mounted displays,” 1994, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20230334796 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
62001044 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17384699 | Jul 2021 | US |
Child | 18207663 | US | |
Parent | 16823294 | Mar 2020 | US |
Child | 17384699 | US | |
Parent | 15681251 | Aug 2017 | US |
Child | 16823294 | US | |
Parent | 14718002 | May 2015 | US |
Child | 15681251 | US |