Virtual reality applications allow a user to become immersed in a virtual environment. For example, a head-mounted display, using stereoscopic display devices, allow a user to see, and become immersed into any desired virtual scene. Such virtual reality applications also provide visual stimuli, auditory stimuli, and can track user movement to create a rich immersive experience.
The accompanying drawings illustrate various examples of the principles described herein and are part of the specification. The illustrated examples are given merely for illustration, and do not limit the scope of the claims.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. The figures are not necessarily to scale, and the size of some parts may be exaggerated to more clearly illustrate the example shown. Moreover, the drawings provide examples and/or implementations consistent with the description; however, the description is not limited to the examples and/or implementations provided in the drawings.
Virtual reality applications allow a user to become immersed in a virtual environment. For example, a head-mounted display, using stereoscopic display devices, allows a user to see and become immersed into any desired virtual scene. Such virtual reality applications also provide visual stimuli, auditory stimuli, and can track user movement to create a rich immersive experience. In some examples, user input devices are incorporated into a virtual reality system. For example, handles that have various gyroscopes and buttons detect user movement and other user input and manipulate the virtual environment accordingly. As such, users can use input devices to interact with the virtual scene. As one particular example, haptic gloves allow a user to grab objects in the virtual scene.
While such virtual reality devices have undoubtedly provided a valuable tool in many industries as well as a source of diversion for users. Some characteristics impede their more complete implementation. For example, large amounts of data are transferred between a computing device that generates the virtual scene and the virtual reality device that includes the headset. In some examples, the base stations are mounted on virtual reality devices that are worn by a user, for example on their head. However, these base stations can be bulky and make movements of the user awkward.
Accordingly, in some cases the data is transferred via a physical cable tethered between the virtual reality device and the base station. Such a physical cable restricts the unimpeded movement of the user as they are limited in their movement by the dimensions of the physical cable.
Wireless solutions exist; however, they too are prone to complications. For example, such virtual reality systems transmit large volumes of data, i.e., video and audio data at a high rate. This will be more relevant as video resolutions and refresh rates are increased over time. To accommodate high transfer rates of large amounts of data, a wireless transmission protocol is used which facilitates data transmission at high frequencies, such as 60 Gigahertz (GHz). However, transmissions at these frequencies are prone to being blocked by physical obstacles. For example, if a user's body, or a portion of the user's body, is disposed in the direct path between a base station and the virtual reality device antenna, a signal may be lost, which would result in lags in virtual data transmission, or a complete lack of transmission of virtual data.
Accordingly, the present specification describes an example communication device that facilitates increased data transmission with less likelihood for signal interruption. Specifically, the communication device includes a housing. The housing is to be worn by a user, for example around the neck. Antenna structures having arrays on both sides allow data transmission in two directions relative to the antenna structure. A reflecting wall in the housing ensures that all data transmissions are in the same general direction. Moreover, in some cases multiple of these antenna structures are disposed within a housing. One antenna structure to be disposed on a front side when worn by a user and another to be disposed on a rear side when worn by a user. These dual-sided antenna arrays placed on opposite sides of the housing in this fashion increase the data transmission between the wearable device and the base station, thus resulting in 1) greater data transfer, thus accommodating a higher bandwidth, and 2) a reduced likelihood of data interruption.
Specifically, the present specification describes an example communication device. The communication device includes a housing to be worn by a user. An antenna structure is disposed within the housing. The antenna structure includes a substrate, a first antenna array disposed on a first surface of the substrate, and a second antenna array disposed on a second surface of the substrate. The antenna structure also includes a reflective wall facing the second surface.
In another example, the communication device includes a housing to be worn by a user and at least two antenna structures disposed within the housing. Each antenna structure includes a substrate, a first antenna array disposed on a first surface of the substrate, a second antenna array disposed on a second surface of the substrate, and a reflective wall facing the second surface. In this example, a first antenna structure and a second antenna structure are disposed on opposite sides of the housing.
The present specification also describes an example virtual reality system. The virtual reality system includes a base station to communicate with a wearable virtual reality device. The wearable virtual reality device includes a housing to be worn around a neck of a user and at least two antenna structures to transmit and receive signals. The at least two antenna array structures are disposed within the housing and each include a substrate, a first antenna array disposed on a first surface of the substrate, and a second antenna array disposed on a second surface of the substrate. The wearable virtual reality device also includes a reflective wall facing the second surface to 1) direct received signals onto the second antenna array and 2) direct transmitted signals from the second antenna array to travel in substantially the same direction as transmitted signals from the first antenna array.
In summary, using such a communication device and system 1) provides for effective transmission of large amounts of data at high data rates; 2) facilitates unimpeded and comfortable movement of the user while wearing the virtual reality device; and 3) reduces the likelihood of data transmission interruptions. However, it is contemplated that the devices disclosed herein may address other matters and deficiencies in a number of technical areas.
As used in the present specification and in the appended claims, the term “a number of” or similar language is meant to be understood broadly as any positive number including 1 to infinity.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the present apparatus, systems, and methods may be practiced without these specific details. Reference in the specification to “an example” or similar language means that a particular feature, structure, or characteristic described in connection with that example is included as described, but may or may not be included in other examples.
The communication device (100) includes a housing (102) to be worn by the user. An example of a housing (102) as worn by a user is depicted in
The antenna structure (104) may be small, for example a 19 by 7 millimeter (mm) rectangle that is 2.5 mm thick. An example of the size and configuration of the antenna structure (104) is provided in
The antenna structure (104) also includes a reflective wall (110) facing the second surface. This reflective wall (110) directs received signals onto the second antenna array (108) and directs transmitted signals from the second antenna array (108) to travel in substantially the same direction as transmitted signals from the first antenna array (108). Such a dual-sided antenna structure (104) and reflective wall (110) increases the data transmission as array elements on both sides of the array structure (104) can receive and send data signals. The dual-sided antenna structure (104) also reduces data interruption as array elements on the second surface can allow signal transmission when the first surface may be blocked.
In this example, the communication device (100) includes two antenna structures (104-1, 104-2) disposed within the housing (102). The antenna structures (104-1, 104-2) are depicted in dashed line to indicate their location internal to the housing (102). Each of the antenna structures (104-1, 104-2) include a first antenna array (
The second antenna arrays (
The first antenna arrays (
In some examples, the antenna structures (104) are disposed on opposite sides of the housing (102). Specifically, as is depicted in
The two antenna structures (104) may interoperate such that when one is active, the other is deactivated. That is, when the first antenna structure (104-1) is active, the second antenna structure (104-2) is deactivated. Similarly, when the second antenna structure (104-2) is active, the first antenna structure (104-1) is deactivated. Accordingly, each antenna structure (104) may include signal processing and monitoring components such that each antenna structure (104) can determine its own signal strength and if signal strength drops below a threshold value, or below a signal strength of the other antenna structure (104), it deactivates in favor of the other antenna structure (104). For example, when the signal strength of the first antenna structure (104-1) drops below a certain level, for example due to a blockage by a user's body, the first antenna structure (104-1) deactivates and the second antenna structure (104-2) activates. Doing so conserves power as an antenna structure (104) that has reduced operating efficiency is powered down, while that antenna structure (104) transmitting more efficiently is powered.
While
Each of the antenna arrays (
As described above, in some settings, such as virtual reality systems, large amounts of data are transmitted back and forth. Accordingly, the first and second antenna arrays (
In some examples, at least one of the surfaces may include a signal processing component (316). The signal processing component (316) may perform any number of control operations over the arrays (
Moreover, as described above, the housing (102) may include some surfaces that are soft, for example those surfaces that contact the user's (418) skin, so as to be comfortable during use. The housing (102) may be sized to fit comfortably around the neck of a user (418). For example, the housing (102) may have an outside diameter of 36 millimeters. The housing (102) may also be designed to be lightweight. For example, the housing (102) may be formed out of a lightweight plastic and may have a thickness of 2 mm.
However, as described above, the housing (102) also includes a reflective wall (110). The reflective wall (110) carries out a number of functions. First, the reflective wall (110) protects the user (418) from energy absorption. That is, radio frequency signals, such as those used in virtual reality systems, create electromagnetic fields, which generate energy that can be absorbed into the body. The reflective wall (110), by reflecting received and transmitted signals away from the user (418) body, shield the body from these emissions and any potentially harmful effects that may result therefrom.
As another example, the reflective wall (110) enhances the communication mode between the communication device (
In some examples, the reflective wall (110) may be a metallic piece of sheet material that is bent into form, or it may be a reflective coating disposed over a plastic piece of sheet material. While specific reference is made to particular forms of the reflective wall (110), the reflective wall (110) may be of a variety of forms.
In summary, using such a communication device and system 1) provides for effective transmission of large amounts of data at high data rates; 2) facilitates unimpeded, and comfortable movement of the user while wearing the virtual reality device; and 3) reduces the likelihood of data transmission interruptions. However, it is contemplated that the devices disclosed herein may address other matters and deficiencies in a number of technical areas.
The preceding description has been presented to illustrate and describe examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form disclosed. Many modifications and variations are possible in light of the above teaching.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/055482 | 10/6/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/070291 | 4/11/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6594370 | Anderson | Jul 2003 | B1 |
7035897 | Devereaux et al. | Apr 2006 | B1 |
7443345 | Zhang | Oct 2008 | B2 |
9160064 | Ferguson | Oct 2015 | B2 |
9547335 | Bevelacqua | Jan 2017 | B1 |
9586318 | Djugash | Mar 2017 | B2 |
10360907 | Dayal | Jul 2019 | B2 |
20060262027 | Zhang | Nov 2006 | A1 |
20080311944 | Hansen et al. | Dec 2008 | A1 |
20140070957 | Longinotti-Buitoni et al. | Mar 2014 | A1 |
20150356781 | Miller | Dec 2015 | A1 |
20160005233 | Fraccaroli et al. | Jan 2016 | A1 |
20160250752 | Djugash | Sep 2016 | A1 |
20180323508 | Chigusa | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
60017169 | Mar 2006 | DE |
WO-2016205800 | Dec 2016 | WO |
WO-2017086290 | May 2017 | WO |
Entry |
---|
Abari, O et al, “Cutting the Cord in Virtual Reality”, Nov. 9, 2016, 7 pages http://www.mit.edu/%7Eabari/Papers/Hotnets16a.pdf. |
Number | Date | Country | |
---|---|---|---|
20200274235 A1 | Aug 2020 | US |