When people suffer from some types of heart arrhythmias, the result may be that blood flow to various parts of the body is reduced. Some arrhythmias may even result in a Sudden Cardiac Arrest (SCA). SCA can lead to death very quickly, for example within 10 minutes, unless treated in the interim.
Some people have an increased risk of SCA. Such people include patients who have had a heart attack, or a prior SCA episode. A frequent recommendation for these people is to receive an Implantable Cardioverter Defibrillator (ICD). The ICD is surgically implanted in the chest, and continuously monitors the patient's electrocardiogram (ECG). If certain types of heart arrhythmias are detected, then the ICD delivers an electric shock through the heart.
As a further precaution, people who have been identified to have an increased risk of an SCA are sometimes given a Wearable Cardioverter Defibrillator (WCD) system, to wear until the time that their ICD is implanted. Early versions of such systems were called wearable cardiac defibrillator systems. A WCD system typically includes a harness, vest, belt, or other garment that the patient is to wear. The WCD system further includes electronic components, such as a defibrillator and electrodes, coupled to the harness, vest, or other garment. When the patient wears the WCD system, the electrodes may make good electrical contact with the patient's skin, and therefore can help sense the patient's ECG. If a shockable heart arrhythmia is detected from the ECG, then the defibrillator delivers an appropriate electric shock through the patient's body, and thus through the heart. This may restart the patient's heart and thus save their life.
WCD systems analyze the patient's ECG data as part of the determination whether or not to apply a therapeutic electric shock to the patient. Some patients using a WCD system also may be using a continuous positive airway pressure (CPAP) machine to treat sleep apnea. It could be useful for the CPAP information to be utilized by the WCD system to facilitate determining whether a shock should be applied to the patient.
Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, such subject matter may be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and/or clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, if considered appropriate, reference numerals have been repeated among the figures to indicate corresponding and/or analogous elements.
In the following detailed description, numerous specific details are set forth to provide a thorough understanding of claimed subject matter. It will, however, be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, components and/or circuits have not been described in detail.
In the following description and/or claims, the terms coupled and/or connected, along with their derivatives, may be used. In particular embodiments, connected may be used to indicate that two or more elements are in direct physical and/or electrical contact with each other. Coupled may mean that two or more elements are in direct physical and/or electrical contact. Coupled, however, may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate and/or interact with each other. For example, “coupled” may mean that two or more elements do not contact each other but are indirectly joined together via another element or intermediate elements. Finally, the terms “on,” “overlying,” and “over” may be used in the following description and claims. “On,” “overlying,” and “over” may be used to indicate that two or more elements are in direct physical contact with each other. It should be noted, however, that “over” may also mean that two or more elements are not in direct contact with each other. For example, “over” may mean that one element is above another element but not contact each other and may have another element or elements in between the two elements. Furthermore, the term “and/or” may mean “and”, it may mean “or”, it may mean “exclusive-or”, it may mean “one”, it may mean “some, but not all”, it may mean “neither”, and/or it may mean “both”, although the scope of claimed subject matter is not limited in this respect. In the following description and/or claims, the terms “comprise” and “include,” along with their derivatives, may be used and are intended as synonyms for each other.
A WCD system 10 according to embodiments can be configured to defibrillate the patient 82 who is wearing the designated parts the WCD system 10. Defibrillating can be by the WCD system 10 delivering an electrical charge to the patient's body in the form of an electric shock. The electric shock can be delivered in one or more pulses.
Support structure 170 can be implemented in many different ways. For example, it can be implemented in a single component or a combination of multiple components. In embodiments, support structure 170 could include a vest, a half-vest, a garment, etc. In such embodiments such items can be worn similarly to analogous articles of clothing. In embodiments, support structure 170 could include a harness, one or more belts or straps, etc. In such embodiments, such items can be worn by the patient around the torso, hips, over the shoulder, etc. In embodiments, support structure 170 can include a container or housing, which can even be waterproof In such embodiments, the support structure can be worn by being attached to the patient's body by adhesive material, for example as shown and described in U.S. Pat. No. 8,024,037 which is incorporated herein by reference in its entirety. Support structure 170 can even be implemented as described for the support structure of U.S. application Ser. No. 15/120,655, published as US 2017/0056682 A1, which is incorporated herein by reference in its entirety. In such embodiments, the person skilled in the art will recognize that additional components of the WCD system 10 can be in the housing of a support structure instead of being attached externally to the support structure, for example as described in the US 2017/0056682 A1 document. There can be other examples.
When defibrillation electrodes 104 and/or 108 make good electrical contact with the body of patient 82, defibrillator 100 can administer, via electrodes 104 and/or 108, a brief, strong electric pulse 111 through the body. Pulse 111 is also known as shock, defibrillation shock, therapy, electrotherapy, therapy shock, etc. Pulse 111 is intended to go through and restart heart 85, in an effort to save the life of patient 82. Pulse 111 can further include one or more pacing pulses of lesser magnitude to simply pace heart 85 if needed, and so on.
A typical defibrillator decides whether to defibrillate or not based on an ECG signal of the patient. External defibrillator 100, however, may initiate defibrillation, or hold-off defibrillation, based on a variety of inputs, with the ECG signal merely being one of these inputs.
A WCD system 10 according to embodiments can obtain data from patient 82. For collecting such data, the WCD system 10 may optionally include at least an outside monitoring device 180. Device 180 is called an “outside” device because it could be provided as a standalone device, for example not within the housing of defibrillator 100. Device 180 can be configured to sense or monitor at least one local parameter. A local parameter can be a parameter of patient 82, or a parameter of the WCD system 10, or a parameter of the environment, as will be described later in this document. In some embodiments, outside monitoring device 180 can comprise a hub or similar device through which connections and/or leads may be made of the various components of the WCD system 100. For example, at least some of the leads of external defibrillator 100 may be connected to and/or routed through the outside monitoring device 180 including, for example, one or more ECG leads, a right-leg drive (RLD) lead, leads connected to the defibrillation electrodes 104 and/or 108, and so on. In some embodiments, outside monitoring device 180 can include a controller or processor that is used to implement at least a portion of the shock/no-shock algorithm to determine whether a shock should or should not be applied to the patient 82, although the scope of the disclosed subject matter is not limited in this respect.
For some of these parameters, device 180 may include one or more sensors or transducers. Each one of such sensors can be configured to sense a parameter of patient 82, and to render an input responsive to the sensed parameter. In some embodiments the input is quantitative, such as values of a sensed parameter. In other embodiments the input is qualitative, such as informing whether or not a threshold is crossed, and so on. Sometimes these inputs about patient 82 are also called physiological inputs and patient inputs. In embodiments, a sensor can be construed more broadly, as encompassing many individual sensors.
Optionally, device 180 is physically coupled to support structure 170. In addition, device 180 may be communicatively coupled with other components that are coupled to support structure 170. Such communication can be implemented by a communication module, as will be deemed applicable by a person skilled in the art in view of this description.
In embodiments, one or more of the components of the shown WCD system 10 may be customized for patient 82. This customization may include a number of aspects. For instance, support structure 170 can be fitted to the body of patient 82. For another instance, baseline physiological parameters of patient 82 can be measured, such as the heart rate of patient 82 while resting, while walking, motion detector outputs while walking, etc. The measured values of such baseline physiological parameters can be used to customize the WCD system 10, in order to make its diagnoses more accurate, since patients' bodies differ from one another. Of course, such parameter values can be stored in a memory of the WCD system 10, and so on. Moreover, a programming interface can be made according to embodiments, which receives such measured values of baseline physiological parameters. Such a programming interface may input automatically in the WCD system 10 these, along with other data.
In one or more embodiments, WCD system 10 may include a continuous positive airway pressure (CPAP) machine 150 that is capable of monitoring the intrinsic breathing rate of the patient 82 as one or more of the patient parameters collected by WCD system 10. If the CPAP machine 150 detects that the patient 82 stops breathing and the ECG analysis indicates a shockable rhythm, the WCD system 10 can open an episode and start recording data, can provide an alert to the patient 82, and if necessary, apply one or more shocks to the patient 82. Furthermore, the CPAP machine 150 can detect and record the depth of breathing and/or the rate of breathing of the patient 82. The breathing information recorded by or with the CPA machine 150 can be incorporated into the WCD episode stored information so that the breathing information is available for review by a physician or other medical personnel along with the ECG information.
The CPAP machine 150 may be provided in various types of form factors including for example a mask 150 and tubing 154. In some embodiments, CPAP machine 150 includes a mechanism to distinguish between a mouthpiece that is not being worn and a patient who is not breathing. In such embodiments, a sensor may be disposed in the mask 150 that detects contact with the patient's skin so that the CPAP machine 150 can determine when the mask 150 is removed when the sensor does not detect or no longer detects that the sensor is in contact with the patient's skin. An example of how CPAP machine 150 can communicate with WCD 10 is shown in and described with respect to
External defibrillator 200 is intended for a patient who would be wearing it, such as ambulatory patient 82 of
User interface 280 can be made in a number of ways. User interface 280 may include output devices, which can be visual, audible or tactile, for communicating to a user 282 by outputting images, sounds or vibrations. Images, sounds, vibrations, and anything that can be perceived by user 282 can also be called human-perceptible indications (HPIs). There are many examples of output devices. For example, an output device can be a light, or a screen to display what is sensed, detected and/or measured, and provide visual feedback to user 282 acting as a rescuer for their resuscitation attempts, and so on. Another output device can be a speaker, which can be configured to issue voice prompts, beeps, loud alarm sounds and/or words to warn bystanders, etc.
User interface 280 further may include input devices for receiving inputs from users. Such input devices may include various controls, such as pushbuttons, keyboards, touchscreens, one or more microphones, and so on. An input device can be a cancel switch, which is sometimes called an “I am alive” switch or “live man” switch. In some embodiments, actuating the cancel switch can prevent the impending delivery of a shock and may be referred to as a stop button in such embodiments.
Defibrillator 200 may include an internal monitoring device 281. Device 281 is called an “internal” device because it is incorporated within housing 201. Monitoring device 281 can sense or monitor patient parameters such as patient physiological parameters, system parameters and/or environmental parameters, all of which can be called patient data. In other words, internal monitoring device 281 can be complementary or an alternative to outside monitoring device 180 of
Patient parameters may include patient physiological parameters. Patient physiological parameters may include, for example and without limitation, those physiological parameters that can be of any help in detecting by the WCD system 10 whether or not the patient is in need of a shock or other intervention or assistance. Patient physiological parameters may also optionally include the patient's medical history, event history, and so on. Examples of such parameters include the patient's ECG, blood oxygen level, blood flow, blood pressure, blood perfusion, pulsatile change in light transmission or reflection properties of perfused tissue, heart sounds, heart wall motion, breathing sounds and pulse. Accordingly, monitoring device 180 and/or monitoring device 281 may include one or more sensors configured to acquire patient physiological signals. Examples of such sensors or transducers include one or more electrodes to detect ECG data, a perfusion sensor, a pulse oximeter, a device for detecting blood flow (e.g. a Doppler device), a sensor for detecting blood pressure (e.g. a cuff), an optical sensor, illumination detectors and sensors perhaps working together with light sources for detecting color change in tissue, a motion sensor, a device that can detect heart wall movement, a sound sensor, a device with a microphone, an SpO2 sensor, and so on. In accordance with one or more embodiments, monitoring device 180 and/or monitoring device 281 may include a CPAP machine 150 or may operate in conjunction with CPAP machine 150, and the scope of the disclosed subject matter is not limited in this respect. Some of the sensors may be utilized to detect the patient's pulse and/or ECG data. In addition, a person skilled in the art may implement other ways of performing pulse detection. In view of this disclosure, it will be appreciated that CPAP machine 150 can help detect the patient's breathing, and such information may be considered as an additional sensor input provided to WCD system 10 including external defibrillator 200 to assist in making shock decisions.
In some embodiments, the local parameter is a trend that can be detected in a monitored physiological parameter of patient 282. A trend can be detected by comparing values of parameters at different times over short and long terms. Parameters whose detected trends can particularly help a cardiac rehabilitation program include: a) cardiac function (e.g. ejection fraction, stroke volume, cardiac output, etc.); b) heart rate variability at rest or during exercise; c) heart rate profile during exercise and measurement of activity vigor, such as from the profile of an accelerometer signal and informed from adaptive rate pacemaker technology; d) heart rate trending; e) perfusion, such as from SpO2, CO2, or other parameters such as those mentioned above; f) respiratory function, respiratory rate, etc.; g) motion, level of activity; and so on. Once a trend is detected, it can be stored and/or reported via a communication link, optionally along with a warning if warranted. From the report, a physician monitoring the progress of patient (user) 282 will know about a condition that is either not improving or deteriorating.
Patient state parameters include recorded aspects of patient (user) 282, such as motion, posture, whether they have spoken recently plus maybe also what they said, and so on, plus optionally the history of these parameters. Alternatively, one of these monitoring devices could include a location sensor such as a Global Positioning System (GPS) location sensor. Such a sensor can detect the location, plus a speed can be detected as a rate of change of location over time. Many motion detectors output a motion signal that is indicative of the motion of the detector, and thus of the patient's body. Patient state parameters can be very helpful in narrowing down the determination of whether sudden cardiac arrest (SCA) is indeed taking place.
A WCD system 10 made according to embodiments may thus include a motion detector 287. In embodiments, a motion detector can be implemented within monitoring device 180 or monitoring device 281. Such a motion detector can be made in many ways as is known in the art, for example by using an accelerometer. In this example, a motion detector 287 is implemented within monitoring device 281. A motion detector of a WCD system 10 according to embodiments can be configured to detect a motion event. A motion event can be defined as is convenient, for example a change in motion from a baseline motion or rest, etc. In such cases, a sensed patient parameter can include motion. In some embodiments, motion detection may be used to confirm that the patient is in a reclined or sleeping position while using CPAP machine 150 for example while the patient 82 is sleeping to treat sleep apnea.
System parameters of a WCD system 10 can include system identification, battery status, system date and time, reports of self-testing, records of data entered, records of episodes and intervention, and so on. In response to the detected motion event, the motion detector may render or generate, from the detected motion event or motion, a motion detection input that can be received by a subsequent device or functionality.
Environmental parameters can include ambient temperature and pressure. Moreover, a humidity sensor may provide information as to whether or not it is likely raining. Presumed patient location could also be considered an environmental parameter. The patient location could be presumed or determined, if monitoring device 180 and/or monitoring device 281 includes a GPS location sensor as described above, and if it is presumed that the patient is wearing the WCD system 10.
Defibrillator 200 typically includes a defibrillation port 210, which can be a socket in housing 201. Defibrillation port 210 includes electrical node 214 and/or electrical node 218. Leads of defibrillation electrode 204 and/or defibrillation electrode 208, such as leads 105 of
Defibrillator 200 may optionally also have a sensor port 219 in housing 201, which is also sometimes known as an ECG port. Sensor port 219 can be adapted for plugging in sensing electrodes 209, which are also known as ECG electrodes and ECG leads. It is also possible that sensing electrodes 209 can be connected continuously to sensor port 219, instead. Sensing electrodes 209 are types of transducers that can help sense an ECG signal, e.g. a 12-lead signal, or a signal from a different number of leads, especially if the leads make good electrical contact with the body of the patient and in particular with the skin of the patient. As with defibrillation electrodes 204 and/or 208, the support structure 170 can be configured to be worn by patient 282 so as to maintain sensing electrodes 209 on a body of patient (user) 282. For example, sensing electrodes 209 can be attached to the inside of support structure 170 for making good electrical contact with the patient, similarly with defibrillation electrodes 204 and/or 208.
Optionally a WCD system 10 according to embodiments also includes a fluid that can be deployed automatically between the electrodes and the patient's skin. The fluid can be conductive, such as by including an electrolyte, for establishing a better electrical contact between the electrodes and the skin. Electrically speaking, when the fluid is deployed, the electrical impedance between each electrode and the skin is reduced. Mechanically speaking, the fluid may be in the form of a low-viscosity gel so that it does not flow away after being deployed from the location it is released near the electrode. The fluid can be used for both defibrillation electrodes 204 and/or 208, and for sensing electrodes 209.
The fluid may be initially stored in a fluid reservoir, not shown in
In some embodiments, defibrillator 200 also includes a measurement circuit 220, as one or more of its working together with its sensors or transducers. Measurement circuit 220 senses one or more electrical physiological signals of the patient from sensor port 219, if provided. Even if defibrillator 200 lacks sensor port 219, measurement circuit 220 optionally may obtain physiological signals through nodes 214 and/or 218 instead, when defibrillation electrodes 204 and/or 208 are attached to the patient. In these embodiments, the input reflects an ECG measurement. The patient parameter can be an ECG, which can be sensed as a voltage difference between electrodes 204 and 208. In addition, the patient parameter can be an impedance, which can be sensed between electrodes 204 and 208 and/or between the connections of sensor port 219 considered pairwise. Sensing the impedance can be useful for detecting, among other things, whether these electrodes 204 and/or 208 and/or sensing electrodes 209 are not making good electrical contact with the patient's body. These patient physiological signals may be sensed when available. Measurement circuit 220 can then render or generate information about them as inputs, data, other signals, etc. As such, measurement circuit 220 can be configured to render a patient input responsive to a patient parameter sensed by a sensor. In some embodiments, measurement circuit 220 can be configured to render a patient input, such as values of an ECG signal, responsive to the ECG signal sensed by sensing electrodes 209. More strictly speaking, the information rendered by measurement circuit 220 is output from it, but this information can be called an input because it is received as an input by a subsequent device or functionality.
Defibrillator 200 also includes a processor 230. Processor 230 may be implemented in a number of ways. Such ways include, by way of example and not of limitation, digital and/or analog processors such as microprocessors and Digital Signal Processors (DSPs), controllers such as microcontrollers, software running in a machine, programmable circuits such as Field Programmable Gate Arrays (FPGAs), Field-Programmable Analog Arrays (FPAAs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), any combination of one or more of these, and so on.
Processor 230 may include, or have access to, a non-transitory storage medium, such as memory 238 that is described more fully later in this document. Such a memory 238 can have a non-volatile component for storage of machine-readable and machine-executable instructions. A set of such instructions can also be called a program. The instructions, which may also be referred to as “software,” generally provide functionality by performing acts, operations and/or methods as may be disclosed herein or understood by one skilled in the art in view of the disclosed embodiments. In some embodiments, and as a matter of convention used herein, instances of the software may be referred to as a “module” and by other similar terms. Generally, a module includes a set of the instructions to offer or fulfill a particular functionality. Embodiments of modules and the functionality delivered are not limited by the embodiments described in this document.
Processor 230 can be considered to have a number of modules. The modules can be tangibly embodied by one or more circuits and can in some cases in include a processor or controller and memory or storage to store data and/or instructions related to the operation of the modules. One such module can be a detection module 232. Detection module 232 can include a Ventricular Fibrillation (VF) detector. The patient's sensed ECG from measurement circuit 220, which can be available as inputs, data that reflect values, or values of other signals, may be used by the VF detector to determine whether the patient is experiencing VF. Detecting VF is useful because VF typically results in sudden cardiac arrest (SCA). Detection module 232 can also include a Ventricular Tachycardia (VT) detector, and so on.
Another such module in processor 230 can be an advice module 234, which generates advice for what to do. The advice can be based on outputs of detection module 232. There can be many types of advice according to embodiments. In some embodiments, the advice is a shock/no shock determination that processor 230 can make, for example via advice module 234. The shock/no shock determination can be made by executing a stored Shock Advisory Algorithm (SAA). A Shock Advisory Algorithm can make a shock/no shock determination from one or more ECG signals that are captured according to embodiments, and determine whether or not a shock criterion is met. The determination can be made from a rhythm analysis of the captured ECG signal or otherwise.
In some embodiments, when the determination is to shock, an electrical charge is delivered to the patient. Delivering the electrical charge is also known as discharging and shocking the patient. As mentioned above, such can be for defibrillation, pacing, and so on.
In good or ideal conditions, a very reliable shock/no shock determination can be made from a segment of the sensed ECG signal of the patient. In practice, however, the ECG signal is often corrupted by electrical noise, which can make it difficult to analyze. Too much noise sometimes causes an incorrect detection of a heart arrhythmia, resulting in a false alarm to the patient. Noisy ECG signals may be handled as described in U.S. application Ser. No. 16/037,990, filed on Jul. 17, 2018 and since published as US 2019/0030351 A1, and in U.S. application Ser. No. 16/038,007, filed on Jul. 17, 2018 and since published as US 2019/0030352 A1, both by the same applicant and incorporated herein by reference in their entireties.
Processor 230 can include additional modules, such as other module 236, for other functions. In addition, if internal monitoring device 281 is provided, processor 230 may receive its inputs, etc.
Defibrillator 200 optionally further includes a memory 238, which can work together with processor 230. Memory 238 may be implemented in a number of ways. Such ways include, by way of example and not of limitation, volatile memories, Nonvolatile Memories (NVM), Read-Only Memories (ROM), Random Access Memories (RAM), magnetic disk storage media, optical storage media, smart cards, flash memory devices, any combination of these, and so on. Memory 238 is thus a non-transitory storage medium. Memory 238, if provided, can include programs and/or instructions for processor 230, which processor 230 may be able to read and execute. More particularly, the programs can include sets of instructions in the form of code, which processor 230 may be able to execute upon reading. Executing is performed by physical manipulations of physical quantities, and may result in functions, operations, processes, acts, actions and/or methods to be performed, and/or the processor to cause other devices or components or blocks to perform such functions, operations, processes, acts, actions and/or methods. The programs can be operational for the inherent needs of processor 230, and can also include protocols and ways that decisions can be made by advice module 234. In addition, memory 238 can store prompts for user 282, if this user is a local rescuer. Moreover, memory 238 can store data. This data can include patient data, system data and environmental data, for example as learned by internal monitoring device 281 and outside monitoring device 180. The data can be stored in memory 238 before it is transmitted out of defibrillator 200, or be stored there after it is received by defibrillator 200.
Defibrillator 200 can optionally include a communication module 290, for establishing one or more wired and/or wireless communication links with other devices of other entities, such as a remote assistance center, Emergency Medical Services (EMS), and so on. The communication module 290 may include short range wireless communication circuitry for example in accordance with a BLUETOOTH or ZIGBEE standard, short or medium range wireless communication for example a W-Fi or wireless local area network (WLAN) in accordance with an Institute of Electrical and Electronics Engineers (IEEE) 802.11x standard, or a wireless wide area network (WWAN) in accordance with a Third Generation Partnership Project (3GPP) including a 3G, 4G, or 5G New Radio (NR) standard. The communication links can be used to transfer data and commands. The data may be patient data, event information, therapy attempted, cardiopulmonary resuscitation (CPR) performance, system data, environmental data, and so on. For example, communication module 290 may transmit wirelessly, e.g. on a daily basis, heart rate, respiratory rate, and other vital signs data to a server accessible over the internet, for instance as described in U.S. application Ser. No. 13/959,894 filed Aug. 6, 2012 and published as US 2014/0043149 A1 and which is incorporated herein by reference in its entirety. This data can be analyzed directly by the patient's physician and can also be analyzed automatically by algorithms designed to detect a developing illness and then notify medical personnel via text, email, phone, etc. Module 290 may also include such interconnected sub-components as may be deemed necessary by a person skilled in the art, for example an antenna, portions of a processor, supporting electronics, outlet for a telephone or a network cable, etc. Furthermore, in accordance with one or more embodiments, CPAP machine 150 can couple with communication module 290 of defibrillator 200 via a wired or wireless communication link. In some embodiments, CPAP machine 150 can couple with defibrillator 200 via outside monitoring device 180 of
Defibrillator 200 also may include a power source 240. To enable portability of defibrillator 200, power source 240 typically includes a battery. Such a battery typically can be implemented as a battery pack, which can be rechargeable or not. Sometimes a combination of rechargeable and non-rechargeable battery packs is provided. Other embodiments of power source 240 can include an alternating current (AC) power override, for where AC power will be available, an energy-storing capacitor or bank of capacitors, and so on. Appropriate components may be included to provide for charging or replacing power source 240. In some embodiments, power source 240 is controlled and/or monitored by processor 230.
Defibrillator 200 additionally may include an energy storage module 250. Energy storage module 250 can be coupled to the support structure 170 of the WCD system 10, for example either directly or via the electrodes and their leads. Module 250 is where some electrical energy can be stored temporarily in the form of an electrical charge when preparing it for discharge to administer a shock. In some embodiments, module 250 can be charged from power source 240 to the desired amount of energy as controlled by processor 230. In typical implementations, module 250 includes a capacitor 252 which can be a single capacitor or a system or bank of capacitors, and so on. In some embodiments, energy storage module 250 includes a device that exhibits high power density such as an ultracapacitor. As described above, capacitor 252 can store the energy in the form of an electrical charge for delivering to the patient.
A decision to shock can be made responsive to the shock criterion being met, as per the above-mentioned determination. When the decision is to shock, processor 230 can be configured to cause at least some or all of the electrical charge stored in module 250 to be discharged through patient 82 while the support structure is worn by patient 82 so as to deliver a shock 111 to patient 82.
For causing the discharge, defibrillator 200 can include a discharge circuit 255. When the decision is to shock, processor 230 can be configured to control discharge circuit 255 to discharge through the patient 82 at least some or all of the electrical charge stored in energy storage module 250. Discharging can be to nodes 214 and/or 218, and from there to defibrillation electrodes 204 and/or 208, so as to cause a shock to be delivered to the patient. Circuit 255 can include one or more switches 257. Switches 257 can be made in a number of ways, such as by an H-bridge, and so on. Circuit 255 could also be thus controlled via processor 230, and/or user interface 280.
A time waveform of the discharge may be controlled by thus controlling discharge circuit 255. The amount of energy of the discharge can be controlled by how much energy storage module has been charged, and by how long discharge circuit 255 is controlled to remain open. Defibrillator 200 optionally can include other components.
The WCD system 10 of
Support structure 370 is configured to be worn by the ambulatory patient to maintain electrodes 304, 308, and/or 309 on a body of the patient. Back defibrillation electrodes 308 can be maintained in pockets 378. The inside of pockets 378 can be made with loose netting, so that electrodes 308 can contact the back of the patient 82, especially with the help of the conductive fluid that has been deployed in such embodiments. In addition, sensing electrodes 309 are maintained in positions that surround the patient's torso, for sensing ECG signals and/or the impedance of the patient 82.
ECG signals in a WCD system 10 may include too much electrical noise to be useful. To ameliorate the problem, multiple ECG sensing electrodes 309 are provided, for presenting many options to processor 230. These options are different vectors for sensing the ECG signal, as described in more detail below.
In accordance with one or more embodiments, CPAP machine 150 can communicate with external defibrillator 300, for example via a wireless communication link 310 in some embodiments. In other embodiments, CPAP machine 150 also can communicate with external defibrillator 300 via a wired communication link, and the scope of the disclosed subject matter is not limited in this respect. Various example embodiments of how CPAP machine 150 can communicate with WCD system 10 are shown in and described with respect to
In some embodiments, CPAP machine 150 may include circuitry and/or software to transmit the collected patient data to device 420 via RAN 416. For example, CPAP machine 150 and/or smartphone 414 can include a cellular modem to communicate with RAN 416 wherein RAN 416 is part of a cellular network, for example operating in accordance with a Third Generation Partnership Project (3GPP) standard. In other embodiments, RAN 416 can be a wireless router that is part of a Wi-Fi or IEEE 802.11x network that is capable of communicating with device 420 via network 418.
In some embodiments the outside monitoring device 180 of WCD system 10 provides connections and circuitry to the sensing electrodes 209 and the sensor port 219 as shown in
In another embodiment, the CPAP machine 150 can be connected to the alert button/cancel switch 410 to provide signals indicative of patient breathing information. These signals can be digitized, if not already in digital format, and transmitted directly to processor 230, which can comprise a system on module (SOM), over a serial communication bus.
In yet another embodiment, the CPAP machine 150 can be cabled from the hub, separate from the alert button 410, in a manner that is similar to the way that the alert button 410 is cabled to the hub but applied to the patient's body in an area that can provide continuous patient breathing data. In some embodiments, a communication bus can be multiplexed onto squib fire wires so as not to add additional wires and/or pins to the Therapy Cable and/or Plug of the hub. The measurement circuit 220 includes the hardware capability to process the patient's breathing information in combination with software running on processor 230. In other embodiments, CPAP machine 150 can communicated with the outside monitoring device 180, sometimes referred to as the hub, over a lower or medium range wireless communication link 310 such as BLUETOOTH, ZIGBEE, or Wi-Fi, and so on.
The patient data relating to patient breathing can be collected by any one or more of the CPAP machine 150 and be provided to WCD system 10 for analysis that would help medical personnel to understand the patient's health and status during an episode detected by WCD system 10, for example wherein such patient data can be supplemental to the data collected directly by WCD 10 to detect an episode and to make a shock/no-shock decision for the episode. In other embodiments, the collected patient data can be fed into WCD system 10 to provide additional parameters with which an episode can be identified and/or to assist WCD system 10 in making shock/no-shock decisions. The usage of the collected patient data with the monitors and sensors of
If a determination is made at decision block 514 that the gatekeeper function has been tripped, then segment analysis may be executed at operation 516 wherein the main rhythm analysis algorithm analyzes successive segments of ECG data, and a shock/no-shock decision is made for each of the individual segments. Segment analysis is discussed in further detail with respect to
If the patient 82 is in a VF or VT condition as determined at decision block 518, then WCD system 10 opens an episode at operation 522. A determination can be made at decision block 524 whether the patient 82 is breathing based on the patient breathing information received from the CPAP machine 150. If the patient is breathing and the breathing is normal, for example at a normal rate and/or normal depth, then the WCD system 10 can end the episode at operation 526, and a no shock decision is made at operation 520. In some situations, the ECG data can be noisy and can falsely indicate an emergency. If the patient is breathing at a normal rate and/or normal depth in such situations, then it can be determined that there is no emergency, and the episode can be ended at operation 526 with no shock applied at operation 520. Method 500 can continue to execute operation 510 and operation 512. In this situation, the information that the patient is breathing normally at a normal rate and/or normal depth as received from the CPAP machine 150 operates as an inhibitory signal to prevent the WCD system 10 from applying a shock to the patient 82 that otherwise might have been applied. If the patient 82 is not breathing or is breathing but not breathing normally, for example at an abnormal rate and/or abnormal depth, however, as determined at decision block 524 based on the information from the CPAP machine 150, then the patient 82 is alerted and the shock process can be executed at operation 528 unless the patient intervenes before the end of a patient response delay period. The shock process algorithm is described in detail with respect to
The WCD system 10 monitors and analyzes ECG data 610 to make a shock/no-shock decision. A gatekeeper function 612 may be used to provide an early indication that an arrhythmia may be present in the patient 110. An example embodiment of this gatekeeper functionality is disclosed in U.S. application Ser. No. 15/715,500 filed Sep. 26, 2017 which is incorporated herein by reference in its entirety. In some embodiments, if an arrhythmia is suspected with the gatekeeper function 612, then the main rhythm analysis algorithm 614 is triggered to start analyzing successive segments 618 of ECG data, and a shock/no-shock decision is made for each of the individual segments 618. If a string of the segments 618, for example six segments, provide a shock decision, then an episode is opened (Open Episode) 620 in a state machine 616. In some embodiments, this starts an internal storage of ECG information in a memory of the WCD system 10 for later review. After the Open Episode 620, if the shockable rhythm persists for a confirmation period, for example for two or more segments for ventricular fibrillation (VF) or nineteen or more segments for ventricular tachycardia (VT) in some embodiments, then the patient alert sequence (Alert Patient) 624 is initiated. If the patient 82 does not respond within a specified amount of time after initiation of the patient alert sequence, for example after 20 seconds, then a shock (Shock) 626 is delivered to the patient 82.
In some embodiments, patient breathing information from a CPAP machine 150 can be captured and recorded as part of the episode data. In some embodiments, the patient breathing information can be used in conjunction with, or as an input to, shock and/or pacing decision algorithms executed by the WCD system 10. Incorporating CPAP breathing information into a WCD algorithm may allow the WCD system 10 to avoid unnecessary alerts and unnecessary shocks. By incorporating CPAP breathing information it may also be possible to avoid waking up the patient 82 if the ECG leads become disconnected. In one or more embodiments, the patient 82 is awakened only if the ECG leads become disconnected and the CPAP information is lost.
In one or more embodiments, the CPAP machine 150 can detect whether the patient 82 is breathing and not unconscious, which means the patient 82 should not be defibrillated. In such embodiments, information provided by the CPAP machine 150 to the WCD system 10 can serve to provide an inhibitory signal to enhance specificity of the shock/no shock algorithm, for example to prevent a shock that otherwise might have been applied by the WCD system 10 to the patient 82.
In some embodiments, CPAP machine 150 is prescribed for a patient 82 that suffers from sleep apnea. In such patients with sleep apnea, periodic limb movement disorder (PLMD) also can be common. For example, PLMD is discussed in “Sleep structure in patients with periodic limb movements and obstructive sleep apnea syndrome”, J. Iriarte et al., J. Clin. Neurophysiol. 2009 August; 26(4):267-71 and in “Periodic limb movements and obstructive sleep apneas before and after continuous positive airway pressure treatment”, G. Careli et al., J. Sleep Res., 1999 September. 8(3):211-6, both of which are incorporated herein by reference in their entireties. Upper body limb movements in PLMD patients can cause noise in the ECG signals that can be mistaken for VF. If the WCD system 10 knows that the patient 82 is breathing based on the patient breathing information received from the CPAP machine 150 during situations where noisy ECG indicates VT, the WCD 10 can terminate the episode and discontinue the shock process.
In some embodiments, in addition to or instead of being used in therapy decision algorithms, the patient breathing measurement can be used to generate notifications and alerts related to a sleep apnea event, or in conjunction with the notifications and alerts provided by the therapy decision algorithms. In some embodiments, an alert can be generated by the WCD system 10 to prompt the patient to call 911, notify family members or a physician, check the CPAP machine 150, and so on. In some embodiments, the alerts can be transmitted to remote parties such as clinicians and family members via the WCD system 10, via the CPAP machine 150 itself, via a personal communication device such as smartphone 414, and/or via the remote data center or server 420 such as “medical server”. In some embodiments, the alert can be transmitted to the patient 82 via the personal communication device in addition to or instead of the WCD monitor component.
In still other embodiments, additional sensors may be incorporated in the WCD system 10 to detect other patient parameters that may be used in the decision algorithm such as, for example, heart sound (audio) sensors, SpO2 sensors, Methemoglobin sensors, carbon monoxide sensors, carbon dioxide (CO2) sensors, temperature sensors, impedance, chemical sensors such as perspiration sensors, and so on. The data from these additional sensors optionally can be used in the decision algorithm in some embodiments and/or can be captured for post event or post episode review.
In some embodiments, the patient breathing information, with or without other patient parameters such as heart rate, QRS width, SpO2, temperature, and so on, can be used to calculate a trend, a score, or figure of merit for the current cardiac state of the patient 82. This score can be transmitted to a remote receiver or device 420 as shown in
In some embodiments, the RAA algorithm analyzes ECG data in 4.8 second segments, for example as shown in
Referring now to
The processor 838 processes the digital ECG/QRS data received from the preamplifier 832 with one or more digital filters 812. Since the preamplifier 832 has a wide dynamic range that is much wider than the amplitude range of the ECG signals, digital filters 812 may be utilized to process the ECG/QRS data without concern for clipping the incoming signals. One of the digital filters 812 may include a matched filter to facilitate identification of QRS pulses in the incoming data stream. The wide dynamic range of the preamplifier 832 allows at least most of the ECG filtering to happen in software without the signal being clipped. Digital filters 812 can be very effective at removing artifacts from the ECG/QRS data and may contribute to the enhanced false positive performance, that is a lower false positive rate, of the WCD system 10 according to embodiments as described herein.
The processor 838 can apply the rhythm analysis algorithm (RAA) 814 using QRS width information and heart rate data extracted from the digital ECG data using the segment-based processing analysis 600 of
In one or more embodiments of the WCD system 10, the digital filters 812 coupled with the wide dynamic range of the preamplifier 832 may allow analysis of signals that otherwise would be clipped in systems with a more limited dynamic range. In addition, the matched filter of the digital filters 812 preferentially highlights complexes similar to the patient's normal rhythm. As a result, artifacts that otherwise may be difficult to discriminate using other methods may be significantly attenuated by the matched filter.
In accordance with one or more embodiments, CPAP machine 150 can be coupled to the preamp 832 via an available preamp channel, for example via connection 810. Alternatively, the CPAP machine 150 can be coupled to the processor 838 via a wired link or a wireless communication link, for example via connection 811, as discussed herein.
In some embodiments, patient impedance measurements may be obtained between any two or more of the ECG electrodes, for example to determine a patient's respiration. In some embodiments, the wearable system 800 can comprise a WCD system 10 as discussed herein. In other embodiments, the wearable system 800 can comprise a wearable patient monitoring system that is capable of collecting one or more patient parameters that can be stored in a memory for future review and analysis, and/or to provide one or more warnings to a patient that one or more patient parameters are outside a normal or predetermined range when the patient is wearing the patient monitoring system, for example to allow the patient to cease a present activity that may be causing an atypical patient parameter or to otherwise seek assistance or medical help. In such embodiments, wearable system does not necessarily include structure to provide defibrillation therapy to the patient. It should be noted, however, that these are merely example implementations of wearable system 800, and the scope of the disclosed subject matter is not limited in this respect.
Other embodiments include combinations and sub-combinations of features described or shown in the drawings herein, including for example, embodiments that are equivalent to: providing or applying a feature in a different order than in a described embodiment, extracting an individual feature from one embodiment and inserting such feature into another embodiment; removing one or more features from an embodiment; or both removing one or more features from an embodiment and adding one or more features extracted from one or more other embodiments, while providing the advantages of the features incorporated in such combinations and sub-combinations. As used herein, feature or features can refer to the structures and/or functions of an apparatus, article of manufacture or system, and/or the operations, acts, or modalities of a method.
Although the claimed subject matter has been described with a certain degree of particularity, it should be recognized that elements thereof may be altered by persons skilled in the art without departing from the spirit and/or scope of claimed subject matter. It is believed that the subject matter pertaining to a wearable cardioverter defibrillator using CPAP information and many of its attendant utilities will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and/or arrangement of the components thereof without departing from the scope and/or spirit of the claimed subject matter or without sacrificing all of its material advantages, the form herein before described being merely an explanatory embodiment thereof, and/or further without providing substantial change thereto. It is the intention of the claims to encompass and/or include such changes.
The present application claims the benefit of U.S. Provisional Application No. 62/668,256 (C00003605.USP1) filed May 8, 2018. Said Application No. 62/668,256 is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62668256 | May 2018 | US |