Not Applicable.
Not Applicable.
The present invention relates to wearable devices that dispense chemicals such as insect repellents and/or fragrances.
Various techniques have been developed to provide humans with protection from insect bites. For insect control inside buildings a primary emphasis is placed on trying to keep insects from entering the building at all (e.g. placing screens over windows). This sometimes is supplemented with chemical treatment of room air and/or the use of traps. See, for example, U.S. Pat. Nos. 6,582,714, 7,175,815, 7,621,511, and U.S. Patent Application Publication Nos. 2005/0079113, 2006/0039835, and 2006/0137241.
When the individual is outdoors where the area cannot be effectively screened, and the individual is mostly staying in a particular area (e.g. at a picnic, or on a patio near a building), traps and area-repellents are the primary focus.
Alternatively, when the individual is moving away from a single area that they control, individuals often apply a personal insect repellent to clothing or directly to their skin. However, some consumers have expressed a reluctance to apply insect repellents directly to their skin or to delicate clothing.
As a result, portable electrical devices having a fan and an insecticide source have been developed. These devices may have a clip so that they can easily be mounted on a belt, a purse, or even a pocket, and thus be “worn” by the consumer as they move outside. The device may draw air through, or blow air past, a substrate impregnated with an insect repellent or other air treatment chemical, thereby dispensing the active into the air, preferably (in the case of a repellent) along the outside of a human's clothing. See, for example, U.S. Pat. Nos. 6,926,902, 7,007,861, 7,152,809, 7,168,630, 7,175,815, 7,285,248, and 7,887,760, and U.S. Patent Application Publication No. 2009/0060799.
However, some such devices may blow the active too far out away from the human body, causing too little of the active to reach locations of primary concern (e.g. near ankles). Other such devices do not provide a way of minimizing waste of the active, such as while blower operation is suspended between uses. Still other such devices are unduly costly, are too heavy, or have other deficiencies.
The deficiencies in the above noted devices have been addressed by the wearable chemical dispensers described in U.S. Pat. Nos. 7,892,487, 7,833,492, 7,917,018, and 8,524,158, and U.S. Patent Application Publication No. 2011/0038761. However, it is still desirable to improve this type of product further, particularly with respect to: (i) providing the user with an indication that the substrate impregnated with the insect repellent or other air treatment chemical needs to be replaced, (ii) assuring that the refill substrate is correctly positioned in the device, (iii) providing uniform dispersion of the air treatment chemical at high energy efficiency, and (iv) providing the user with means for positioning the dispenser on a surface or hanging the dispenser.
Hence, a need still exists to improve wearable chemical dispensers in these areas.
In one embodiment, a wearable device for dispensing an air treatment chemical is provided. The device includes a circular housing comprising an inlet for permitting air to enter into an interior space of the housing, and a plurality of outlets spaced substantially 360 degrees around the housing, wherein the outlets permit air mixed with air treatment chemical to exit the interior space. The device includes a substrate dimensioned to be positioned in the housing via a slot in the housing. The substrate bears an air treatment chemical. A centrifugal fan is mounted within the housing. The fan is capable of moving air from the inlet adjacent the substrate so as to mix air treatment chemical into the moving air, and then deliver a mixture of air and air treatment chemical through the outlets to outside of the housing. In one version of the device, the inlet comprises a first section including a plurality of spaced apart apertures and a cover section including a plurality of spaced apart vent openings, and the cover section is movable from a first position in which the cover section covers the plurality of spaced apart apertures of the first section to a second position in which the plurality of spaced apart vent openings of the cover section are at least partially aligned with the plurality of spaced apart apertures of the first section.
In another version of the device, a power supply and a motor are mounted within the housing. The motor is powered by the power supply, and the fan is connected to the motor. The power supply includes a battery, and the motor has a current draw such that power of the device is 50 milliwatts or greater when the battery is fully charged.
In another version of the device, the vent openings of the cover section include at least a first size of openings of a first inside diameter and a second size of openings of a second inside diameter smaller than the first inside diameter, and at least a first group of the first size of openings is arranged further away from a center of the cover section than a second group of the second size of openings.
In another version of the device, the vent openings of the cover section include a plurality of sizes of openings, and a size of openings having the largest inside diameter is arranged about half way between a center of the cover section and an outer periphery of the cover section.
In another version of the device, a clip is rotatably connected to an outer wall of the housing, and the clip is structured to rotate 360 degrees with respect to the housing. The clip may include a slot.
In yet another embodiment, a refill adapted for use in a wearable device for dispensing an air treatment chemical is provided. The wearable device includes a housing comprising an inlet for permitting air to enter into an interior space of the housing, and an outlet permitting air mixed with air treatment chemical to exit the interior space. The refill includes a substrate dimensioned to be positioned in the housing via a slot in the housing. The substrate has a first end, a second end opposite the first end, a first side, and a second side opposite the first side, and the substrate bears an air treatment chemical. The second side of the substrate includes an alignment profile that cooperates with an alignment structure in the slot such that the first end of the substrate faces away from an opening of the slot and the second side of the substrate faces the inlet when the substrate is positioned for use in the housing.
In one version of the refill, the substrate includes an outer wall, and the alignment profile is partially defined by a notch in a section of the outer wall adjacent the first end of the substrate.
In one version of the refill, the alignment profile is partially defined by a tab that extends away from the second side of the substrate adjacent the second end of the substrate.
In one version of the refill, the alignment structure in the slot comprises a stop rib extending away from the inlet. The notch travels past the stop rib when the substrate is inserted in the opening of the slot with the first end of the substrate facing into the interior space of the housing and the second side of the substrate facing the inlet.
In still another embodiment, a wearable device for dispensing an air treatment chemical is provided. The device includes a housing comprising an inlet for permitting air to enter into an interior space of the housing, and an outlet for permitting air mixed with air treatment chemical to exit the interior space. A substrate is positioned within the housing, and the substrate bears an air treatment chemical. A power supply mounted within the housing, and a motor is mounted within the housing. The motor is powered by the power supply. A fan is mounted within the housing and is connected to the motor. The fan is capable of moving air from the inlet adjacent the substrate so as to mix air treatment chemical into the moving air, and then deliver a mixture of air and air treatment chemical through the outlet to outside of the housing. The device includes a switch for activating and deactivating the motor. A top section of the housing is rotatably coupled to a bottom section of the housing, and the top section of the housing is rotatable to contact the switch and activate the motor.
In one version of the device, the top section of the housing has a first position for positioning the substrate within the housing, and the top section of the housing has a second position for securing the substrate within the housing, and the top section of the housing has a third position for contacting the switch.
The device may further include a controller in electrical communication with the switch and an indicator of useful life for the substrate. The controller executes a stored program to activate the indicator based on a signal from the switch.
In one version of the device, the controller executes the stored program to: (i) adjust a value of a counting device when the switch is contacted, and (ii) activate the indicator when the value of the counting device equals a predetermined value.
The device may include an actuator positioned within the housing, wherein the substrate actuates the actuator when the substrate is positioned within the housing, and a controller in electrical communication with the switch, the actuator, and an indicator of useful life for the substrate. The controller executes the stored program to: (i) start adjusting a value of a counting device when the substrate actuates the actuator; (ii) adjust the value of the counting device when the motor is activated; and (iii) activate the indicator when the value of the counting device equals a predetermined value. The counting device may include a first timer and a second timer, and actuation of the actuator initiates the first timer, and activation of the motor initiates the second timer. The value of the counting device can be adjusted based on first timing signals from the first timer and second timing signals from the second timer.
In yet another embodiment, a wearable device for dispensing an air treatment chemical is provided. The device includes a housing with an inlet for permitting air to enter into an interior space of the housing, and an outlet for permitting air mixed with air treatment chemical to exit the interior space, a substrate positioned within the housing where the substrate bears an air treatment chemical, and a power supply mounted within the housing. The device further includes a motor mounted within the housing, where the motor is powered by the power supply, a fan mounted within the housing and connected to the motor, where the fan is capable of moving air from the inlet adjacent the substrate so as to mix air treatment chemical into the moving air, and then deliver a mixture of air and air treatment chemical through the outlet to outside of the housing, and an actuator positioned within the housing such that the substrate actuates the actuator when the substrate is positioned within the housing. The device also includes a controller electrically connected with the actuator, a switch for activating and deactivating the fan, and an indicator of useful life for the substrate, where the controller executes a stored program to activate the indicator based on a signal from the actuator and/or switch.
In one aspect, a top section of the housing is rotatably coupled to a bottom section of the housing such that the top section of the housing can be rotated to activate the fan. In another aspect, the switch comprises a second actuator and a protrusion on the top section of the housing, where the protrusion contacts the second actuator to activate the fan. In yet another aspect, the controller executes the stored program to achieve a number of objectives. First, the program starts adjusting a value of a counting device when the substrate actuates the actuator. Second, the program adjusts the value of the counting device when the fan is activated. Third, the program activates the indicator when the value of the counting device equals a predetermined value.
In still another aspect, the counting device includes a first timer and a second timer, where actuation of the actuator initiates the first timer and activation of the fan initiates the second timer. In one aspect, the value of the counting device is adjusted based on first timing signals from the first timer and second timing signals from the second timer. In another aspect, the value of the counting device is based on a passive release rate of the substrate. In yet another aspect, the value of the counting device is further based on an active release rate of the substrate.
In one aspect, the indicator is an audible indicator, a visual indicator and/or a physical indicator. In another aspect, the indicator is a visual indicator.
In yet another embodiment, a wearable device for dispensing an air treatment chemical is provided. The device includes a housing with an inlet for permitting air to enter into an interior space of the housing, and an outlet for permitting air mixed with air treatment chemical to exit the interior space, a substrate positioned within the housing, where the substrate bears an air treatment chemical, and a power supply mounted within the housing. The device further includes a motor mounted within the housing, where the motor is powered by the power supply, a fan mounted within the housing and connected to the motor, such that the fan is capable of moving air from the inlet adjacent the substrate so as to mix air treatment chemical into the moving air, and then deliver a mixture of air and air treatment chemical through the outlet to outside of the housing and a controller in electrical communication with a switch for activating and deactivating the fan. The device also includes an indicator of useful life for the substrate, where the controller executes a stored program to activate the indicator based on a signal from the switch. A top section of the housing is rotatably coupled to a bottom section of the housing such that the top section of the housing is rotated to activate the fan.
In one aspect, the top section of the housing has a first position for positioning the substrate within the housing, a second position for securing the substrate within the housing, and a third position for activating the fan. In another aspect an actuator is positioned within the housing, such that the substrate actuates the actuator when the substrate is positioned within the housing. In still another aspect, the switch comprises a second actuator and a protrusion on the top section of the housing, where the protrusion contacts the second actuator to activate the fan.
In yet another aspect, the controller executes the stored program to accomplish a number of objectives. First, the program starts adjusting a value of a counting device when the substrate actuates the actuator. Second, the program adjusts the value of the counting device when the fan is activated. Third, the program activates the indicator when the value of the counting device equals a predetermined value. In one aspect, the counting device includes a first timer and a second timer, where actuation of the actuator initiates the first timer while activation of the fan initiates the second timer. In another aspect, the value of the counting device is adjusted based on first timing signals from the first timer and second timing signals from the second timer. In still another aspect, the value of the counting device is based on a passive release rate of the substrate. In one aspect, the value of the counting device is further based on an active release rate of the substrate. In another aspect, the indicator is an audible indicator, a visual indicator and/or a physical indicator.
In still another embodiment, a method for dispensing an air treatment chemical is provided. The method includes the step of providing a device including a housing. The housing has a bottom housing section, a top housing section rotatably coupled to the bottom housing, an inlet for permitting air to enter into an interior space of the housing, and an outlet for permitting air mixed with air treatment chemical to exit the interior space. The device also includes a power supply mounted within the housing, a motor mounted within the housing, where the motor is powered by the power supply, and a fan mounted within the housing and connected to the motor, where the fan being capable of moving air from the inlet adjacent the substrate so as to mix air treatment chemical into the moving air, and then deliver a mixture of air and air treatment chemical through the outlet to outside of the housing. The method further includes the steps of positioning a substrate bearing an air treatment chemical within the housing with the top housing section in a first position, rotating the top housing section from the first position to a second position to secure the substrate within the housing, and rotating the top housing from the second position to a third position, to activate the fan.
It is an advantage of the invention to provide a wearable chemical dispenser having a rotating slide cover to allow a user of the device to easily load a refill unit, secure the refill unit and turn the fan on and off to operate the dispenser.
It is a further advantage of the invention to provide a set of actuators integrated into the dispenser. The actuators can be configured to indicate to a user when the useful life of a refill unit has expired. The actuators can sense when a new refill unit is loaded as well as when the fan is on. Based on active and passive release rate data associated with a chemical in a refill unit, an indication can be made to a user as to when to replace the refill unit. It is a further advantage of the present invention to include an indicator of useful life, such as a LED to help convey the indication to a user based on signals associated with the actuators.
These and other advantages of the present invention will become better understood upon consideration of the following detailed description, drawings, and claims.
Like reference numerals will be used to refer to like parts from Figure to Figure in the following detailed description.
A non-limiting example of a wearable chemical dispenser 18 is shown in
One feature of the dispenser 18 is an indicator of useful life 49. It can be appreciated that the useful life of the refill unit 44 is, in part, determined by the passive and active rates at which chemical in the refill unit 44 is dispensed. In one aspect, the passive release rate can be defined as the rate at which the chemical is released from the refill unit 44 when the fan 60 is off and the dispenser 18 is not in operation (i.e., off). In another aspect, the active release rate can be defined as the rate at which the chemical is released from the refill unit 44 when the fan 60 is on and the dispenser 18 is in operation (i.e., on). In one example, the useful life indicator 49 is an LED that is lit to indicate to a user when the refill unit 44 should be replaced (e.g., the amount of chemical repellent remaining in the refill unit 44 is no longer effective for repelling insects). The useful life of the refill unit 44 is determined with two actuators housed in the dispenser 18. The first actuator is a refill switch actuator 36, which is triggered upon loading of a refill unit 44. The second actuator is an on/off switch actuator 56, which is triggered upon rotation of the slide cover 30 into the ‘on’ position. In one aspect, the refill switch actuator accounts for a passive release rate of chemical from the refill unit, while the on/off switch actuator accounts for an active release of rate of chemical from the refill unit.
Slide cover 30 also possesses a plurality of spaced apart apertures 31 radially arranged in top wall 28. The apertures 31 provide an inlet for permitting air to enter into an interior space of the wearable chemical dispenser 18 when aligned with apertures 24 in top wall 23 of top housing 20. A further aspect of slide cover 30 is a cam projection 32 that extends through a semi-circular slot 27 in top housing 20 (see
As illustrated in
As shown in
By impregnating the fabric substrate 48 with an appropriate air treatment chemical, air entering the dispenser will pick up some of the volatile chemical, and dispense it out of the dispenser. Active release rates of 0.2 milligrams per hour (mg/hr) or higher are preferred. Particularly preferred active ingredients are metofluthrin, transfluthrin, prallethrin, vaporthrin, tefluthrin, and esbiothrin or other synthetic pyrethroids. The impregnation material can be pure active, or for ease of handling the material can be dissolved in a hydrocarbon or other solvent. Alternatively, or in addition, the fabric may also bear a fragrance, a deodorizer, or other air treatment chemical. It is preferred to have the fabric substrate 48 configured so that the pressure drop across the substrate is no more than 40 Pascal (Pa). Suitable fabrics can be made of woven or non-woven materials providing only minimal resistance to the airflow.
The fabric substrate 48 should also be capable of holding active ingredient dosed onto the material and also allow ready migration of the active to the surface so as to allow its evaporation in response to the airflow. Suitable materials include, only by way of example, polyester, polypropylene, cotton, cellulose, poly-rayon, and other similar fabrics. These can be non-wovens with basis weights ranging from 10 grams per square meter (g/m2) to 40 grams per square meter (g/m2), fabricated from synthetic, natural, or combined synthetic and natural polymeric materials.
The ideal fabric substrate 48 should also allow for wicking of the active ingredient following dosing so as to ensure efficient distribution throughout the substrate, and thereafter allow migration of active ingredient to the substrate surface to replenish the active ingredient that is being evaporated by the passing airflow. Dosing may be by dropping, spraying, printing, or other conventional delivery of a liquid active ingredient to the substrate. A particularly desirable fabric is a non-woven felted material with a basis weight of 20-30 g/m2 fabricated from polyethylene terephthalate.
A frame 50 is located below the refill unit 44 in the wearable chemical dispenser 18. The frame 50 has a generally circular perimeter, and supports the refill unit 44 (see
Frame 50 is disposed on a fan housing 40. Both frame 50 and fan housing 40 are generally ring-shaped. The circular openings in frame 50 and fan housing 40 are aligned when the dispenser 18 is assembled. Referring to
Looking at
The wearable chemical dispenser 18 includes an electrical power supply. In the example embodiment shown, a second tactile switch 75 of the power supply is in electrical communication with battery contacts 76a to complete an electrical circuit with batteries 78 and the battery contacts 76b to provide electricity to tactile switch 75. When a user rotates the slide cover 30 from the ‘lock’ position to the ‘on’ position, the cam projection 32 of the slide cover 30 is driven into the on/off switch actuator 56 which then contacts tactile switch 75 to turn on the power supply. Analogous to refill switch actuator 36, on/off switch actuator is biased towards the front face of the dispenser 18 with a resistance means such as spring 57.
The power supply is also in electrical communication with PCB 70 and tactile switch 37. As described previously, when a user inserts the refill unit 44 into the dispenser 18 while the slide cover 20 is in the ‘load’ position, the refill switch actuator 36 triggers tactile switch 37. In one example of wearable dispenser 18, activation of tactile switch 37 completes a circuit with batteries 78 to supply power to PCB 70 in order to activate a first counter (passive counter). Rotation of the top cover 30 from the ‘lock’ position to the ‘on’ position, in another aspect, turns on the fan motor 93 and also activates a second counter (active counter).
One method to accurately indicate to a user the end of the useful life of the refill unit 44 makes use of the passive and active counters. For example, if the passive counter is activated when the refill unit 44 is inserted into the dispenser 18, then the passive counter can be used to measure the elapsed time, tP, since the initial loading of the refill unit 44. In one aspect, the elapsed time, tP, is correlated with the passive release rate. If a particular refill unit 44 has a passive release rate that corresponds with a useful life of fourteen days, then the passive counter can be used to determine when tP=fourteen days in order to alert a user via activation of the indicator of useful life 49.
In another example, if the active counter is triggered when the fan 60 is turned on (i.e., by rotating the slide cover 30 to the ‘on’ position), then the active counter can be used to measure the elapsed time, tA, during which the dispenser 18 is in active use. In one aspect, the elapsed time, tA, is correlated with the active release rate. If a particular refill unit 44 has an active release rate that corresponds to a useful life of twelve hours, then the active counter can be used to determine when tA=twelve hours in order to alert a user via activation of the indicator of useful life 49.
In yet another example, tA and tP can be combined to more accurately determine the useful life of the refill unit 44. In this case involving two counters, the useful life is evaluated as a function of both tA and tP. Expressed in the form of an equation, f(tA, tP)=x, where the indicator 49 is activated when x exceeds a threshold value xT.
In still another example, a single counter is used to determine the useful life of the refill unit 44. Here, one approach is to configure the single counter to count from an initial value x0 to a predetermined threshold value xT. The rate at which the counter is incremented (or decremented) can be correlated with active and passive release rate data. In a one embodiment of a single counter approach, the counter is initialized when the refill unit 44 is loaded into the dispenser 18 and is incremented at a first rate corresponding to the passive release rate. When the fan 60 is turned on by rotating the slide cover 30 to the ‘on’ position, the counter is incremented at a second rate corresponding to the active release rate. If the fan 60 is turned off, by rotating the slide cover 30 to the ‘lock’ position, then the counter is again incremented based on the first rate.
With respect to the single counter approach, the rates at which the counter is incremented can be constant or variable. If it is determined that the active and/or passive release rates of a given chemical vary over time, it can be desirable to allow the rates at which the counter is incremented to vary as a function of time. For example, activation of the refill switch actuator 36 initializes the counter, records a time stamp, t0, and increments the counter at a first (passive) rate that is a function of the elapsed time (i.e., t−t0, the amount of time the refill unit 44 has been in the dispenser 18). Activation of the on/off switch actuator 56 increments the counter at a second (active) rate that is also a function of the elapsed time. Deactivation of the on/off switch actuator 56 causes the counter to once again increment at the first (passive) rate, which is still a function of the total elapsed time. In one aspect, rates are determined through the use of a look up table where the first and second rates are determined as a function of elapsed time. The look up table can be populated with data based on experimental results and/or correlations for measured active and passive release rates for a given chemical. However, it should be appreciated by the skilled artisan that there are many ways to implement a system for indicating to a user the end of a useful life of a refill unit 44 with the present wearable chemical dispenser 16.
Looking at
Tuning now to
Preferably, a flow path from the fan 60 to the openings 42 is unobstructed. Some other devices included a slide cover designed to shut off air flow by blocking the inlet vents and the exhaust vents. The intent was to minimize loss of actives while the unit is not in use by blocking off airflow across the dosed pad. The walls blocking the exhaust vents and the geometries supporting them occupied large space and caused the device to increase in size. These blocking walls are eliminated in the dispenser 18 without increased loss in actives ingredient. These example opening configurations contribute to a balance of airflow and minimal power consumption for the wearable chemical dispenser 18.
Looking at
Looking now at
Regarding component construction, the top housing section 20, slide cover 30, support structure 45 of the refill unit 44, fan housing 40, frame 50, fan 60, chassis 80, battery door 96, bottom cover 102, and clip 110 may be formed from a suitable polymeric material such as polyethylene, polypropylene, or polyester.
In operation, the wearable chemical dispenser 18 will be clipped on a belt, purse or the like using clip 110 for that purpose. When a user rotates the top housing section 20 from the ‘lock’ position into the ‘on’ position, the openings 31 of the slide cover 30 align with the apertures 24 that are radially arranged in the top wall 23 of the top housing section 20. The cam projection 32 of the slide cover 28 is driven into the on/off switch actuator 56 which then contacts the tactile switch 75 to signal to the power supply to power the fan 60 by way of motor 93. Air is drawn by the fan 60 of the wearable chemical dispenser 18 in through apertures 24 and the openings 31. As the air passes through fabric substrate 48, the air treatment chemical mixes into the air and a mixture of air and air treatment chemical is then blown radially out openings 42 (preferably down along pants or dresses). A user can rotate the clip 110 as described above to change the path of the mixture of air and air treatment chemical.
While the present device is primarily intended to be used as a wearable item carried with a human when outdoors, it can also be laid flat, with the clip 110 downward and the slide cover 30 upward, on a picnic table or the like. When used in this manner it can provide protection to an area during a picnic or similar outdoor activity.
Another non-limiting example of a wearable chemical dispenser 218 is shown in
One feature of the dispenser 218 is an indicator of useful life 249. In one example, the useful life indicator 249 is an LED that is lit to indicate to a user when the refill unit 244 should be replaced (e.g., the amount of chemical repellent remaining in the refill unit 244 may no longer effective for repelling insects). The useful life of the refill unit 244 is determined with an on/off switch actuator 237 (see
Slide cover 230 also possesses a plurality of spaced apart vent openings 231 radially arranged in top wall 228. The openings 231 provide an inlet for permitting air to enter into an interior space of the wearable chemical dispenser 218 when at least partially aligned with apertures 224 in top wall 223 of top housing 220. Slide cover 230 is coupled to the top housing section 220 such that the slide cover 230 can rotate with respect to the top housing section 220. Slide cover 230 can be rotated between three distinct positions including a ‘load’ position, a ‘lock’ position and an ‘on’ position. In the ‘lock’ position, the slide cover 230 shields the apertures 224 that are radially arranged in the top wall 223 of the top housing section 220. In the ‘on’ position, the openings 231 of the slide cover 230 at least partially align with the apertures 224 that are radially arranged in the top wall 223 of the top housing section 220.
As illustrated in
As shown in
Still referring to
Referring to
Still looking at
The wearable chemical dispenser 218 includes an electrical power supply. In the example embodiment shown, batteries 278 provide the electricity. Looking at
One method to accurately indicate to a user the end of the useful life of the refill unit 244 makes use of the counter. For example, the counter is triggered when the fan 260 is turned on (i.e., by rotating the slide cover 230 to the ‘on’ position). After a first predetermined amount of usage time (e.g., approximately 10 hours) as measured by the counter, the PCB 70 lights the LED useful life indicator 249 to alert the user it is time to replace both the refill unit 244 and the batteries 278. After a second predetermined amount of usage time (e.g., approximately 12 hours) based on a drop in battery voltage, the PCB 70 causes the dispenser 218 to turn off so the user has to replace the refill unit 244 and batteries 278 if they have not already done so. The first and second time periods may be varied depending on the construction of the refill unit 244 and the batteries 278.
Looking at
Still referring to
Looking now at
Regarding component construction, the top housing section 220, slide cover 230, support structure 245 of the refill unit 244, fan housing 240, fan 260, chassis 280, bottom cover 302, and clip 310 may be formed from a suitable polymeric material such as polyethylene, polypropylene, or polyester.
In operation, when a user rotates the top housing section 220 from the ‘lock’ position into the ‘on’ position, the vent openings 231 of the slide cover 230 at least partially align with the apertures 224 that are radially arranged in the top wall 223 of the top housing section 220. The projection 232 of the slide cover 228 is driven into the on/off switch actuator 237 which then contacts the microswitch 239 to signal to the power supply to power the fan 260 by way of motor 293. Air is drawn by the fan 260 of the wearable chemical dispenser 218 in through apertures 224 and the openings 231. As the air passes through fabric substrate 228, the air treatment chemical mixes into the air and a mixture of air and air treatment chemical is then blown radially out openings 242 (preferably down along pants or dresses). A user can rotate the clip 310 as described above to change the path of the mixture of air and air treatment chemical, or hand the dispenser 218, or place the dispenser 218 on a surface.
Various orientations of the vent openings 231 of the slide cover 230 and the apertures 224 of the top housing section 220 can be beneficial. The size and location of the vent openings 231 and the apertures 224 can be arranged to get efficacy with the apertures 224 not totally open. Under certain circumstances, a more closed design (e.g., with only ˜30% of the area of the apertures 224 open) can give sufficient efficacy and air flow in cfm. Other devices typically have air vents as open as possible. In one non-limiting configuration, the vent openings 231 are ˜33% open (projected area on the refill unit 244. It can be advantageous to have 25% to 50% open on each quadrant of the refill unit 244. The sizes of the vent openings 231 and the apertures 224 may vary within each quadrant with the largest holes located approximately half the distance between the center of the slide cover 230 and the outer periphery of the slide cover 230, and the smallest holes located toward the center of the slide cover 230.
Hence, the device is much more compact and lightweight, yet still effective. Further, the cost of operation from a battery standpoint is reduced. The device can more comfortably be used when seated, and provides greater control over dispensing direction. Also, installing a replacement active unit refill is easier. These advantages are achieved at lowered cost, and provide a reliable construction.
In the wearable dispenser, the intake grill size is designed to work in concert with an improved fan which falls within a specific range of fan blades, size and blade angle. A low current draw motor is recessed into the axial hub of the fan design. The airflow exits through 360 degrees of output vents. This combination of design features results in an ideal balance of airflow and minimal power consumption that results in a highly efficient system, which produces good insect repellency and usage duration in a relatively small, lightweight unit.
While example embodiments have been described above, it should be appreciated that there are numerous other embodiments of the invention within the spirit and scope of this disclosure. For example, the device can be powered by a different source of energy (e.g. a solar power panel or a weight responsive to motion of a wearer), other forms of actives can be dispensed along with or in substitution for the insect control ingredients (e.g. a fragrance or deodorizing chemical), and even when an insect control ingredient is dispensed it need not be one focused on controlling mosquitoes (e.g., chemicals for repelling other flying or crawling insects or pests can be used). Hence, the invention is not to be limited to just the specific embodiments shown or described.
Provided herein are wearable dispensing devices capable of dispensing insect control chemicals and/or other air treatment chemicals adjacent a human body.
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2585339 | Miller | Feb 1952 | A |
2614820 | Boydjieff | Oct 1952 | A |
2764789 | Zelenka | Oct 1956 | A |
3633881 | Yurdin | Jan 1972 | A |
4059422 | Steiner | Nov 1977 | A |
4111655 | Quincey | Sep 1978 | A |
4166087 | Cline et al. | Aug 1979 | A |
4268285 | Mason | May 1981 | A |
4294778 | DeLuca | Oct 1981 | A |
4301095 | Mettler et al. | Nov 1981 | A |
4377399 | Bryson | Mar 1983 | A |
4396557 | DeLuca | Aug 1983 | A |
4830791 | Muderlak et al. | May 1989 | A |
4931224 | Holzner, Sr. | Jun 1990 | A |
5126078 | Steiner et al. | Jun 1992 | A |
5147582 | Holzner, Sr. et al. | Sep 1992 | A |
5193984 | Lin | Mar 1993 | A |
5223182 | Steiner et al. | Jun 1993 | A |
5234162 | Sullivan | Aug 1993 | A |
5305541 | Simpson | Apr 1994 | A |
5342584 | Fritz et al. | Aug 1994 | A |
5358443 | Mitchell et al. | Oct 1994 | A |
5370829 | Kunze | Dec 1994 | A |
5431885 | Zlotnik et al. | Jul 1995 | A |
5435817 | Davis et al. | Jul 1995 | A |
5498397 | Horng | Mar 1996 | A |
5547616 | Dancs et al. | Aug 1996 | A |
5562407 | Cielo | Oct 1996 | A |
5616172 | Tuckerman et al. | Apr 1997 | A |
5620306 | Day | Apr 1997 | A |
5641343 | Frey | Jun 1997 | A |
5695692 | Kennedy | Dec 1997 | A |
5704832 | Borrell | Jan 1998 | A |
5735918 | Barradas | Apr 1998 | A |
5753000 | Chiu et al. | May 1998 | A |
5829188 | Tanitomi | Nov 1998 | A |
5837020 | Cartellone | Nov 1998 | A |
5840092 | Rick et al. | Nov 1998 | A |
5925172 | Rick et al. | Jul 1999 | A |
5932147 | Chen | Aug 1999 | A |
6042333 | Day | Mar 2000 | A |
6050016 | Cox | Apr 2000 | A |
6050551 | Anderson | Apr 2000 | A |
6061950 | Carey et al. | May 2000 | A |
6102660 | Lee | Aug 2000 | A |
6103201 | Green | Aug 2000 | A |
6106786 | Akahoshi | Aug 2000 | A |
6154607 | Flashinski et al. | Nov 2000 | A |
6156085 | Chiu et al. | Dec 2000 | A |
6156088 | Cardarelli | Dec 2000 | A |
6192621 | Fain | Feb 2001 | B1 |
6241218 | Tanitomi | Jun 2001 | B1 |
6254065 | Ehrensperger et al. | Jul 2001 | B1 |
6293044 | Feng | Sep 2001 | B1 |
6315821 | Pillion et al. | Nov 2001 | B1 |
6328791 | Pillion et al. | Dec 2001 | B1 |
6361752 | Demarest et al. | Mar 2002 | B1 |
6371450 | Davis et al. | Apr 2002 | B1 |
6391329 | Ito et al. | May 2002 | B1 |
6392549 | Wu | May 2002 | B1 |
6435828 | Bostwick | Aug 2002 | B1 |
6447587 | Pillion et al. | Sep 2002 | B1 |
6482365 | Soller | Nov 2002 | B1 |
6497753 | Gutmann | Dec 2002 | B1 |
6508868 | Pillion et al. | Jan 2003 | B2 |
6511531 | Cartellone | Jan 2003 | B1 |
6514052 | Bostwick | Feb 2003 | B2 |
6553711 | Feng | Apr 2003 | B1 |
6569387 | Furner et al. | May 2003 | B1 |
6592104 | Cox | Jul 2003 | B2 |
6610254 | Furner et al. | Aug 2003 | B1 |
6623265 | Day | Sep 2003 | B1 |
6631888 | Prueter | Oct 2003 | B1 |
6632405 | Lua | Oct 2003 | B2 |
6719217 | Tawara et al. | Apr 2004 | B1 |
6769631 | Brown | Aug 2004 | B2 |
6783081 | Pedrotti et al. | Aug 2004 | B2 |
6783117 | Wohrle | Aug 2004 | B2 |
6857214 | Pelissier | Feb 2005 | B1 |
6881382 | Goldstein et al. | Apr 2005 | B2 |
6899931 | Porchia et al. | May 2005 | B2 |
6909840 | Harwig et al. | Jun 2005 | B2 |
6913733 | Hardy et al. | Jul 2005 | B2 |
6926902 | Inoue et al. | Aug 2005 | B2 |
6950607 | Yip et al. | Sep 2005 | B2 |
6966665 | Limburg et al. | Nov 2005 | B2 |
7007861 | Ketcha et al. | Mar 2006 | B2 |
7008180 | Fujimori et al. | Mar 2006 | B2 |
7040548 | Rodgers | May 2006 | B2 |
7112232 | Chang et al. | Sep 2006 | B2 |
7132084 | Roumpos | Nov 2006 | B1 |
7138130 | Davis et al. | Nov 2006 | B2 |
7152809 | Ketcha et al. | Dec 2006 | B2 |
7167641 | Tam et al. | Jan 2007 | B2 |
7168630 | Ketcha et al. | Jan 2007 | B1 |
7175815 | Yamasaki et al. | Feb 2007 | B2 |
7188783 | Ivey et al. | Mar 2007 | B2 |
7204870 | Zobele et al. | Apr 2007 | B2 |
7285248 | Yamamoto et al. | Oct 2007 | B2 |
7316729 | Paterson et al. | Jan 2008 | B2 |
7341698 | Pedrotti et al. | Mar 2008 | B2 |
7344123 | Pankhurst et al. | Mar 2008 | B2 |
7431901 | Stiros et al. | Oct 2008 | B2 |
7459168 | Inoue et al. | Dec 2008 | B2 |
7476002 | Wolf et al. | Jan 2009 | B2 |
7481571 | Bistritzky et al. | Jan 2009 | B2 |
7484716 | Ford Morie et al. | Feb 2009 | B2 |
7484860 | Demarest et al. | Feb 2009 | B2 |
7503675 | Demarest et al. | Mar 2009 | B2 |
7585344 | Paterson et al. | Sep 2009 | B2 |
7597308 | Stucki | Oct 2009 | B1 |
7597857 | Reece | Oct 2009 | B2 |
7621511 | Hayes-Pankhurst et al. | Nov 2009 | B2 |
7641364 | Abbondanzio et al. | Jan 2010 | B2 |
7670035 | Tsai | Mar 2010 | B2 |
7748687 | Pankhurst et al. | Jul 2010 | B2 |
7811348 | Paterson et al. | Oct 2010 | B2 |
7833492 | Schumacher et al. | Nov 2010 | B2 |
7887759 | Triplett | Feb 2011 | B2 |
7887760 | Yamamoto et al. | Feb 2011 | B2 |
7892487 | Adair et al. | Feb 2011 | B2 |
7917018 | Schumacher et al. | Mar 2011 | B2 |
7959132 | Butler et al. | Jun 2011 | B2 |
8025845 | Yamasaki et al. | Sep 2011 | B2 |
8048379 | Sassoon | Nov 2011 | B2 |
8074970 | Pankhurst et al. | Dec 2011 | B2 |
8137629 | Faber et al. | Mar 2012 | B2 |
8197761 | Miller-Larry | Jun 2012 | B1 |
8282883 | Yamasaki et al. | Oct 2012 | B2 |
8303385 | Park | Nov 2012 | B2 |
8328894 | Thurin et al. | Dec 2012 | B2 |
8347549 | Durand et al. | Jan 2013 | B2 |
8359785 | Ohtsuka et al. | Jan 2013 | B2 |
8367011 | Yamamoto | Feb 2013 | B2 |
8371740 | Pestl et al. | Feb 2013 | B2 |
8385730 | Bushman et al. | Feb 2013 | B2 |
8435450 | Kawamura et al. | May 2013 | B2 |
8449828 | Yamamoto et al. | May 2013 | B2 |
8524158 | Shi et al. | Sep 2013 | B2 |
20020197189 | Lua | Dec 2002 | A1 |
20030012680 | Balsys | Jan 2003 | A1 |
20040146435 | Goldstein et al. | Jul 2004 | A1 |
20050019165 | Fujimori et al. | Jan 2005 | A1 |
20050191217 | Selander | Sep 2005 | A1 |
20050214175 | Barker | Sep 2005 | A1 |
20050220664 | Hitzler et al. | Oct 2005 | A1 |
20050226788 | Hrybyk et al. | Oct 2005 | A1 |
20050255008 | Lin | Nov 2005 | A1 |
20060039835 | Nottingham et al. | Feb 2006 | A1 |
20060043619 | Brown et al. | Mar 2006 | A1 |
20060137241 | Yamasaki et al. | Jun 2006 | A1 |
20070001024 | Wold et al. | Jan 2007 | A1 |
20070036673 | Selander | Feb 2007 | A1 |
20070087679 | Yamasaki et al. | Apr 2007 | A1 |
20070111654 | Yamasaki et al. | May 2007 | A1 |
20070158456 | Spector | Jul 2007 | A1 |
20070180801 | Paterson et al. | Aug 2007 | A1 |
20070180996 | Paterson et al. | Aug 2007 | A1 |
20080130266 | DeWitt et al. | Jun 2008 | A1 |
20080244954 | Shannon | Oct 2008 | A1 |
20080271338 | Muir et al. | Nov 2008 | A1 |
20080299014 | Kim | Dec 2008 | A1 |
20090008411 | Schumacher et al. | Jan 2009 | A1 |
20090060799 | Torres | Mar 2009 | A1 |
20090072783 | Gaspar et al. | Mar 2009 | A1 |
20090183636 | Levine et al. | Jul 2009 | A1 |
20090200393 | Avelar | Aug 2009 | A1 |
20100025490 | Bushman et al. | Feb 2010 | A1 |
20100044468 | Granger et al. | Feb 2010 | A1 |
20100064895 | Thurin et al. | Mar 2010 | A1 |
20100090022 | Hayashida | Apr 2010 | A1 |
20100129268 | Andersen | May 2010 | A1 |
20100132246 | Ohtsuka et al. | Jun 2010 | A1 |
20100150774 | Marchetti et al. | Jun 2010 | A1 |
20100177597 | Tsai | Jul 2010 | A1 |
20100180830 | Fritter et al. | Jul 2010 | A1 |
20100269826 | Colombo et al. | Oct 2010 | A1 |
20100284783 | Lolmede | Nov 2010 | A1 |
20100288847 | Gruenbacher et al. | Nov 2010 | A1 |
20110027124 | Albee et al. | Feb 2011 | A1 |
20110038761 | Saleh et al. | Feb 2011 | A1 |
20110049259 | Beland et al. | Mar 2011 | A1 |
20110108633 | Yamamoto et al. | May 2011 | A1 |
20110108634 | Yamamoto et al. | May 2011 | A1 |
20110110827 | Yamamoto et al. | May 2011 | A1 |
20110116977 | Yamamoto et al. | May 2011 | A1 |
20110134628 | Pestl et al. | Jun 2011 | A1 |
20110221079 | Yamasaki et al. | Sep 2011 | A1 |
20110268605 | Haran | Nov 2011 | A1 |
20120180666 | Lim et al. | Jul 2012 | A1 |
20120181350 | Snider | Jul 2012 | A1 |
20120183280 | Kowalec et al. | Jul 2012 | A1 |
20120205460 | Franks | Aug 2012 | A1 |
20120248136 | Meyers | Oct 2012 | A1 |
20120261484 | Blaylock et al. | Oct 2012 | A2 |
20120273978 | Sharma | Nov 2012 | A1 |
20120275932 | Sharma | Nov 2012 | A1 |
20120288414 | Shi et al. | Nov 2012 | A1 |
20130049236 | Garon et al. | Feb 2013 | A1 |
20140091487 | Belongia | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
1352562 | Oct 2003 | EP |
2014036677 | Feb 2014 | JP |
9846280 | Oct 1998 | WO |
9902032 | Jan 1999 | WO |
0165931 | Sep 2001 | WO |
02060246 | Aug 2002 | WO |
03103387 | Dec 2003 | WO |
2005063013 | Jul 2005 | WO |
2006052519 | May 2006 | WO |
2006084317 | Aug 2006 | WO |
2007017742 | Feb 2007 | WO |
2008112545 | Sep 2008 | WO |
2009065629 | May 2009 | WO |
2009092135 | Jul 2009 | WO |
2009111903 | Sep 2009 | WO |
2009147330 | Dec 2009 | WO |
2011019404 | Feb 2011 | WO |
2011106889 | Sep 2011 | WO |
2011126208 | Oct 2011 | WO |
2012131232 | Oct 2012 | WO |
WO 2012154492 | Nov 2012 | WO |
2013032920 | Mar 2013 | WO |
Entry |
---|
PCT/US2015/033457 International Search Report and Written Opinion dated Sep. 2, 2015. |
Number | Date | Country | |
---|---|---|---|
20150352241 A1 | Dec 2015 | US |