Advances in electronics, sensor technology and materials science have revolutionized patient monitoring technologies. In particular, many light and wearable devices are becoming available for a variety of cardiac monitoring applications. However, improvements may yet be desired for robust wearable devices that provide effective data collection, in some cases also with increased patient convenience and comfort. Other alternatives may include developments in one or more of device attachment, size, flexibility, data transfer, among others.
Further alternatives for cardiac patients and their physicians may then include robust and convenient personal cardiac monitors that in some instances may collect and transfer long-term data as well as monitor events in real-time.
Described herein are several medical monitoring devices and systems, in some instances for long-term sensing and/or recording of cardiac patient data. A number of alternative implementations and applications are summarized and/or exemplified herein below and throughout this specification.
These as well as other aspects are exemplified in a number of illustrated alternative implementations and applications, some of which are shown in the figures and characterized in the claims section that follows. However, as will be understood by the ordinarily skilled artisan, the above summary and the detailed description below do not describe the entire scope of the inventions hereof and are indeed not intended to describe each illustrated embodiment or every implementation of the present inventions nor provide any limitation on the claims or scope of protection herein set forth below.
The drawings include:
While the inventions hereof amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and the following description. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. The intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention whether described here or otherwise being sufficiently appreciable as included herewithin even if beyond the literal words hereof.
In one aspect, a system hereof may include a device for monitoring physiological parameters such as one or more or all of electrocardiogram (aka ECG or EKG), photoplethysmogram (aka PPG), pulse oximetry and/or patient acceleration or movement signals. Systems hereof may be established to measure and process such signals of a patient using or including one or more of the following elements: (a) a circuit, sometimes flexible, embedded in a flat elastic substrate having a top surface and a bottom surface, the circuit having (i) at least one sensor mounted in or adjacent the bottom surface of the flat elastic substrate, the at least one sensor being capable of electrical or optical communication with the patient, (ii) at least one signal processing module for receiving and/or accepting signals from the at least one sensor in some implementations also providing for transforming such signals for storage as patient data; (iii) at least one memory module for receiving and/or accepting and storing patient data, (iv) at least one data communication module for transferring stored patient data to an external device, and (v) a control module for controlling the timing and operation of the at least one sensor, one or more of the at least one signal processing module, the at least one memory module, the at least one data communication module, and/or the control module capable of receiving commands to implement transfer of patient data by the at least one data communication module and to erase and/or wipe patient data from the at least one memory module; and (b) a anisotropically conductive adhesive removably attached to the bottom surface of the flat elastic substrate, the anisotropically conductive adhesive capable of adhering to skin of the patient and of conducting an electrical signal substantially only in a direction perpendicular to the bottom surface of the flat elastic substrate, and/or in some implementations including a conductive portion adjacent the sensor or sensors and a non-conductive portion.
In some implementations, devices hereof will be for comprehensive long-term cardiac monitoring. Features of such may include one or more of a Lead 1 ECG, PPG, pulse oximeter, accelerometer, and a button or other indicator for manual patient event marking. Such a device may be adapted to store up to, for example, about two weeks of continuous data (though more will also be feasible in alternative implementations), which may in some implementations be downloaded to a clinic or other computer in a short time period, as for one example, in only about 90 seconds (though less time will be viable in alternative implementations) via computer connection, whether wireless or wired as in one example by USB or other acceptable data connection. A companion software data analysis package may be adapted to provide automated event capture and/or allow immediate, local data interpretation.
Intermittent cardiac anomalies are often difficult for physicians to detect and/or diagnose, as they would typically have to occur during a physical examination of the patient. A device hereof may address this problem with what in some implementations may be a continuous or substantially continuous monitoring of a number of vital signs.
Some alternative features may include (i) a driven “Right Leg” circuit with electrodes located only on the chest, (ii) a “z-Axis” or anisotropic conductive adhesive electrode interface that may permit electrical communication only between an electrode and a patient's skin immediately beneath the electrode, (iii) data transmission to and interpretation by a local computer accessible to CCU/ICU personnel, (iv) a unique combination of hardware allows correlation of multiple data sources in time concordance to aid in diagnosis.
In some alternative implementations, devices and systems hereof may provide 1) reusability (in some cases near or greater than about 1000 patients) allows recouping cost of the device in just about 10-15 patient tests, 2) one or more of ecg waveform data, inertial exertion sensing, manual event marking, and/or pulse oximeter, any or all of which in time concordance to better detect and analyze arrhythmic events, 3) efficient watertightness or waterproofing (the patient can even swim while wearing the device), and 4) a comprehensive analysis package for immediate, local data interpretation. An alternative device may be adapted to take advantage of flex-circuit technology, to provide a device that is light-weight, thin, durable, and flexible to conform to the patient's skin.
Many of the electronics hereof may be disposed in the electronics layer or layers 103, and as generally indicated here, the electronics may be encapsulated in a material 104 (see
The elongated strip layer 105 may be or may include a circuit or circuit portions such as electrical leads or other inner layer conductors, e.g., leads 107 shown in
On the patient side 102, the ECG electrodes 108, 109 and 110 may be left exposed for substantially direct patient skin contact (though likely with at least a conductive gel applied therebetween); and/or, in many implementations, the patient side electrodes 108, 109 and/or 110 may be covered by a conductive adhesive material as will be described below. The electrodes may be or may be may be plated with a robust high conductive material, as for example, silver/silver chloride for biocompatibility and high signal quality, and in some implementations may be highly robust and, for one non-limiting example, be adapted to withstand over about 1000 alcohol cleaning cycles between patients. Windows or other communication channels or openings 111, 112 may be provided for a pulse oximeter, for example, for LEDs and a sensor. Such openings 111, 112 would typically be disposed for optimum light communication to and from the patient skin. An alternative disposition of one or more light conduits 111a/112a is shown in a non-limiting example in
The adhesive may thus be placed or disposed on the device 100, in some implementations substantially permanently, or with some replaceability. In some implementations, the device as shown in
After a monitoring period is over a physician, technician, patient or other person may then remove the device from the patient body, remove the adhesive, in some instances with alcohol, and may establish a data communication connection for data transfer, e.g., by wireless communication or by insertion/connection of a USB or like data connector to download the data. The data may then be processed and/or interpreted and in many instances, interpreted immediately if desired. A power source on board may include a battery and this can then also be re-charged between uses, in some implementations, fully recharged quickly as within about 24 hours, after which the device could then be considered ready for the next patient.
Some alternative conductive adhesives may be used herewith.
The implementation of this particular example includes a composite adhesive 113a which itself may include some non-conductive portion(s) 113b and some one or more conductive portions 113c. The adhesive composite 113a may, as described for adhesive 113 above be double sided such that one side adheres to the patient while the other side would adhere to the underside 102 of the device 100 (see
As shown in
In some implementations, a further optional connective and/or insulative structure 113d may be implemented as shown in
Some alternative implementations hereof may include a driven right leg ECG circuit with one or more chest only electrodes (“Driven Chest Electrode”). In addition to the electrodes used to measure a single or multiple lead electrocardiogram signal, a device 100 may use an additional electrode, as for example the reference electrode 110 (see
A circuit or sub-circuit 200 using a transistor 201 as shown in
Further alternative descriptions of circuitry include that which is shown in
In many implementations, a system hereof may include other circuitry operative together with the ECG electrodes, which may thus be accompanied by other sensors to provide time concordant traces of: i) ECG p-, qrs-, and t-waves; ii) O2 Saturation, as measured by Pulse Oxymetry; and/or iii) xyz acceleration, to provide an index of physical activity. Such circuitry may be implemented to one or more of the following electrical specifications. The overall system might in some implementations include as much as two weeks (or more) of continuous run time; gathering data during such time. Some implementations may be adapted to provide as many or even greater than 1000 uses. Alternatives may include operability even after or during exposure to fluids or wetness; in some such examples being water resistant, or waterproof, or watertight, in some cases continuing to be fully operable when fully submerged (in low saline water). Other implementations may include fast data transfer, as for an example where using an HS USB for full data transfer in less than about 90 seconds. A rechargeable battery may typically be used.
A further alternative implementation may include an electronic “ground”: In a device hereof, mounted entirely on a flexible circuit board, the ground plane function may be provided by coaxial ground leads adjacent to the signal leads. The main contribution of this type of grounding system may be that it may allow the device the flexibility required to conform and adhere to the skin.
For electrocardiograph; EKG or ECG, some implementations may include greater than about 10 Meg Ohms input impedance; some implementations may operate with a 0.1-48 Hz bandwidth; and some with an approximate 256 Hz Sampling Rate; and may be implementing 12 Bit Resolution. For PPG and Pulse Oximeter, operation may be with 660 and 940 nm Wavelength; about 80-100 SpO2 Range; a 0.05-4.8 Hz Bandwidth; a 16 Hz Sampling Rate; and 12 bit resolution. For an accelerometer: a 3-Axis Measurement may be employed, and in some implementations using a ±2 G Range; with a 16 Hz Sampling Rate; and a 12 Bit Resolution.
Some summary methodologies may now be understood with relation to
Several alternatives then present in
A similar such example, might be considered by the optional alternative flow path 312a which itself branches into parts 312b and 312c. Following flow path 312a, and then, in a first example path 312b, a skip of the transmit data operation 303 can be understood whereby analysis 304 might be achieved without substantial data transfer. This could explain on board analysis, whether as for example according to the threshold example above, or might in some instances include more detailed analysis depending upon how much intelligence is incorporated on/in the electronics 103. Another view, is relative to how much transmission may be involved even if the transmission operation 303 is used; inasmuch as this could include at one level the transmission of data from the patient skin through the conductors 108, 109 and/or 110 through the traces 107 to the electronics 103 for analysis there. In other examples, of course, the transmission may include off-board downloading to other computing resources (e.g.,
Further alternatives primarily may involve data storage, both when and where, if used. As with intelligence, it may be that either some or no storage or memory may be made available in/by the electronics 103 on-board device 100. If some storage, whether a little or a lot, is made available on device 100, then, flow path 312a to and through path 312c may be used to achieve some storing of data 305. This may in many cases then, though not necessarily be before transmission or analysis (note, for some types of data multiple paths may be taken simultaneously, in parallel though perhaps not at the same time or serially (eg., paths 312b and 312c need not be taken totally to the exclusion of the other), so that storage and transmission or storage and analysis may occur without necessarily requiring a completion of any particular operation before beginning or otherwise implementing another). Thus, after (or during) storage 305, flow path 315a may be followed for stored data which may then be transmitted, by path 315b to operation 303, and/or analyzed, by path 315c to operation 304. In such a storage example, which in many cases may also be an on-board storage example, data can be collected then stored in local memory and later off-loaded/transmitted to one or more robust computing resources (e.g.,
If little or no storage or memory is resident on device 100 (or in some examples even where there may be a large amount of resident memory available), then, relatively soon after collection, the data would need to or otherwise might desirably either or both be transmitted and then stored, see path 313a after operation 303, and/or transmitted and analyzed, paths 312 and 313. If path 313a is used, then, more typically, the data storage may be in/on computing resources (not shown in
A feature hereof may include an overall system including one or more devices 100 and computing resources (see
Alternative implementations hereof may thus include one or more hardware and software combinations for multiple alternative data source interpretations. As noted above, a device 100 hereof includes hardware that monitors one or more of various physiologic parameters, then generates and stores the associated data representative of the monitored parameters. Then, a system which includes hardware such as device 100 and/or the parts thereof, and software and computing resources (
For example, an electrocardiogram trace that reveals a ventricular arrhythmia during intense exercise may be interpreted differently than the same arrhythmia during a period of rest. Blood oxygen saturation levels that vary greatly with movement can indicate conditions that may be more serious than when at rest, inter alia. Many more combinations of the four physiologic parameters are possible, and the ability of software hereof to display and highlight possible problems will greatly aid the physician in diagnosis. Thus, a system as described hereof can provide beneficial data interpretation.
Some of the features which can assist toward this end may be subsumed within one or more of operations 303 and 304 of
The analysis/software package may be disposed to present the physician with results in a variety of formats. In some implementations, an overview of the test results may be presented, either together with or in lieu of more detailed results. In either case, a summary of detected anomalies and/or patient-triggered events may be provided, either as part of an overview and/or as part of the more detailed presentation. Selecting individual anomalies or patient-triggered events may provide desirable flexibility to allow a physician to view additional detail, including raw data from the ECG and/or from other sensors. The package may also allow data to be printed and saved with annotations in industry-standard EHR formats.
In one implementation, patient data may be analyzed with software having the one or more of the following specifications. Some alternative capabilities may include: 1. Data Acquisition; i.e., loading of data files from device; 2. Data Formatting; i.e., formatting raw data to industry standard file formats (whether, e.g., aECG (xml); DICOM; or SCP-ECG) (note, such data formatting may be a part of Acquisition, Storage or Analysis, or may have translation from one to another (e.g., data might be better stored in a compact format that may need translation or other un-packing to analyze)); 3. Data Storage (whether local, at a clinic/medical facility level or e.g., in the Cloud (optional and allows offline portable browser based presentation/analysis); 4. Analysis which inter alia, may include, e.g., noise filtering (High pass/Low pass digital filtering); and/or QRS (Beat) detection (in some cases, may include Continuous Wave Transform (CWT) for speed and accuracy); and/or 5. Data/Results Presentation, whether including one or more graphical user interface(s) (GUIs) perhaps more particularly with an overall Summary and/or General Statistics and/or Anomaly Summary of Patient triggered event(s); presentation of additional levels of detail whether of Strip view(s) of anomaly data by incident (previous, next) Blood Oxygen saturation, stress correlation or the like; and/or allowing care provider bookmarking/annotations/notes by incident and/or Print capability.
Further, on alternative combinations of hardware with proprietary software packages: I) One on-device software package may be adapted to store the measurements from the data signals acquired from one or more of EKG/ECG (whether right leg and/or p-, qrs- and/or t-waves), or O2 saturation, or xyz acceleration, in a time concordant manner, so that a physician may access a temporal history of the measurements (say, in some examples, over a 1-2 week interval), which would provide useful information on what the patient's activity level was prior to, during, and after the occurrence of a cardiac event. ii) an alternative to alternately manage the real-time transmission of the real-time measured parameters to a nearby station or relay. And/or; iii) an off-device ECG analysis software aimed at recognizing arrhythmias.
The software mentioned above may be industry understood software provided by a 3rd party, or specially adapted for the data developed and transmitted by and/or received from a wearable device 100 hereof. Thorough testing using standard (MIT-BIH/AHA/NST) arrhythmia databases, FDA 510(k) approvals preferred. Such software may be adapted to allow one or more of automated ECG analysis and interpretation by providing callable functions for ECG signal processing, QRS detection and measurement, QRS feature extraction, classification of normal and ventricular ectopic beats, heart rate measurement, measurement of PR and QT intervals, and rhythm interpretation.
In many implementations, the software may be adapted to provide and/or may be made capable of supplying one or more of the following measurements:
This first group of 8 given above are arrhythmia types that may be recognizable even if there is no discernible P wave. They are the ones typically recognized by existing products in the outpatient monitoring market that we propose to address.
A second set or group of arrhythmias; below, may require a discernible and measurable P wave. Some implementations hereof may be adapted to be able to detect and recognize them, as device 100 may be able as described above to detect P waves, depending of course, and for example, on whether the strength of the P wave is affected by device 100 placement or patient physiology.
Further in alternative software implementations; some sample screenshots are shown in
Another alternative is shown in
As introduced,
As introduced,
Some further alternatives may include data transmission and/or interpretation by local medical facilities, whether physician or doctor offices or e.g., ICU/CCU (Intensive Care/Coronary Care Units). Accordingly, a device 100 hereof that will measure one or more of a variety of physiologic signals, possibly including electrocardiogram, photoplethysmogram, pulse oximetry and/or patient acceleration signals will be placed on the patient's chest and held with an adhesive as described herein. The device transmits the physiologic signals wirelessly or by wire (e.g., USB) to a nearby base station for interpretation and further transmission, if desired. The wireless transmission may use Bluetooth, WiFi, Infrared, RFID (Radio Frequency IDentification) or another wireless protocol. The device may be powered by wireless induction, battery, or a combination of the two. The device 100 monitors physiological signals and/or collects data representative thereof. The collected data may then be transmitted wirelessly or by wire connection, in real time, to the nearby base station. The device may be wirelessly powered by the base station or by battery, removing the need for wires between the patient and the station.
Thus, some of the alternative combinations hereof may include one or more of: 1) medical grade adhesives (from many possible sources) selected for their ability to maintain in intimate contact with the skin without damaging it, for several days (up to, say 10 days or two weeks in some examples), as well as operability with different types of sensors; 2) conductive electrodes or photo-sensitive detectors able to supply electrical signals from the skin or from the photo-response of cutaneous or subcutaneous tissues to photo-excitation; 3) amplifiers, microprocessors and memories, capable of treating these signals and storing them; 4) power supply for the electronics hereof with stored or with wirelessly accessible re-chargeability; 5) flex circuits capable of tying the above elements together within a flexible strip capable of conforming to a cutaneous region of interest.
Examples of physiological parameters that may be subject to monitoring, recordation/collection and/or analyzing may include one or more of: electrocardiograms, photo responses of photo-excited tissues for e.g., oxygen saturation of blood; pulse rates and associated fluctuations; indications of physical activity/acceleration. One or more of these may be used in monitoring ambulatory cardiac outpatients over several days and nights, which could thereby provide for recording, for post-test analysis, several days' worth of continuous ECG signals together with simultaneous recording of O2 saturation and an index of physical exertion. Similarly, one or more of these may be used in monitoring ambulatory pulmonary outpatients over several days and nights for recording, for post-test analysis, O2 saturation together with simultaneous recording of an index of physical activity. Alternatively and/or additionally, one or more of these could be used for monitoring in-patients or other patients of interest, as for example neonatals, wirelessly (or in some cases wired), whether in clinics, emergency rooms, or ICUs, in some instances detecting the parameters of EKG, O2 and/or physical exertion, but instead of storing them would transmit them wirelessly to either a bedside monitor or a central station monitor, thus freeing the patient from attachment to physical wires.
An exemplary computer system or computing resources which may be used herewith will now be described, though it should be noted that many alternatives in computing systems and resources may be available and operable within the reasonably foreseeable scope hereof so that the following is intended in no way to be limiting of the myriad possible computational alternatives properly intended within both the spirit and scope hereof.
Some of the implementations of the present invention include various steps. A variety of these steps may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware, software, and/or firmware. As such,
Processor(s) 402 can be any known processor, such as, but not limited to, an Intel® Itanium® or Itanium 2® processor(s), or AMD® Opteron® or Athlon MP® processor(s), or Motorola® lines of processors. Communication port(s) 403 can be any of an RS-232 port for use with a modem based dialup connection, a 10/100 Ethernet port, a Universal Serial Bus (USB) port, or a Gigabit port using copper or fiber. Communication port(s) 403 may be chosen depending on a network such a Local Area Network (LAN), Wide Area Network (WAN), or any network to which the computer system 400 connects or may be adapted to connect.
Main memory 404 can be Random Access Memory (RAM), or any other dynamic storage device(s) commonly known in the art. Read only memory 406 can be any static storage device(s) such as Programmable Read Only Memory (PROM) chips for storing static information such as instructions for processor 402.
Mass storage 407 can be used to store information and instructions. For example, hard disks such as the Adaptec® family of SCSI drives, an optical disc, an array of disks such as RAID, such as the Adaptec family of RAID drives, or any other mass storage devices may be used.
Bus 401 communicatively couples processor(s) 402 with the other memory, storage and communication blocks. Bus 401 can be a PCI/PCI-X or SCSI based system bus depending on the storage devices used.
Removable storage media 405 can be any kind of external hard-drives, floppy drives, IOMEGA® Zip Drives, Compact Disc-Read Only Memory (CD-ROM), Compact Disc-Re-Writable (CD-RW), Digital Video Dis-Read Only Memory (DVD-ROM).
The components described above are meant to exemplify some types of possibilities. In no way should the aforementioned examples limit the scope of the invention, as they are only exemplary embodiments.
Embodiments of the present invention relate to devices, systems, methods, media, and arrangements for monitoring and processing cardiac parameters and data, inter alia. While detailed descriptions of one or more embodiments of the invention have been given above, various alternatives, modifications, and equivalents will be apparent to those skilled in the art without varying from the spirit of the invention. Therefore, the above description should not be taken as limiting the scope of the invention, which is defined by the appended claims.
This is a nonprovisional application claiming the benefit of and priority to the provisional application, U.S. 61/710,768 filed Oct. 7, 2012, the entire contents, teachings and suggestions thereof being incorporated herein by this reference as if fully set forth here.
Number | Name | Date | Kind |
---|---|---|---|
4141366 | Cross, Jr. et al. | Feb 1979 | A |
4164215 | Finlayson | Aug 1979 | A |
4221223 | Linden | Sep 1980 | A |
4224948 | Cramer | Sep 1980 | A |
4230127 | Larson | Oct 1980 | A |
4295472 | Adams | Oct 1981 | A |
4360030 | Citron et al. | Nov 1982 | A |
4412546 | Barthels | Nov 1983 | A |
4583190 | Salb | Apr 1986 | A |
4674511 | Cartmell | Jun 1987 | A |
4803992 | Lemelson | Feb 1989 | A |
4869254 | Stone et al. | Sep 1989 | A |
4880304 | Jaeb et al. | Nov 1989 | A |
4902886 | Smisko | Feb 1990 | A |
4934372 | Corenman et al. | Jun 1990 | A |
4938228 | Righter et al. | Jul 1990 | A |
5184620 | Cudahy et al. | Feb 1993 | A |
5215087 | Anderson | Jun 1993 | A |
5224486 | Lerman et al. | Jul 1993 | A |
5261401 | Baker et al. | Nov 1993 | A |
5265579 | Ferrari | Nov 1993 | A |
5307818 | Segalowitz | May 1994 | A |
5372125 | Lyons | Dec 1994 | A |
5419321 | Evans | May 1995 | A |
5448991 | Polson | Sep 1995 | A |
5465715 | Lyons | Nov 1995 | A |
5465727 | Reinhold, Jr. | Nov 1995 | A |
5511553 | Segalowitz et al. | Apr 1996 | A |
5549116 | Mauer | Aug 1996 | A |
5632272 | Diab et al. | May 1997 | A |
5673692 | Schulze et al. | Oct 1997 | A |
5730143 | Schwarzberg | Mar 1998 | A |
5817008 | Rafert et al. | Oct 1998 | A |
5931791 | Saltzstein et al. | Aug 1999 | A |
5938597 | Stratbucker | Aug 1999 | A |
6032060 | Carim et al. | Feb 2000 | A |
6041247 | Weckstrom | Mar 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6122535 | Kaestle et al. | Sep 2000 | A |
6263222 | Diab et al. | Jul 2001 | B1 |
6327487 | Stratbucker | Dec 2001 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6453186 | Lovejoy et al. | Sep 2002 | B1 |
6525386 | Mills | Feb 2003 | B1 |
6569095 | Eggers | May 2003 | B2 |
6662033 | Casciani et al. | Dec 2003 | B2 |
6665385 | Rogers et al. | Dec 2003 | B2 |
6694177 | Eggers et al. | Feb 2004 | B2 |
6699194 | Diab et al. | Mar 2004 | B1 |
6725074 | Kaestle | Apr 2004 | B1 |
6745061 | Hicks et al. | Jun 2004 | B1 |
6830711 | Mills et al. | Jun 2004 | B2 |
6801137 | Eggers | Oct 2004 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
7018338 | Vetter et al. | Mar 2006 | B2 |
7027858 | Cao et al. | Apr 2006 | B2 |
7067893 | Mills et al. | Jun 2006 | B2 |
7099715 | Korzinov et al. | Aug 2006 | B2 |
7130396 | Rogers et al. | Oct 2006 | B2 |
7194300 | Korzinov | Mar 2007 | B2 |
7212850 | Prystowsky | May 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7257438 | Kinast | Aug 2007 | B2 |
7332784 | Mills et al. | Feb 2008 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7412282 | Houben | Aug 2008 | B2 |
7502643 | Farringdon et al. | Mar 2009 | B2 |
7553166 | Gobron | Jun 2009 | B2 |
7587237 | Korzinov et al. | Sep 2009 | B2 |
7668588 | Kovacs | Feb 2010 | B2 |
7729753 | Kremliovsky et al. | Jun 2010 | B2 |
7831301 | Webb et al. | Nov 2010 | B2 |
7881765 | Mertz et al. | Feb 2011 | B2 |
D634431 | Severe et al. | Mar 2011 | S |
7904133 | Gehman et al. | Mar 2011 | B2 |
7907996 | Prystowsky et al. | Mar 2011 | B2 |
7941207 | Korzinov | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7988638 | Novac | Aug 2011 | B2 |
8116841 | Bly et al. | Feb 2012 | B2 |
8145287 | Diab et al. | Mar 2012 | B2 |
8150502 | Kumar et al. | Apr 2012 | B2 |
8160682 | Kumar et al. | Apr 2012 | B2 |
D659836 | Bensch et al. | May 2012 | S |
8172761 | Rulkov et al. | May 2012 | B1 |
8200319 | Pu et al. | Jun 2012 | B2 |
8200320 | Kovacs | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8219198 | Gollasch et al. | Jul 2012 | B2 |
8249686 | Libbus et al. | Aug 2012 | B2 |
8271072 | Houben et al. | Sep 2012 | B2 |
RE43767 | Eggers et al. | Oct 2012 | E |
8285356 | Bly et al. | Oct 2012 | B2 |
8290129 | Rogers et al. | Oct 2012 | B2 |
8290574 | Field et al. | Oct 2012 | B2 |
8301236 | Baumann et al. | Oct 2012 | B2 |
8374686 | Ghanem | Feb 2013 | B2 |
8428682 | Rood et al. | Apr 2013 | B1 |
8452364 | Hannula et al. | May 2013 | B2 |
8460189 | Libbus et al. | Jun 2013 | B2 |
8473039 | Michelson et al. | Jun 2013 | B2 |
8473047 | Chakravarthy et al. | Jun 2013 | B2 |
8538503 | Kumar et al. | Sep 2013 | B2 |
8554311 | Warner et al. | Oct 2013 | B2 |
8560046 | Kumar et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8585605 | Sola I Caros et al. | Nov 2013 | B2 |
8591430 | Amurthur et al. | Nov 2013 | B2 |
D701964 | Yoneta et al. | Apr 2014 | S |
8688190 | Libbus et al. | Apr 2014 | B2 |
8718752 | Libbus et al. | May 2014 | B2 |
8731649 | Lisogurski | May 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
D744109 | Yoneta et al. | Nov 2015 | S |
D744110 | Kubo et al. | Nov 2015 | S |
9241643 | Lisogurski | Jan 2016 | B2 |
9277864 | Yang et al. | Mar 2016 | B2 |
D760903 | Lin et al. | Jul 2016 | S |
9392946 | Sarantos | Jul 2016 | B1 |
9506802 | Chu et al. | Nov 2016 | B2 |
D787066 | Kim et al. | May 2017 | S |
9636057 | Scheuing et al. | May 2017 | B2 |
9642565 | Gonopolskiy et al. | May 2017 | B2 |
9717425 | Kiani et al. | Aug 2017 | B2 |
D800313 | Chang | Oct 2017 | S |
9801547 | Yuen et al. | Oct 2017 | B2 |
D810944 | Goolkasian | Feb 2018 | S |
D812229 | Al-Siddiq | Mar 2018 | S |
10080527 | Golda et al. | Sep 2018 | B2 |
20020038082 | Chin | Mar 2002 | A1 |
20030055478 | Lyster | Mar 2003 | A1 |
20030065269 | Vetter et al. | Apr 2003 | A1 |
20030073916 | Yonce | Apr 2003 | A1 |
20030149349 | Jensen | Aug 2003 | A1 |
20030176795 | Harris et al. | Sep 2003 | A1 |
20030225322 | Uchiyama et al. | Dec 2003 | A1 |
20040010201 | Korzinov et al. | Jan 2004 | A1 |
20040015091 | Greenwald et al. | Jan 2004 | A1 |
20040039419 | Stickney et al. | Feb 2004 | A1 |
20040039420 | Jayne et al. | Feb 2004 | A1 |
20040042581 | Okerlund | Mar 2004 | A1 |
20040082842 | Lumba et al. | Apr 2004 | A1 |
20040146149 | Rogers et al. | Jul 2004 | A1 |
20040260189 | Eggers et al. | Dec 2004 | A1 |
20050096557 | Vosburgh | May 2005 | A1 |
20050187466 | Nordstrom | Aug 2005 | A1 |
20050261559 | Mumford | Nov 2005 | A1 |
20050288726 | Gollasch | Dec 2005 | A1 |
20060167515 | Stickney et al. | Jul 2006 | A1 |
20060224072 | Shennib | Oct 2006 | A1 |
20070070800 | Virag et al. | Mar 2007 | A1 |
20070093705 | Shin et al. | Apr 2007 | A1 |
20070103296 | Paessel et al. | May 2007 | A1 |
20070106136 | Sterling et al. | May 2007 | A1 |
20070129642 | Korzinov | Jun 2007 | A1 |
20070130657 | Rogers et al. | Jun 2007 | A1 |
20070156054 | Korzinov et al. | Jul 2007 | A1 |
20070167850 | Russell et al. | Jul 2007 | A1 |
20070191723 | Prystowsky et al. | Aug 2007 | A1 |
20070191728 | Shennib | Aug 2007 | A1 |
20070255156 | Mertz et al. | Nov 2007 | A1 |
20070293776 | Korzinov et al. | Dec 2007 | A1 |
20080061846 | Kase | Mar 2008 | A1 |
20080139953 | Baker et al. | Jun 2008 | A1 |
20080288026 | Cross | Nov 2008 | A1 |
20080300641 | Brunekreeft et al. | Dec 2008 | A1 |
20090054742 | Kaminska | Feb 2009 | A1 |
20090076340 | Libbus et al. | Mar 2009 | A1 |
20090076341 | James et al. | Mar 2009 | A1 |
20090076342 | Amurthur et al. | Mar 2009 | A1 |
20090076344 | Libbus et al. | Mar 2009 | A1 |
20090076345 | Manicka et al. | Mar 2009 | A1 |
20090076346 | James et al. | Mar 2009 | A1 |
20090076349 | Libbus et al. | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090076363 | Bly et al. | Mar 2009 | A1 |
20090076364 | Libbus et al. | Mar 2009 | A1 |
20090076397 | Libbus et al. | Mar 2009 | A1 |
20090076405 | Amurthur et al. | Mar 2009 | A1 |
20090076410 | Libbus et al. | Mar 2009 | A1 |
20090076559 | Libbus et al. | Mar 2009 | A1 |
20090105602 | Gehman et al. | Apr 2009 | A1 |
20090171177 | Hannula et al. | Jul 2009 | A1 |
20090234410 | Libbus et al. | Sep 2009 | A1 |
20090290279 | Rodgriguez et al. | Nov 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100026995 | Merritt et al. | Feb 2010 | A1 |
20100030039 | Lamego | Feb 2010 | A1 |
20100054138 | Gips et al. | Mar 2010 | A1 |
20100134241 | Gips et al. | Jun 2010 | A1 |
20100179391 | Quintanar et al. | Jul 2010 | A1 |
20100191509 | Li et al. | Jul 2010 | A1 |
20100198044 | Gehman et al. | Aug 2010 | A1 |
20100204586 | Pu et al. | Aug 2010 | A1 |
20100204599 | Pu et al. | Aug 2010 | A1 |
20100249541 | Geva et al. | Sep 2010 | A1 |
20100262430 | Gips et al. | Oct 2010 | A1 |
20100268103 | Mcnamara et al. | Oct 2010 | A1 |
20100286495 | McGonigle et al. | Nov 2010 | A1 |
20100286532 | Farringdon et al. | Nov 2010 | A1 |
20100298655 | McCombie | Nov 2010 | A1 |
20100298656 | McCombie | Nov 2010 | A1 |
20100312188 | Robertson | Dec 2010 | A1 |
20100317937 | Kuhn et al. | Dec 2010 | A1 |
20100317942 | Cinbis et al. | Dec 2010 | A1 |
20100317947 | Cinbis et al. | Dec 2010 | A1 |
20100318146 | Cinbis et al. | Dec 2010 | A1 |
20100324389 | Moon et al. | Dec 2010 | A1 |
20110021897 | Webb et al. | Jan 2011 | A1 |
20110066039 | Banet et al. | Mar 2011 | A1 |
20110066049 | Matsumoto | Mar 2011 | A1 |
20110098933 | Ochs | Apr 2011 | A1 |
20110105860 | Houben et al. | May 2011 | A1 |
20110105926 | Kornet | May 2011 | A1 |
20110124979 | Heneghan | May 2011 | A1 |
20110125040 | Crawford et al. | May 2011 | A1 |
20110144470 | Mazar et al. | Jun 2011 | A1 |
20110160604 | Istvan et al. | Jun 2011 | A1 |
20110166434 | Gargiulo | Jul 2011 | A1 |
20110166468 | Prystowsky et al. | Jul 2011 | A1 |
20110190598 | Shusterman | Aug 2011 | A1 |
20110208076 | Fong et al. | Aug 2011 | A1 |
20110208078 | Cho et al. | Aug 2011 | A1 |
20110263994 | Burns | Oct 2011 | A1 |
20110270049 | Katra et al. | Nov 2011 | A1 |
20110270112 | Manera et al. | Nov 2011 | A1 |
20110279963 | Kumar | Nov 2011 | A1 |
20110301445 | Webb et al. | Dec 2011 | A9 |
20120016245 | Niwa et al. | Jan 2012 | A1 |
20120029306 | Paquet | Feb 2012 | A1 |
20120029320 | Watson et al. | Feb 2012 | A1 |
20120035490 | Shen et al. | Feb 2012 | A1 |
20120035494 | Chakravarthy et al. | Feb 2012 | A1 |
20120061695 | Kim | Mar 2012 | A1 |
20120071744 | Euliano et al. | Mar 2012 | A1 |
20120083673 | Al-Ali et al. | Apr 2012 | A1 |
20120101396 | Solosko | Apr 2012 | A1 |
20120108917 | Libbus et al. | May 2012 | A1 |
20120108920 | Bly et al. | May 2012 | A1 |
20120110226 | Vlach et al. | May 2012 | A1 |
20120110228 | Vlach et al. | May 2012 | A1 |
20120136226 | Wilke | May 2012 | A1 |
20120176599 | Leung | Jul 2012 | A1 |
20120197150 | Cao et al. | Aug 2012 | A1 |
20120203077 | He et al. | Aug 2012 | A1 |
20120204068 | Ye et al. | Aug 2012 | A1 |
20120226129 | Callahan et al. | Sep 2012 | A1 |
20120232369 | Kim et al. | Sep 2012 | A1 |
20120245951 | Gips et al. | Sep 2012 | A1 |
20120277549 | Libbus et al. | Nov 2012 | A1 |
20120284003 | Gosh | Nov 2012 | A1 |
20120289839 | Takenoshita | Nov 2012 | A1 |
20120330126 | Hoppe | Dec 2012 | A1 |
20130012938 | Asirvatham | Jan 2013 | A1 |
20130085347 | Manicka et al. | Apr 2013 | A1 |
20130096395 | Katra et al. | Apr 2013 | A1 |
20130116520 | Roham | May 2013 | A1 |
20130116534 | Woo | May 2013 | A1 |
20130116585 | Bouguerra | May 2013 | A1 |
20130144130 | Russell et al. | Jun 2013 | A1 |
20130158372 | Haisley | Jun 2013 | A1 |
20130172724 | Aziz et al. | Jul 2013 | A1 |
20130225938 | Vlach | Aug 2013 | A1 |
20130225967 | Esposito | Aug 2013 | A1 |
20130245388 | Rafferty et al. | Sep 2013 | A1 |
20130245394 | Brown et al. | Sep 2013 | A1 |
20130253285 | Bly et al. | Sep 2013 | A1 |
20130267854 | Johnson et al. | Oct 2013 | A1 |
20130296660 | Tsien | Nov 2013 | A1 |
20130296823 | Melker | Nov 2013 | A1 |
20130324812 | Brainard | Dec 2013 | A1 |
20130324816 | Bechtel et al. | Dec 2013 | A1 |
20130324855 | Lisogurski | Dec 2013 | A1 |
20130331665 | Libbus et al. | Dec 2013 | A1 |
20130338448 | Libbus et al. | Dec 2013 | A1 |
20130338460 | He et al. | Dec 2013 | A1 |
20140038147 | Morrow | Feb 2014 | A1 |
20140066732 | Addison et al. | Mar 2014 | A1 |
20140066783 | Kiani et al. | Mar 2014 | A1 |
20140081152 | Clinton | Mar 2014 | A1 |
20140091926 | Gips et al. | Apr 2014 | A1 |
20140100432 | Golda et al. | Apr 2014 | A1 |
20140206976 | Thompson | Jul 2014 | A1 |
20140228656 | Gonopolskiy et al. | Aug 2014 | A1 |
20140275869 | Kintz et al. | Sep 2014 | A1 |
20150057511 | Basu | Feb 2015 | A1 |
20150087948 | Bishay et al. | Mar 2015 | A1 |
20150087951 | Felix et al. | Mar 2015 | A1 |
20150094551 | Frix et al. | Apr 2015 | A1 |
20150094552 | Golda et al. | Apr 2015 | A1 |
20150148622 | Moyer et al. | May 2015 | A1 |
20150148637 | Golda et al. | May 2015 | A1 |
20150148691 | Moyer et al. | May 2015 | A1 |
20150335288 | Toth et al. | Nov 2015 | A1 |
20150351690 | Toth et al. | Dec 2015 | A1 |
20160302674 | Moyer et al. | Oct 2016 | A1 |
20170027513 | Mulpuru | Feb 2017 | A1 |
20170095156 | Richards | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2785556 | Jun 2006 | CN |
101822533 | Sep 2010 | CN |
201641985 | Nov 2010 | CN |
101984743 | Mar 2011 | CN |
202288274 | Jul 2012 | CN |
0581073 | Feb 1994 | EP |
2438851 | Apr 2012 | EP |
H05123305 | May 1993 | JP |
H07213630 | Aug 1995 | JP |
H09224917 | Sep 1997 | JP |
2001078974 | Mar 2001 | JP |
2002125944 | May 2002 | JP |
2002263075 | Sep 2002 | JP |
2004016248 | Jan 2004 | JP |
2006000481 | Jan 2006 | JP |
2006158813 | Jun 2006 | JP |
2007244531 | Sep 2007 | JP |
2002263075 | Sep 2009 | JP |
20120187404 | Oct 2012 | JP |
WO9401039 | Jan 1994 | WO |
WO9427494 | Dec 1994 | WO |
WO0045696 | Aug 2000 | WO |
WO0059374 | Oct 2000 | WO |
WO2001085019 | Nov 2001 | WO |
WO2001093758 | Dec 2001 | WO |
WO0200094 | Jan 2002 | WO |
WO1002086837 | Oct 2002 | WO |
WO2002085201 | Oct 2002 | WO |
WO2002086792 | Oct 2002 | WO |
WO2002086835 | Oct 2002 | WO |
WO2003077752 | Sep 2003 | WO |
WO2005079429 | Jan 2005 | WO |
WO2005060829 | Jul 2005 | WO |
WO2005072237 | Aug 2005 | WO |
WO2006014806 | Feb 2006 | WO |
WO2006044919 | Apr 2006 | WO |
WO2006124788 | Nov 2006 | WO |
WO2009036321 | Mar 2009 | WO |
WO2009036327 | Mar 2009 | WO |
2009112972 | Sep 2009 | WO |
WO2010093900 | Aug 2010 | WO |
WO2010104952 | Sep 2010 | WO |
WO2010107913 | Sep 2010 | WO |
WO2011074004 | Jun 2011 | WO |
WO2012104658 | Aug 2012 | WO |
WO2012129498 | Sep 2012 | WO |
WO2012150563 | Nov 2012 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority. International Application No. PCT/US2013/063748 issued by the United State Patent Office, dated Feb. 27, 2014, 15 pages, Alexandria Virginia. |
Timmerman, Luke, Xconomy, Inc., “UW Spinout Cardiac Insight Wins FDA OK for Heartbeat Monitor”, published Jun. 6, 2013; website accessed Oct. 27, 2013, http://www.xconomy.com/seattle/2013/06/06/uw-spinout-cardiac-insight-wins-fda-ok-for-heartbeat-monitor/, Xconomy Inc., Cambridge, Massachusetts. |
CardioNet, Inc., “CardioNet, Inc. Announces Launch of MCOTos 2:1 Device”, published Jun. 19, 2013; website accessed Oct. 27, 2013, https://www.cardionet.com/index.htm, BioTelemetry, Inc., Conshohocken, Pennsylvania. |
Heart Check, “The HeartCheck Pen, a Handheld ECG with SMART Monitoring”, website accessed Oct. 27, 2013, http://heartcheckpen.com/,HeartCheckPEN.com, TAW Global, LLC, Portage, Michigan; CardioComm Solutions Inc., Toronto, ON, and Victoria, BC. |
Corventis, Inc., “Nuvant Mobile Cardiac Telemetry”, Copyright 2009-2013; website accessed Oct. 27, 2013, http://corventis.com/, Corventis, San Jose, California. |
International Preliminary Report on Patentability dated Apr. 16, 2015 and International Preliminary Report on Patentability dated Apr. 7, 2015 with Written Opinion of the International Searching Authority International Application No. PCT/US2013/063748 issued by the United State Patent Office, dated Feb. 27, 2014, 5 pages, Alexandria, Virginia. |
International Search Report and Written Opinion of the International Searching Authority. International Application No. PCT/US2015/13113 issued by the United State Patent Office, dated Jun. 29, 2015, 14 pages, Alexandria, Virginia. |
Extended European Search Report including the Supplementary European Search Report (SESR) for Application No. EP13843561.5 issued by the European Patent Office, Munich, Germany dated Apr. 29, 2016. |
International Search Report and Written Opinion of the International Searching Authority. International Application No. PCT/US2016/039374 issued by the United State Patent Office, dated Oct. 28, 2016, 14 pages, Alexandria Virginia. |
International Search Report and Written Opinion—PCT/US2017/066805—ISA/US—dated Mar. 12, 2018—12 pages. |
Transmittal of International Preliminary Report of Patentability and International Preliminary Report on Patentability for Application No. PCT/US2016/039374 issued by the International Bureau of WIPO, Geneva, Switzerland dated Dec. 26, 2017. |
Extended European Search Report including the Supplementary European Search Report for Application No. EP15740972 issued by the European Patent Office, Munich, Germany dated Aug. 29, 2017. |
Allen, John, Photoplethysmography and its application in clinical physiological measurement, Physiological Measurement, Feb. 20, 2007, pp. R1-R39, vol. 28, No. 3, IOP Publishing Ltd., Bristol, United Kingdom. |
Number | Date | Country | |
---|---|---|---|
20140100432 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61710768 | Oct 2012 | US |